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Abstract 
Using genome-wide association study data from European populations, this research clarifies the causal relationship between 
plasma metabolites and age-related macular degeneration (AMD) and employs Metabo Analyst 5.0 for enrichment analysis 
to investigate their metabolic pathways. Employing Mendelian randomization analysis, this study leveraged single nucleotide 
polymorphisms significantly associated with plasma metabolites as instrumental variables. This approach established a causal 
link between metabolites and AMD. Analytical methods such as inverse-variance weighted, Mendelian randomization-Egger, and 
weighted median were applied to validate causality. Mendelian Randomization Pleiotropy Residual Sum and Outlier was utilized for 
outlier detection and correction, and Cochran’s Q test was conducted to assess heterogeneity. To delve deeper into the metabolic 
characteristics of AMD, metabolic enrichment analysis was performed using Metabo Analyst 5.0. These combined methods 
provided a robust framework for elucidating the metabolic underpinnings of AMD. The 2-sample MR analysis, after meticulous 
screening, identified causal relationships between 88 metabolites and AMD. Of these, 16 metabolites showed a significant causal 
association. Following false discovery rate correction, 3 metabolites remained significantly associated, with androstenediol (3 
beta, 17 beta) disulfate (2) exhibiting the most potent protective effect against AMD. Further exploration using Metabo Analyst 
5.0 highlighted 4 metabolic pathways potentially implicated in AMD pathogenesis. This pioneering MR study has unraveled the 
causal connections between plasma metabolites and AMD. It identified several metabolites with a causal impact on AMD, with 
3 maintaining significance after FDR correction. These insights offer robust causal evidence for future clinical applications and 
underscore the potential of these metabolites as clinical biomarkers in AMD screening, treatment, and prevention strategies.

Abbreviations: AMD = age-related macular degeneration, AR = androgen receptor, CI = confidence interval, FDR = false 
discovery rate, GWAS = genome-wide association studies, IV = instrumental variable, IVW = inverse-variance weighted method, 
KEGG = Kyoto Encyclopedia of Genes and Genomes, MR = Mendelian randomization, MR-Egger = MR-Egger regression, 
MR-PRESSO = Mendelian Randomization Pleiotropy Residual Sum and Outlier, OR = odds ratio, SMPDB = small molecule 
pathway database, SNP = single nucleotide polymorphism, WM = weighted median method.
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1. Introduction
Age-related macular degeneration (AMD) is a prevalent 
chronic and degenerative eye condition that leads to central 
vision loss in individuals over 55, significantly impairing their 
quality of life. It emerges from a complex interplay of age, 
environmental, genetic, and metabolic factors.[1] According to 
a meta-analysis by The Lancet, the number of AMD patients is 
projected to rise to 288 million by 2040,[2] a figure that could 
be an underestimate considering increasing life expectancy and 

an aging global population. AMD is associated with height-
ened risks of depression and cognitive impairment[3,4] and a 
20% increase in all-cause mortality.[5] The economic impact 
of AMD-induced blindness is substantial, encompassing both 
direct healthcare costs and indirect expenses such as caregiv-
ing and lost productivity. In 2020, the societal cost of AMD-
related blindness in the US was estimated at 20 billion dollars, 
projected to triple by 2050.[6] AMD typically progresses from 
early and intermediate stages, characterized by small and 
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medium pigment deposits in the macula, to advanced stages. 
Advanced AMD is classified into 2 types: non-neovascular 
(dry) and neovascular (wet). Dry AMD mainly presents with 
geographic atrophy, leading to central blind spots and visual 
distortion, while wet AMD is marked by the growth of new 
blood vessels under or in the retina, causing severe visual 
distortion, large central blind spots, and a rapid decline in 
vision.[7]

Genome-wide association studies (GWAS) are extensively 
used to explore the relationships between genes and diseases. 
However, they fall short of elucidating the mechanisms under-
lying disease onset. In this context, metabolites serve as func-
tional intermediates, shedding light on how genetic variations 
can impact metabolic processes and disease mechanisms.[8] A 
notable study from China has identified 29 distinct metabo-
lites across various metabolic pathways, including caffeine 
metabolism, biosynthesis of unsaturated fatty acids, and 
purine metabolism. These include 4-hydroxybenzoic acid, 
adrenic acid, and palmitic acid in plasma, which are prom-
ising candidates as biomarkers for neovascular age-related 
macular degeneration (nAMD). Changes in these metabo-
lites may indicate metabolic imbalances in nAMD patients, 
offering insights into the disease’s molecular mechanism.[9] 
For effective management of age-related macular degener-
ation (AMD), diagnostic tests must be both accessible and 
predictive of disease progression. Current research has delved 
into identifying serum and plasma biomarkers, particularly 
those associated with inflammation and lipid levels, due to 
their critical role in AMD’s pathogenesis.[10–13] However, 
inconsistencies in research findings highlight the challenges 
in pinpointing reliable biological fluid biomarkers for AMD. 
Moreover, existing studies on AMD’s metabolome face lim-
itations, including small sample sizes and the challenge of 
isolating dietary effects on AMD.[14] These issues underscore 
the need for a deeper understanding of plasma metabolites’ 
roles in AMD.

Mendelian randomization (MR) analysis is a statistical 
method that leverages genetic variations as instrumental vari-
ables (IVs) to ascertain causal relationships between expo-
sures and outcomes.[15] Utilizing Mendel’s Second Law for 
random gene allocation, MR minimizes confounding factors, 
offering a clearer view of exposure effects on disease risk.[16] 
This approach surpasses traditional observational studies by 
reducing confounder influence and avoiding reverse causality, 
providing more robust evidence in the absence of randomized 
trials. MR employs genetic variations as proxies for long-term 
exposures, thus circumventing common errors and biases 
in observational studies.[17] With these premises, MR can be 
effectively used in large-scale studies to elucidate the causal 
relationship between plasma metabolites and AMD. Utilizing 
Metabo Analyst 5.0 for metabolic enrichment analysis, our 
study aims to discover metabolic pathways implicated in 
AMD’s pathogenesis. This research could significantly contrib-
ute to understanding the causal links between plasma metabo-
lites and AMD, aiding in the development of new biomarkers 
and therapeutics, ultimately improving AMD patient care and 
prevention strategies.

2. Methods

2.1. Exposure data

We acquired comprehensive summary data on 1400 serum 
metabolites from a large-scale GWAS study conducted 
by Yiheng Chen et al. This dataset included 1091 blood 
metabolites and 309 metabolite ratios, sourced from the 
Canadian Longitudinal Study on Aging. The Canadian 
Longitudinal Study on Aging encompassed data from over 
50,000 middle-aged and older Canadian participants. For 
the metabolomics analysis, ultra-high performance liquid 

chromatography-tandem mass spectrometry was utilized. In 
our study, we focused on 1091 metabolites that were mea-
sured in <50% of the samples. This subset included 850 
known metabolites and 241 metabolites yet to be identi-
fied.[18] These metabolites are found within 8 key metabolic 
pathways: lipids, amino acids, xenobiotic metabolism, nucle-
otides, cofactors and vitamins, carbohydrates, peptides, 
and energy. This distribution aligns with the classifications 
in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database.[19]

2.2. Outcome data

We obtained comprehensive GWAS data on AMD from the 
FinnGen study. According to FinnGen’s ninth release, the data-
set includes 8913 AMD patients and 348,936 controls. AMD is 
defined to encompass all types and stages of age-related macular 
degeneration (both dry and wet forms), based on central vision 
loss due to retinal degeneration. Exclusion criteria include other 
eye diseases such as diabetic retinopathy and retinal detach-
ment. Detailed definitions and data sources can be found on 
Risteys (https://r9.finngen.fi/).[20]

2.3. Selection of IVs

For MR studies, 3 core assumptions must be met: the IV 
is significantly associated with the exposure; the IV is not 
associated with confounding factors between the exposure 
and outcome; and the IV affects the outcome solely through 
the exposure. For our analysis of 1400 serum and plasma 
metabolites, SNPs with P values < 5 × 10−5 were selected as 
IVs. Following the 1000 Genomes Project, we applied a link-
age disequilibrium threshold of r^2 < 0.001 and a physical 
distance of 1000 kb. The F-statistic 

Ä
F = N−K−1

K × R2

1−R2

ä
 was 

used to evaluate IV effectiveness, excluding those with an 
F-statistic < 10.[21,22]

2.4. MR analysis and sensitivity testing

The primary analysis method was inverse-variance weighted 
(IVW) method, aggregating weighted single nucleotide poly-
morphism causal effects for accurate causal inference.[23,24] For 
sensitivity, the MR-Egger method estimated causal parameters 
and assessed overall causality.[25] The weighted median (WM) 
method, assuming 50% of IVs are valid, was also used for 
robust causal effect estimation.[26] MR pleiotropy residual sum 
and outlier (MR-PRESSO) detected and corrected horizontal 
pleiotropy outliers.[27] MR-Egger intercept estimation tested 
for horizontal pleiotropy, with a non-zero intercept indicating 
its presence.[28] Cochran’s Q test assessed heterogeneity.[24,29] 
Leave-one-out sensitivity analysis removed 1 single nucleo-
tide polymorphism at a time, enhancing the reliability of the 
analysis.

Consistency in P values and directions across the 3 MR 
methods indicated sufficient evidence for causality. We applied 
FDR correction to IVW P values; a q-value < 0.05 suggested 
a potential AMD candidate metabolite.[30] Analyses were con-
ducted using R version 4.3.1 (R Studio), with TwoSampleMR 
(version 0.5.7) and MR-PRESSO (version 1.0.0) for 2-sample 
MR analysis.

2.5. Metabolic Pathway Analysis

Metabolic enrichment analysis for AMD was conducted using 
Metabo Analyst 5.0 (https://www.metaboanalyst.ca/). By ana-
lyzing metabolite collections in KEGG and Small Molecule 
Pathway Database, we explored the metabolic characteristics of 
AMD.[31]

https://r9.finngen.fi/
https://www.metaboanalyst.ca/
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3. Results

3.1. MR analysis

Our analysis encompassed 1400 metabolites, each represented 
by 11-82 SNPs, all with F-statistics >10 (Table S1, Supplemental 
Digital Content, http://links.lww.com/MD/N547). Utilizing 
the IVW method in MR analysis, we identified 88 serum and 
plasma metabolites associated with AMD (Fig. 1). Of these, 80 
are known and 8 are unknown (Table S2, Supplemental Digital 
Content, http://links.lww.com/MD/N547). The comprehensive 
results of the IVW, MR-Egger, and Weighted Median meth-
ods for all 1400 metabolites are detailed in Tables S8 and 
S9, Supplemental Digital Content, http://links.lww.com/MD/
N547.

As shown in Figure 2, after sensitivity analysis (MR-Egger 
and WM method), 16 metabolites showed significant P val-
ues and consistent directions across all 3 methods (Table S3, 

Supplemental Digital Content, http://links.lww.com/MD/
N547), with 15 known and 1 unknown. These include 9 lip-
ids, 5 amino acids, and 1 carbohydrate. Known AMD risk 
factors identified include the N-palmitoyl-sphingosine (d18: 1 
to 16:0) to N-stearoyl-sphingosine (d18: 1 to 18:0) ratio (P: 
0.0026, odds ratio [OR]: 1.12, 95% confidence interval [CI]: 
1.04–1.20) and Mannonate levels (P: 0.0017, OR: 1.07, 95% 
CI: 1.02–1.11).

In contrast, several metabolites emerged as protective fac-
tors against AMD. Androstenediol (3 beta, 17 beta) disulfate 
(2) levels showed a significant protective effect (P: 0.000018, 
OR: 0.89, 95% CI: 0.84–0.94), followed by 1-stearoyl-GPE 
(18:0) (P: 0.000069, OR: 0.82, 95% CI: 0.74–0.90), 1- 
palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) (P: 0.000086, 
OR: 0.81, 95% CI: 0.73–0.90), 1-stearoyl-2-oleoyl-GPE 
(18:0/18:1) (P: 0.00018, OR: 0.80, 95% CI: 0.71–0.90), 
N-acetylkynurenine (2) (P: 0.00075, OR: 0.91, 95%  

Figure 1.  Circle plot illustrating the impact of metabolites identified by the IVW method on AMD. AMD = age-related macular degeneration, IVW = inverse- 
variance weighting, MR-Egger = Mendelian Randomization-Egger, WM = weighted median.

http://links.lww.com/MD/N547
http://links.lww.com/MD/N547
http://links.lww.com/MD/N547
http://links.lww.com/MD/N547
http://links.lww.com/MD/N547
http://links.lww.com/MD/N547
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CI: 0.86–0.96), 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) 
(P: 0.00015, OR: 0.85, 95% CI: 0.78–0.92), 1-palmitoyl-2- 
arachidonoyl-GPE (16:0/20:4) (P: 0.0026, OR: 0.84, 95% CI: 
0.75–0.94), 1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) 
(P: 0.00063, OR: 0.84, 95% CI: 0.78–0.93), 1-oleoyl-2- 
arachidonoyl-GPE (18:1/20:4) (P: 0.00046, OR: 0.83, 95% 
CI: 0.75–0.92), N-acetylleucine (P: 0.023, OR: 0.94, 95% CI: 

0.89–0.99), N-acetyltyrosine (P: 0.00049, OR: 0.92, 95% CI: 
0.88–0.97), N-acetylasparagine (P: 0.024, OR: 0.96, 95% CI: 
0.92–0.99), and N-acetylcitrulline (P: 0.021, OR: 0.96, 95% 
CI: 0.92–0.99).

The metabolites did not show signs of heterogeneity or 
pleiotropy (Tables S4 and S5, Supplemental Digital Content, 
http://links.lww.com/MD/N547), All passed the MR-PRESSO 

Figure 2.  Forest plot of metabolite effects on AMD as determined by the IVW Method. AMD = age-related macular degeneration, CI = confidence interval, IVW 
= inverse-variance weighted method, OR = odds ratio.

http://links.lww.com/MD/N547
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test without evidence of horizontal pleiotropy (Table S6, 
Supplemental Digital Content, http://links.lww.com/MD/
N547). As CFH and ARMS2 genes are known risk factors 
for AMD,[32] it was necessary to exclude their influence. We 
searched for the SNPs related to these genes mentioned in the 
literature (e.g., rs1061170 and rs10490924) and found that 
these SNPs were not present in our dataset. This indicates that 
our selection of IVs did not include these known AMD risk 
factors, thereby excluding their influence.The leave-one-out 
plot (Figures S1–S16, Supplemental Digital Content, http://
links.lww.com/MD/N546) confirms that excluding individual 
IVs did not significantly alter the results, reinforcing the anal-
ysis’s reliability. The scatter plots, funnel plots, and retention 
sensitivity analyses of the 16 metabolites are shown in Figures 
S17 to S48, Supplemental Digital Content, http://links.lww.
com/MD/N546. Post-FDR correction, 3 metabolites with 
adjusted P values below 0.05 were identified: 1-stearoyl-GPE 
(18:0) levels, androstenediol (3 beta, 17 beta) disulfate (2) 
levels, and 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) 
levels.

3.2. Metabolic pathway analysis

Utilizing Metabo Analyst 5.0, we selected 80 metabolites sig-
nificant via the IVW method, with 19 identified for further 
metabolic pathway analysis to investigate their association 
with AMD. The analysis in Small Molecule Pathway Database 
and KEGG yielded specific results, as shown in Table 1. For 
more details on the metabolic pathways, refer to Table S7, 
Supplemental Digital Content, http://links.lww.com/MD/
N547.

4. Discussion
Our study successfully identified 88 metabolites with causal 
relationships to AMD, with 16 showing significant causal asso-
ciations after rigorous sensitivity analysis. Notably, 3 metab-
olites—1-stearoyl-GPE (18:0), androstenediol (3 beta, 17 
beta) disulfate (2), and 1-palmitoyl-2-docosahexaenoyl-GPE 
(16:0/22:6)—remained significant after FDR correction 
(P < .05). These metabolites are protective against AMD, with 
androstenediol (3 beta, 17 beta) disulfate (2) exhibiting the 
strongest protective effect. Our study found no evidence of plei-
otropy or heterogeneity. Furthermore, we excluded the influence 
of CFH and ARMS2 gene variants. This research is pioneering 
in using metabolomics techniques and MR analysis to explore 
the potential causal impact of serum and plasma metabolites 
on AMD.

Our findings underscore the protective role of high levels of 
androstenediol (3 beta, 17 beta) monosulfate in slowing AMD 
progression. Notably, Androstenediol (3 beta, 17 beta) disul-
fate (2), a steroid sulfate derived from androstenediol, pos-
sesses both androgenic and estrogenic properties. Synthesized 
in the adrenal glands from DHEA via the Δ5 pathway,[33] this 

compound functions in the central nervous system through 
both traditional androgen receptor (AR) signaling and alter-
native pathways. The traditional AR pathway, found in the 
fovea but not in the macula, and alternative pathways involv-
ing specific binding proteins, are present in various parts 
of the retina and are closely associated with sex hormones. 
Androgens, including metabolic derivatives of androstenediol, 
can also interact with GABAA receptors, which are located 
in areas of the central nervous system, including the retina.[34] 
The neuroprotective role of androgens, such as androstenediol 
(3 beta, 17 beta) monosulfate, is evident in their influence on 
neural differentiation, survival, and development through the 
AR pathway.[35] Testosterone, a derivative of androstanediol, 
has been shown to protect neurons from serum deprivation- 
induced cellular death, even when its conversion to estrogen is 
inhibited, a process that is suppressed by anti-androgen drugs 
like flutamide.[36] This suggests that androstenediol (3 beta, 17 
beta) monosulfate’s protective effect against AMD may be due 
to its neuroprotective efficacy. Androgens, by activating their 
receptors, can reduce oxidative stress, inflammation, and cell 
apoptosis, thus potentially preventing AMD.[36,37]

To date, no studies have directly linked 1-stearoyl-GPE 
(18:0) and 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) 
levels with AMD. Both of these are glycerophosphoethanol-
amines, integral to phospholipid structures. Research involving 
the quantification of mixed extracts from the macula and sur-
rounding retinal areas has investigated the relationship between 
lipofuscin accumulation and age in the retinal pigment epithe-
lium. Notably, A2-glycerophosphoethanolamine, a type of reti-
noid acid, showed a 7.1-fold increase in these areas, although 
the increase was not statistically significant.[38] This implies that 
A2-glycerophosphoethanolamine, despite being a retinoid acid, 
may not contribute to lipofuscin accumulation.[39] In a sepa-
rate study, a plasma metabolomics analysis was conducted on 
AMD patients and healthy controls using mass spectrometry. 
This study highlighted significant metabolite differences, partic-
ularly in lipid metabolism pathways. The glycerophospholipid 
pathway, in particular, exhibited significant metabolic variations 
in AMD patients. Glycerophospholipids, crucial for cell mem-
brane structure, can impact membrane stability and function. 
Their levels may trigger processes like oxidative stress and influ-
ence the proliferation, differentiation, and migration of neuro-
nal cells, ultimately affecting ocular cell health. The study also 
noted a correlation between reduced levels of diacylglycerol 
and phosphatidylcholine and neuronal cell membrane dam-
age.[40] Our research suggests that 1-stearoyl-GPE (18:0) and 
1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) levels might 
also influence AMD through the glycerophosphate pathway. We 
found that both metabolites exhibit protective effects, poten-
tially delaying AMD progression. However, the precise relation-
ship and protective mechanisms of these metabolites in AMD 
are yet to be fully elucidated, highlighting a gap in experimental 
research in this area.

In our study, we performed a metabolic pathway analysis 
on 19 metabolites, uncovering several pathways associated 

Table 1

Significant metabolic pathways involved in the pathogenesis of AMD.

Metabolic pathway Metabolites Involved P value Database

Lysine degradation 5-hydroxylysine
N(6),N(6),N(6)-trimethyl-L-lysine

0.01257 KEGG SMP

Glycerophospholipid metabolism 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine
PC(18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

0.025294 KEGG

Phenylalanine, tyrosine and 
tryptophan biosynthesis

Linoleic acid metabolism

Tyrosine
PC(18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

0.028113
0.035028

KEGG SMP
KEGG SMP

KEGG = Kyoto Encyclopedia of Genes and Genomes, SMPDB = small molecule pathway database.

http://links.lww.com/MD/N547
http://links.lww.com/MD/N547
http://links.lww.com/MD/N546
http://links.lww.com/MD/N546
http://links.lww.com/MD/N546
http://links.lww.com/MD/N546
http://links.lww.com/MD/N547
http://links.lww.com/MD/N547
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with AMD. Notably, the KEGG highlighted Lysine degra-
dation as the most significant metabolic pathway related 
to AMD, with a P value of 0.01257. This discovery under-
scores the potential importance of amino acid metabolism in 
AMD. Additionally, other relevant metabolic pathways were 
identified, including phenylalanine, tyrosine, and tryptophan 
biosynthesis (P = .028113), glycerophospholipid metabolism 
(P = .025294), and linoleic acid metabolism (P = .034). These 
findings suggest a complex interplay of various metabolic 
pathways in the progression and development of AMD, war-
ranting further investigation to elucidate their specific roles 
and impacts.

The primary strength of our study is its pioneering approach 
of utilizing 2 extensive GWAS summary datasets to establish 
a causal link between plasma metabolites and AMD. This 
approach enabled us to identify 88 metabolites causally related 
to AMD, including 16 of significant relevance, with 3 main-
taining significance post-FDR adjustment. This is particularly 
noteworthy considering that AMD often presents no symptoms 
in its early stages. Although optical coherence tomography and 
telemedicine technologies have shown potential in screening, 
their effectiveness is still under evaluation for specificity, sensi-
tivity, and accuracy.[41] Moreover,the high costs and advanced 
technology required for these methods may limit their applica-
bility, especially in resource-constrained settings.

Our findings hold substantial promise for early AMD diag-
nosis by identifying potential biomarkers. These biomarkers 
not only improve diagnostic accuracy but also unveil biolog-
ical pathways implicated in AMD, paving the way for novel 
treatment approaches. Additionally, understanding metabo-
lite variations enables more personalized treatment plans, risk 
assessment, preventive measures, and monitoring of disease 
progression, thereby enriching our comprehension of AMD and 
enhancing current treatment and management strategies.

Furthermore, our study employed IVs with F-statistics 
exceeding 10 to mitigate weak instrument bias. We also incor-
porated multiple methods to address heterogeneity and pleiot-
ropy, bolstering the reliability of our results. FDR testing further 
reinforced this, adjusting the significance threshold to minimize 
false positives and elevate the credibility of our findings.

However, the study is not without limitations. Despite 
employing MR-egger and MR-presso methods to account for 
pleiotropy, potential confounding factors like nutritional status 
and smoking habits could still introduce biases.[42] Additionally, 
while we identified 3 metabolites associated with AMD, the 
underlying biological mechanisms of how plasma metabolites 
influence AMD require further exploration. Last, since our data 
primarily pertains to European populations, the generalizability 
of our results to other ethnicities remains uncertain, highlighting 
the need for future studies to encompass a broader demographic 
range.

5. Conclusions
This study represents a groundbreaking MR investigation into 
the causal relationship between plasma metabolites and AMD. 
We successfully identified several metabolites with causal 
effects on AMD, with 3 demonstrating significant associations 
even after FDR correction. These findings are anticipated to 
contribute high-quality causal evidence to clinical practice, lay-
ing a foundation for using these metabolites as clinical circu-
lating biomarkers in the screening, treatment, and prevention 
of AMD.
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