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To quantify the force of selection, Hamilton [Hamilton, W. D. (1966)
J. Theor. Biol. 12, 12-45] derived expressions for the change in
fitness with respect to age-specific mutations. Hamilton’s indica-
tors are decreasing functions of age. He concluded that senescence
is inevitable: survival and fertility decline with age. | show that
alternative parameterizations of mutational effects lead to indi-
cators that can increase with age. | then consider the case of
deleterious mutations with age-specific effects. In this case, it is the
balance between mutation and selection pressure that determines
the equilibrium number of mutations in a population. In this
balance, the effects of different parameterizations cancel out, but
only to a linear approximation. | show that mutation accumulation
has little impact at ages when this linear approximation holds.
When mutation accumulation matters, nonlinear effects become
important, and the parameterizations of mutational effects make
a difference. The results also suggest that mutation accumulation
may be relatively unimportant over most of the reproductive
lifespan of any species.

S enescence can be defined as an increase in mortality and/or
a decrease in fertility with age. Is senescence a universal
characteristic of life? It is not obvious from an evolutionary
perspective why it should be. Early in life, when individuals
develop and grow, mortality falls and reproductive potential
increases. Why is it that these age patterns cannot persist, in
some form, with mortality continuing to decline and reproduc-
tive capacity continuing to increase?

William D. Hamilton’s influential article on ““The Moulding of
Senescence by Natural Selection” (1, 2) provides one reason why
senescence “‘cannot be avoided by any conceivable organism.”
Hamilton combines insights about the evolution of senescence
(3, 4) with concepts and models of population dynamics (5).
Hamilton asserts that “senescence is an inevitable outcome of
evolution.” His results imply that mortality rises and fertility falls
from reproductive maturity onwards. Did Hamilton genuinely
prove that senescence is universal?

Hamilton's Derivations

How does a mutation that acts only at a specific age a influence
the evolutionary success of an individual? Does it matter if this
age is early or late in life? Hamilton (1) built on the insight of
Medawar (3) that later-acting genes should be under weaker
selection than earlier-acting ones due to the unavoidable decline
in the number of survivors at higher and higher ages. A
genetically determined fatal disease that struck only at post-
reproductive ages would be entirely out of reach of the force of
selection.

The Framework. To quantify the force of selection, Hamilton
considered age-specific mutation-induced changes in fitness.
Hamilton used the most widely accepted measure of Darwinian
fitness, the intrinsic rate of population increase r, implicitly
defined by the discrete version of the Lotka equation,

> e m, = 1. (1]

x=0
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The function /, gives the chance of survival to age x. The
function m, measures the amount of reproduction at that age.
If the population is stable, as assumed by Hamilton, then each
combination of an age-specific maternity function m, and an
age-specific survival function /, is associated with exactly one
real r that satisfies Eq. 1. The survival function /, is defined
as the product of the probabilities p, of survival from age a to
a+ 1:

L=pop1 .- Pr-1s [2]
with
ly=1.
The age-specific survival probabilities p, depend on the instan-

taneous death rate p,, the force of mortality between age a and
a + 1, via
a+1

Do = e Ja wdi — p—ia [3]

The cumulated mortality in the exponent reflects the average
mortality during that time interval, denoted by .

Hamilton's Survival Indicator. By taking the derivative of Eq. 1 with
respect to In p, and rearranging, Hamilton derived his basic
result:

dr E;O=a+1 e _mlxmx
= =Se - . [4a]
dlnp, Z7_,xe *lm,
Note that Eq. 3 implies that H can also be expressed as:
B dr b
TR [4b]

The value of H' is a measure of the force of selection. It
captures the change in fitness r induced by an increase in In p,.
An increase in In p, is equivalent to a reduction in average
mortality i, between age a and a + 1. This sensitivity of fitness
to changes in age-specific survival is captured by the ratio of
remaining reproduction, the numerator of Eq. 4a, to genera-
tion time, the denominator. Because HT declines as age
increases, Hamilton concluded that the force of selection must
decline with age.

Alternative Indicators

Different Parameterizations. Hamilton’s conclusion hinges on the
particular parameterization he chose for the nature of the effect
of a mutation. Equally reasonable, alternative forms would have
been dr/dp,, dr/dq., dr/d In q,, or dr/d In p,, where g, is the
probability of dying, and p,, as noted above, equals —In p,. The
results are as follows:
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dar Lo (5b]
dq,  Pa
dlﬁ;a - _Zf H [Sel
and
dr
ding, ~ —f.H'. [5d]

Strikingly, the expressions in Eq. 5 a—d can increase in absolute
value with age in contrast to H', which always declines.

When Selection Pressure Increases. Consider, for instance, Eq. 5d.
At prereproductive ages, the value of dr/d In p, is entirely
determined by u,, because H is constant before maturity. At
reproductive ages, the change in fitness with respect to mortality
increases from age a toa + 1 if

_dr
dlIn p,

_ ‘ dr

d In F"a#»l
Substituting Eqgs. 5d and 4a and using the notion of reproductive
value, introduced by Fisher (6),

Q

Vv, =

> el [6]

~

this inequality can be rearranged to give the following condition,

_a - _a Va
(u) Ve -
Ma+1 ma+1

Hence, the value of dr/d In p, will increase with age if i, < jt,+1
and if future reproductive value is sufficiently large compared to
fertility m, 4. Taking into account the fact that Eq. 1 must hold,
the inequality in Eq. 7 can be rearranged as

rla+1) a
1— D e ™lm,| > mg,,. [8]

x=0

laa+1 B /141 €
I1H+1 la+1

This inequality determines trajectories for m,+; that lead to
increasing sensitivity of fitness to changes in mortality over age
given a specified increasing path for u,. The survival and fertility
functions plotted in Fig. 1 and the resulting indicators dr/d In pu,
and dr/d In p, plotted in Fig. 2 provide an illustrative example.

Fertility Indicators. The quantity Hamilton derived for the force of
selection on age-specific mutations that affect fertility is

dr e ",

T — 91

dm, 37_jxe ™lm,’

H*

Hamilton considered survival effects on a log scale. He could
have done the same for reproduction, calculating
dr

. *
Jin g, = Mt [10]

Hamilton’s indicator in Eq. 9 necessarily declines with age, but
the alternative indicator in Eq. 10 can increase with age depend-
ing on the trajectory of m,.
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Fig. 1. Example of survival and maternity functions /; and m,. If age-specific
survival probabilities p, change according to p, = p§ with pg < 1, then the
average force of mortality between age a and a + 1 is given by g, =
—Inp§ = — alnpo. Maternity m, + 1 was chosen to be 0.01 units smaller than
the left-hand side of the inequality in Eq. 8, settingr = 0,po = 0.99andmg =
0. By age 34, survival falls to 0.25%. After age 34, | fixed age-specific survival
pa atits level of p3s = 0.70 corresponding to u3s = 0.35 and adjusted m, to
a constant level of 133.265 such that Eq. 1 is fulfilled.

5 10

Table 1 summarizes the direction of changes over age of the
various indicators of the force of selection. The differences in
the dynamics are due to the nonlinearity of logarithmic
transformations.

Are Some Indicators Better? Charlesworth (ref. 7, p. 191), who
reconstructed Hamilton’s results, suggested that “genetic effects
on survival probabilities are more likely to be additive on a log
scale.” His conjecture implies that mutations have additive
effects on mortality. Indeed, both of Hamilton’s indicators H' =
—dr/dp and H* = dr/dm can be interpreted as assuming that
mutations additively affect average mortality g and fertility m.
This is plausible, because additive risk models are widely used,
most commonly in evolutionary modeling (8, 9). The indicators
wHT and mH* capture the effect of a proportional change in
and m. Proportional-hazard models in general, and Cox propor-
tional-hazard models (10) in particular, are frequently used in
demographic and epidemiological research.

Whether age-specific mutations act proportionally or addi-
tively is an open question for empirical research. Numerous
demographic and epidemiological analyses of risk factors have
found that proportional effects are more common than additive
effects. In particular, the impact of genetic polymorphisms, such
as ApoE 2, 3, and 4, on mortality has been modeled by

indicator

TP e
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Fig. 2. Comparison of H' = dr/d In p, (dashed line) with dr/d In i, (solid
line). While Hamilton’s indicator H' declines, the alternative one increases
until age 34. The increase would have continued if m, ;1 was further deter-
mined by the inequality in Eq. 8. This, however, would result in a trajectory for
m, that would rise to enormous heights. Also note that Hamilton’s indicator
is greater than the alternative indicator, especially before age 35. This implies

a considerably stronger force of selection on age-specific mutations that
affect mortality.
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Table 1. Various indicators of the force of selection in
Hamilton’s framework

Indicator Change with age a

dar -
dlinp,

dr + or —
dp.

dr +or —
dq,

dr + or —
dingq,

dr +or —
dlin g,

dr —
am,

dr + or —
dinm,

+ or — means that the change with age can be positive or negative
depending on the trajectories of my and /.

proportional hazards (11). Empirical results of Promislow and
Tatar (12) support the proportional-hazard assumption, suggest-
ing that mutations act additively on log-mortality rather than
log-survival. Hence, it seems plausible that the indicators pH'
and mH* will prove at least as valid as Hamilton’s indicators.

Optimization vs. Mutational Burden. How mutations affect fitness is
the focus of a vast literature (7, 13-18). Since Medawar (3) and
Hamilton (1), many biologists have considered the sensitivity of
fitness with respect to age-specific changes in survival or fertility
(9) as an indicator of selection pressure. A key issue is whether
age patterns of mortality and fertility are moulded by adaptive
optimization processes or the burden of nonadaptive mutations
(7, 19). Optimization models can be solved without using Ham-
ilton’s indicators (20). If the age patterns mainly reflect the
age-specific burden of mutations, then Hamilton’s indicators are
not sufficient. Age-specific levels of birth and death rates depend
not only on selection pressure but also on mutation rates. In the
following section, I analyze this balance.

Mutation-Selection Balance

How do the different parameterizations in Table 1 affect the
equilibrium number of deleterious mutations at each age? In
particular, is the magnitude of mutation accumulation great
enough to mould the trajectory of mortality?

The equilibrium number of mutations under mutation-
selection balance can be approximated by the ratio of the total
mutation rate v (i.e., the hazard of a mutation from a set of
possible mutations) and the change in fitness r:

1 Y 11
n=- [11]

dn

where n denotes the number of mutations, and n denotes the
equilibrium number (ref. 7, pp. 125 and 126). The approximation
holds if 7 is small. Using the chain rule, the derivative in Eq. 11
can be factored into the change in fitness with respect to survival
or fertility and the effect on survival or fertility of having n
mutations:

Baudisch

dr drdf
=, [12]
dn dfdn

where f could be any of the denominators in Table 1.

Additive vs. Proportional Parameterization. Consider a mutation
that has a small effect 8 on mortality. Then f equals:

I‘La(n) = IJ'a(O) +no [13a]
in the additive case and
In p,(n) =1In p,(0) +nd [13b]

in the proportional case. From Egs. 11 and 12 and Table 1, it
follows that

B v
n= m [14a]
in the additive case and
_ v
n= 7;@,(0)}1*6 [14b]

in the proportional case. In these ratios, 4} denotes remaining
reproduction at age a of an individual with no deleterious
mutations. It is related to Hamilton’s indicator via 4} = HI T,
where T captures generation time.

Combining Egs. 13 and 14 leads to the result

v
Ha(1) = pa(0) + 5 [15a]
in the additive case and

1) =~ 11,(0 <# 15b
I-La(n) -~ .u'a( ) exp I-La(o)hz [ ]

in the proportional case. If mutations are rare, then
1) ~ (O 14— | = 1y (0) + 16
Ka(i1) = p1q(0) RO #a(0) 0 [16]

Hence, if v and 72 are small enough that the approximations in
Eqgs. 11 and 16 hold, then mutation accumulation will result in
about the same age-specific mortality regardless of whether
mutations have additive or proportional effects.

A Simple Box Model. If 72 is large, an alternative approach is
necessary. Several helpful models have been developed (e.g.,
refs. 21-24); for a review, see Biirger (18) and Charlesworth (7).
A recent general model by Steinsaltz, Evans, and Wachter (25)
includes earlier models as special cases.

A solution based on a simple box model, similar to that of
Kimura and Maruyama (21), can be readily developed. Assume
a haploid asexual population that is stationary. Further assume
that mutations affect only one age class, to ensure that the
equilibrium numbers of mutations are independent across ages.
Focus on a single age a. Individuals are sorted into boxes
according to their number of mutations at age a. Let N(n) be the
number of individuals in box 7, and let N be the total constant
population size at age a. In mutation-selection balance, the
proportions N(n)/N are fixed. Denote an individual’s lifetime
reproduction in boxn by R(n). Let v be the probability of passing
on a mutation to the next generation. Assume that mutations
occur successively, i.e., it is not possible to jump over boxes.
Ignore back mutations. Mutations are deleterious, therefore
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R(0) > R(1) > R(2) ...
number.

The number of individuals N () in box n is given by the inflow
of individuals minus the outflow per generation,

> R(K), K being some maximum

N(@n)=Nun — 1DR(n — 1)v+ Nn)R(n)(1 — v). [17]

It follows immediately that reproduction in box zero is
R(0) = b 18
=1 [18]

In the case of mutations that affect mortality, the lifetime
reproduction of individuals in the nth box is given by

a—1 oo
R(n) = D, Lim, + et O 1) X [ [19]
x=0 x=a

This result can be expressed as
R(n) = R(0) — A(m)h, [20]

where A(n) is the fraction of remaining reproduction 4, that is
lost due to carrying n mutations. In the additive case,

An)=1—e [21a]
and in the proportional case,
A(n) = 1 — e~ ralO)(expom—1), [21b]
It follows from Egs. 17 and 20 that
e = R0 i)
=1 (R(0) — AGk)h). [22]

The equilibrium number of mutations is the average over all
boxes, i.e.,

2y nN(n)

n= .
Efz{:o N(n)

[23]
Fig. 3 plots the equilibrium number of mutations over age in the
additive versus proportional case for the example presented in
Figs. 1 and 2. As a second example, I consider female mortality,
as given in the Swedish life table for 1778-1782. Results are
shown in Figs. 4 and 5.

The values of 4" that determine the numbers of mutations in
Figs. 3 and 4 are calculated by using specific initial fertility and
mortality schedules. The mutations, however, will raise mortal-
ity, producing a new schedule that determines a new h'. These
dynamics are beyond the scope of this article. Note, however,
that higher hazard rates would reduce the fitness costs of a
change in age-specific mortality. Therefore, more mutations
would accumulate, and the difference between additive and
proportional parameterizations would be larger than predicted
by my conservative estimate. A general treatment that takes into
account interactions between ages is given by Steinsaltz, Evans,
and Wachter (25).

The Importance of Mutation Accumulation

The age-trajectory of mortality can be decomposed into three parts:
one fraction is due to the accumulation of unfavorable mutations,
another fraction results from selection processes that optimize the
trade-offs necessitated by resource limitations, and the remaining

8266 | www.pnas.org/cgi/doi/10.1073/pnas.0502155102
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10 20 30

Fig.3. Equilibrium number of mutations: additive (dashed line) and propor-
tional (solid line). | assume that mutation pressure v = 0.001. Furthermore, |
assume that a mutation at any age reduces remaining reproduction by ~10%
in both the additive and proportional cases. This refers to an average reduc-
tion in the proportional case, because A(n) depends on the level of mortality
at age a, as can be seen from Eq. 21b. Specifically, § = 0.1 in Eq. 21a and § =
0.35in Eq. 21b. Although in the Hamiltonian case of an additive hazard, the
number of mutations remains low and then increases with age, proportional
effects lead to an age-specific mutational load that declines at young ages. In
the example, only one-quarter of 1% of individuals are alive at age 34. Before
this age, the mutational load is close to zero. After this age, however, the
equilibrium number of mutations sharply rises.

fraction can be attributed to unavoidable external risks of death.
How strong is the influence of mutation accumulation?

The relative impact of mutation accumulation on the moulding
of the mortality trajectory is crucially determined by the ratio of
mutation pressure v to remaining reproduction /., as indicated by
Eq. 14. The larger v is, the more influential is mutation accumu-
lation. But what is the magnitude of »? Kimura and Maruyama (21)
and Drake et al. (26) suggest mutation rates per genome per
generation of ~0.1 and between 0.1 and 100, respectively. More
recent publications estimate the genomic rate of deleterious mu-
tations in humans to be at least 1.6 (27) or even 3 (28) per
generation. If the fraction of mutations that exclusively affect
mortality at a specific age is low, then these values could be
consistent with a value of v = 0.001. If vis 0.001, then Fig. 6 suggests
that the influence of mutation accumulation is likely to be small
over the major part of reproductive life. This is speculation,
however, until the magnitude of v is estimated empirically.

mutations
4 !

20 25 30 35 40 45
Fig. 4. Equilibrium number of mutations: additive (dashed line) and propor-
tional (solid line). The example is based on female mortality, as given in the
Swedish life table for 1778-1782, for seven 5-year age groups, beginning at
age 15. Because the Swedish population was growing at that time, | normal-
ized reproduction to ensure R = 1.00. | consider a deleterious mutation that
reduces remaining reproduction at any age by ~1%, either in an additive or
in a proportional way, i.e., § = 0.01 in Eq. 21a and 6 = 0.7 in Eq. 21b, and |
assume a mutation pressure of v = 0.001. The difference between the additive
and proportional case increases at higher ages, as levels of remaining repro-
duction decline. A slight decrease in the equilibrium number of mutations
from the first to the second age group can be observed.
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Fig. 5. Mortality: additive (dashed line), proportional (solid line), and initial

mortality u,(0) (dotted line). Initial mortality is from the Swedish life table for

1778-1782, females, for seven 5-year age groups, beginning at age 15.

The conclusions drawn above and in the previous section were
reached on the basis of a specific model of mutation accumu-
lation. In general cases covered by the solutions given by
Steinsaltz, Evans, and Wachter (25), the form of the mutation-
selection equilibrium depends on the extent of assumed genetic
recombination. At both extremes, in the absence of recombina-
tion (equation 9 in ref. 25) and in the presence of free recom-
bination (equation 27 in ref. 25), the parameterization of the
mutational effect, i.e., whether the effect is additive or propor-
tional, influences the mutation-selection equilibrium.

Discussion

Human mortality rises much more slowly than suggested by the
results in Fig. 6. This leads to a problem not yet touched on. All the
indicators in Table 1 imply that the force of selection drops to zero
when reproduction ceases. Several authors (29-32) have argued
that lethal mutations could accumulate, yielding a black hole of
death at the age when reproduction ends. This could have been
shown in Figs. 3-5 if the curves where drawn to higher ages. As h,
approaches v, the equilibrium number of mutations steeply rises.

Various species, however, enjoy an extended period of post-
reproductive life, at least under protected conditions. High
external mortality in the wild generally ensures that few indi-
viduals survive to old age. Therefore, a rapid increase in
mortality should be observed in captivity or in the laboratory at
ages when remaining reproduction in the wild is low. Mortality
trajectories at older ages, however, have been found to level off
and, in some studies, to decline for humans and various species

proportion

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Fig. 6. Proportion of mortality explained by mutation accumulation: addi-
tive (dashed line) vs. the proportional (solid line) case. The fraction 1 —
1a(0)/pa(n) indicates the proportion of equilibrium mortality that can be
explained by the accumulation of mutations. For the example of Swedish
females, when v = 0.001, over the main span of reproductive life mutation
accumulation explains less than one-third of total mortality. Note, however,
that at ages 45-50, when mortality is high, mutation accumulation accounts
for the bulk of total mortality.

Baudisch

kept in protected environments (33). These findings appear to be
inconsistent with mutation accumulation theory. Models of
mutation accumulation need to be combined with trade-off
models of the evolution of senescence to clarify the dynamics of
demographic schedules (20, 34).

In a stimulating but problematic article, Lee (35) conjectures
that it is the age pattern of resource transfer rather than of
fertility that determines the age pattern of mortality for humans
and perhaps other species. Intergenerational transfers that are
made before, at, and after birth could significantly influence the
evolution of life-history schedules for a wide variety of species.
In addition to intergenerational transfers, the effects of stochas-
tic environments and finite population sizes certainly deserve
attention (36).

To more deeply understand the role and importance of
mutation accumulation, knowledge about the age-specific sched-
ule of mutation pressure is essential. Promislow and Tatar (12)
argue it is unlikely that there are mutations with deleterious
effects confined to advanced ages. To the extent age-specific
mutations occur, most such mutations may affect a range of ages
(37). Hamilton inferred the age-trajectories of mortality and
fertility from the force of selection alone. However, high selec-
tion pressure implies only the potential for a pronounced change
in fitness that would result from a change in survival or fertility.
The response to selection pressure depends on the underlying
genetic variance and covariance, mutation-selection balance,
and trade-offs in the allocation of limited resources.

In sum, the quantities in Table 1 are indicators of the force of
selection. They can provide an impression about the direction
and magnitude of the force of selection on age-specific survival
and reproduction. But they are only one aspect of a multifaceted
story. Hamilton wrote the pioneering first chapter on the
moulding of senescence.

Conclusion

Hamilton (2) concluded that the force of selection inevitably has
to decline with age, even “in the farthest reaches of almost any
bizarre universe.” This conclusion has been generally accepted.
Hamilton’s universal claim can be disproved, however, even
adopting his restrictive assumptions. As shown above, alternative
indicators can be derived, within Hamilton’s own framework,
that can result, in some circumstances and over some age ranges,
in an increasing force of selection with age. Because the age-
specific force of selection must play a central role in any
evolutionary theory of senescence, this is an important finding.

Demographic schedules of mortality and fertility appear to be
shaped largely by optimization of trade-offs rather than by
mutation accumulation. Only at ages when remaining reproduc-
tion is low does the influence of mutation accumulation appear
to become predominant. At those ages, different parameteriza-
tions lead to different conclusions about the equilibrium number
of mutations.

Some important empirical research questions are suggested by
the theoretical findings presented in this article. How common
are mutations that affect age-specific fertility or mortality? Do
such mutations affect fertility and mortality in an additive,
proportional, or some other way? Does the mutation rate v
change with age? If so, what is the age-trajectory of v? Are there
mutations that affect only ages that are close to or even beyond
the age of last reproduction?

I am grateful to my colleagues at the Max Planck Institute for Demo-
graphic Research in Rostock, and I especially thank James W. Vaupel for
detailed intensive discussions and Jutta Gampe for useful comments.
Kenneth W. Wachter and Brian Charlesworth helped me considerably,
especially with the section on mutation-selection balance. Linda Par-
tridge pointed out the significance of genetic variance and covariance
and made other helpful comments.
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