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Abstract

Background: Frequent and objective monitoring of motor recovery progression holds significant 

importance in stroke rehabilitation. Despite extensive studies on wearable solutions in this context, 

the focus has been predominantly on evaluating limb activity. This study aims to address this 

limitation by delving into a novel measure of wrist kinematics more intricately related to patients’ 

motor capacity.

Objective: To explore a new wearable-based approach for objectively and reliably assessing 

upper-limb motor ability in stroke survivors using a single inertial sensor placed on the stroke-

affected wrist.

Methods: Seventeen stroke survivors performed a series of daily activities within a simulated 

home setting while wearing a six-axis inertial measurement unit on the wrist affected by stroke. 

Inertial data during point-to-point upper-limb movements were decomposed into movement 

segments, from which various kinematic variables were derived. A data-driven approach was 

then employed to identify a kinematic variable demonstrating robust internal reliability, construct 

validity, and convergent validity.

Results: We have identified a key kinematic variable, namely the 90th percentile of movement 

segment distance during point-to-point movements. This variable exhibited robust reliability 
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(intra-class correlation coefficient of 0.93) and strong correlations with established clinical 

measures of motor capacity (Pearson’s correlation coefficients of 0.81 with the Fugl-Meyer 

Assessment for Upper-Extremity; 0.77 with the Functional Ability component of the Wolf Motor 

Function Test; and −0.68 with the Performance Time component of the Wolf Motor Function 

Test).

Conclusions: The findings underscore the potential for continuous, objective, and convenient 

monitoring of stroke survivors’ motor progression throughout rehabilitation.
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Introduction

Stroke is a major cause of impairments, affecting nearly 800,000 individuals in the United 

States each year.1 Following a stroke, about 80% of survivors experience some degree of 

upper-limb paresis,2 which typically affects the limb contralateral to the lesioned brain 

hemisphere.3 Poststroke motor impairments are characterized by weakness with limited 

capacity to perform functional movements necessary for activities of daily living (ADLs), 

which diminishes independence and health-related quality of life.4

In conventional clinical settings, monitoring the recovery of motor ability is often achieved 

by assessing motor impairment and/or functional limitations using validated tools, such 

as the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) and Wolf Motor 

Function Test (WMFT). However, these assessments have been largely criticized for 

evaluating patients’ motor ability within the structured clinical setting, without incorporating 

observations of their motor skills in naturalistic environments.5 Additionally, the ordinal 

scales of these standardized tools often suffer from ceiling and floor effects, making it 

challenging to study individuals with mild or severe impairments.6 More importantly, these 

tools are impractical to administer on a regular basis, as they are time-consuming (e.g., may 

take an entire clinical visit covered by payers) and clinically burdensome (e.g., requiring 

the presence of trained clinicians to administer these assessments, with ongoing training 

necessary to maintain accuracy).7–9 As a result, particularly in the United States, these 

outcome measures are too often collected only at the beginning and end of an intervention 

covered by third-party payers.10 This presents a critical problem as rehabilitation specialists 

obtain only a significantly under-sampled view of their patients’ recovery trajectories,8,11 

impeding their ability to evaluate patients’ responses to treatments12,13 and thus, hindering 

the support of more personalized interventions to each patient’s unique circumstances.8,14

To reconcile these challenges, researchers have investigated various technology-driven 

approaches to facilitate more frequent and objective assessments of motor ability outside the 

clinical setting. For example, prior in-laboratory studies have demonstrated that kinematic 

information extracted from video cameras or inertial measurement units (IMUs) during 

patients’ performance of a predefined set of motor tasks exhibits robust correlations 

with validated clinical measures, such as the FMA-UE11,15 and the Functional Ability 

component of WMFT (WMFT-FA).7 These investigations have envisioned scenarios where 
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patients could perform these motor tasks in their home settings, allowing for more 

frequent and objective assessment of motor capacity throughout the rehabilitation process. 

However, while these studies demonstrate technical feasibility, their application in real-

world situations, especially in the absence of trained personnel, may be impractical and 

could result in inaccurate assessments. Even minor deviations from the prescribed methods 

of performing motor tasks, such as misconfiguring the distance or direction of the target 

during point-to-point reaching movements (e.g., a task pertaining to WMFT), could impact 

the precision of kinematic variables and, consequently, the accuracy of the assessment. 

Hence, researchers have been advocating for methods supporting task-free evaluations 

of motor ability, utilizing continuous inertial data collected during patients’ naturalistic 

engagement in ADLs.14

Unfortunately, much of the research on wearable-based, task-free motor assessment has 

predominantly centered on evaluating limb activity, quantifying the intensity of stroke-

affected limb movement, often in comparison to the less-affected limb, using wrist-worn 

accelerometers.16–19 However, these measures exhibit only moderate correlations with and 

limited responsiveness to standardized assessments of motor capacity.20 Researchers have 

explained this disparity by highlighting that measures of limb activity solely represent a 

facet of patients’ motor performance (i.e., how much patients actually move their arms), 

whereas standardized clinical assessments evaluate patients’ motor capacity/ability (i.e., 

what patients are capable of doing).5 To overcome this limitation, a few studies have 

attempted to explore kinematic variables obtained from an array of wearable IMUs during 

real-world ADLs that may be more closely linked to patients’ motor capacity.13,21–23 

Unfortunately, the majority of these studies involved a large number of wearable sensors 

on the body, typically ranging from 12 to 17 IMUs, making the application of these studies 

rather impractical in a clinical context. Additionally, these studies have primarily focused 

on relatively simple, high-level upper-limb kinematic characteristics, such as the range of 

motion21 and the distribution of the hand position,24 for processing the complex movements 

involved in ADLs. Consequently, these variables exhibited only modest correlations with 

standardized measures of motor capacity.

In this study, we investigate a novel method to objectively and reliably assess upper-limb 

motor ability in stroke survivors by analyzing the kinematics of upper-limb movements 

performed during ADLs using a single IMU on the stroke-affected wrist. Analyzing upper-

limb kinematics from continuous inertial data during uncontrolled and naturalistic upper-

limb movements poses a significant challenge due to the diverse and variable ways in 

which patients perform their ADLs.25,26 To address this challenge, we focus our analysis 

on three-dimensional (3D) linear point-to-point upper-limb movements occurring during 

ADLs, a fundamental building block of goal-directed upper-limb activities that are common 

across various types of ADLs.27,28 To validate our approach, we collected data from 17 

stroke survivors, who performed a set of unscripted ADLs naturalistically and continuously 

within a simulated home setting. Our primary hypothesis is that kinematic analysis of 

point-to-point movements (i.e., a form of motor performance) offers insights closely linked 

to patients’ motor capacity. We further hypothesize that the extracted kinematic variables 

would demonstrate strong internal reliability, construct validity, and convergent validity with 

respect to established clinical assessments of motor capacity.
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Methods

Participants

Participants were recruited from Spaulding Rehabilitation Hospital in Boston, USA. The 

study inclusion criteria were as follows: 1) age between 18 and 80 years, 2) experienced a 

stroke more than 6 months prior to the visit, and 3) exhibits moderate-to-mild impairment 

in the upper limb affected by the stroke (i.e., FMA-UE score > 35). This cut-off point for 

FMA-UE was selected because the conventional cut-off points for moderate impairment, as 

suggested by Woodbury et al. (i.e., 33 out of 66),29 might inadvertently include individuals 

who would likely encounter difficulties with many ADLs involving distal functionality (see 

Experimental Protocols for details). Therefore, we referenced the midpoint of the moderate 

range identified by Woodbury et al., while assuming full points for two reflex items (i.e., 

biceps and triceps reflexes), as we anticipated that most within this range would achieve 

maximum scores, resulting in a total of 35 points. The study excluded individuals who 1) 

were incapable of raising the upper limb against gravity (i.e., > 30 degrees of flexion and 

abduction), 2) exhibited severe upper-limb spasticity hindering passive finger movement 

(i.e., Modified Ashworth Scale > 3), 3) were unable to don and doff wearable sensors, either 

independently or with the assistance of a caregiver, and 4) showed significant cognitive 

impairments (Mini-Mental Status Examination < 23). All participants provided written 

informed consent, which was approved by the Institutional Review Board of Mass General 

and Brigham Hospital (Protocol # 2019P002612).

Clinical Assessment of Upper Limb Motor Capacity

The primary clinical measures of this study were the FMA-UE and WMFT scales. The 

FMA-UE assesses the overall motor impairment severity in the stroke-affected upper 

limb.30 The WMFT encompasses two components: Performance Time (PT) and Functional 

Ability (FA), which evaluate the extent of functional capacity and quality of movement, 

respectively.31 As secondary measures, participants’ self-reported motor performance was 

collected using the Motor Activity Log (MAL),32 consisting of two items: the Amount of 

Use (MAL-AoU) and Quality of Movement (MAL-QoM).

Experimental Protocol

Research staff helped study participants wearing two IMUs on their wrists (Shimmer3, 

Shimmer Research Inc., USA). We opted to collect data from both wrists to calculate 

benchmark limb activity measures for comparative analysis (see Wearable-Based Measures 

of Upper-Limb Activities for details). However, it is important to note that we only utilized 

the data acquired from the stroke-affected limb for our analysis aiming to identify kinematic 

variables closely linked to motor capacity. This decision was made because the clinical 

measures of motor capacity (i.e., FMA-UE and WFMT) are also primarily conducted on 

the stroke-affected limb. Each IMU sampled three-axis acceleration and three-axis angular 

velocity at 50 Hz. Participants performed up to 11 unscripted ADLs within a simulated 

home environment at Spaulding Rehabilitation Hospital, as summarized in Table 1. The 

layout of the simulated home is depicted in Figure S1. The selection of these ADLs was 

informed by prior studies that have also explored the validation of wearable devices for 

analyzing upper-limb performance within controlled laboratory settings.18,19 Specifically, 
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these ADLs were chosen to encompass a broad range of upper-limb movements required 

during motor tasks, including both bimanual and unimanual activities, as well as gross-arm 

and fine-hand movements. Participants were not obligated to perform ADLs that they did 

not regularly undertake in their real-world scenarios. They received instructions on how 

to find the necessary materials to perform these ADLs within the simulated home (e.g., 

locating a grocery bag in the kitchen, finding a toothbrush in the bathroom, etc.). Each 

participant received a sheet of paper listing the 11 ADLs they were expected to complete. 

Participants were directed to perform the ADLs naturally and independently, mirroring their 

behaviors in their own homes. The research staff intentionally refrained from providing any 

guidance on how to perform the ADLs to avoid influencing their inherent motor behavior. 

The participants’ motor performance was also recorded using a set of four wide-angle 

cameras, which included two egocentric and two exocentric views. The positions of the two 

exocentric cameras within the simulated apartment are illustrated in Figure S1.

Analyzing Kinematics of Real-World Upper-Limb Movements

In this study, we utilize point-to-point movements performed during naturalistic ADLs 

to analyze the upper-limb kinematics. Point-to-point upper-limb movements refer to a 

multi-joint 3D movement that involves linear motion of the wrist from one position to 

another.27,28,33 It is one of the most frequently executed actions of the arm34,35 and serves as 

a fundamental building block of daily activities involving goal-directed interactions with the 

environments (e.g., reaching to grab an object, transferring the object, and repositioning 

the hand back to the body after the interaction).27,28 More importantly, point-to-point 

movements possess kinematic characteristics that remain consistent across different ADLs 

in neurologically intact humans and even in other species.36,37 This implies that these 

movements could be detected irrespective of the specific type of ADL being performed or 

individual variations in their execution.27,28

Point-to-point movements are also an ideal candidate for wearable-based kinematic analysis 

in the context of stroke rehabilitation. The wrist kinematics of point-to-point movements, 

which can be captured using wrist-worn inertial sensors, have revealed distinct motor 

phenotypes related to stroke motor impairment, although the studies have been confined 

to laboratory settings.38–40 This high information density in wrist movements is because the 

hand can considered as the end effector that the central nervous system aims to control.41 As 

a result, abnormal movements of proximal body parts and joints, such as the trunk, shoulder, 

and elbow, have a direct effect on the kinematics of the wrist.11

Our analysis encompassed the complete and uninterrupted sensor data, capturing not only 

the patients’ execution of motor tasks but also their organic movements during transitions 

between these tasks. These transitional movements, such as walking from the kitchen to 

the bathroom or performing sit-to-stand movements from a chair, were included as they 

naturally occur in real-world scenarios. Two researchers reviewed the video recordings of 

study participants performing the ADLs and annotated the occurrences of point-to-point 

movements. To analyze the kinematics of point-to-point movements, we derived three-axis, 

gravity-free acceleration data in a global coordinate system using a Kalman filter-based 

sensor orientation tracking algorithm that fuses the local-coordinate acceleration and 
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gyroscope data.42 To minimize the effect of orientation drifts over time, we rotated the 

coordinate system for each point-to-point movement, aligning the x-axis with the direction 

of the motion. This direction was computed by applying Principal Component Analysis on 

the 3D velocity time-series and selecting the first principal component, which encapsulates 

the most significant variation in movements (i.e., the point-to-point dimension).43,44 The 

global-coordinate acceleration time-series along the selected dimension was numerically 

integrated to yield the 1D velocity time-series.

The 1D velocity time-series was then segmented at zero crossings to generate movement 

segments.11,45 The velocity profiles of these movement segments exhibit varied morphology 

and temporal patterns in stroke survivors38 due to impaired motor planning and control 

(e.g., feedforward and feedback control).35,46 We extracted kinematic variables relevant 

to stroke motor impairments from each point-to-point movement. These variables include 

peak, average, root mean square, variance, and coefficient of variation of traveled distance, 

absolute velocity, acceleration, and jerk.11,38 We also investigated the ratio between average 

and peak velocity, skewness of velocity distribution, number of peaks of velocity, duration of 

movement segments, and number of movement segments.11,38 Subsequently, these variables 

from point-to-point movements were aggregated for each patient using statistical functions, 

such as mean, standard deviation, interquartile range, median, minimum, maximum, and 

10th and 90th percentiles.11 This comprehensive process yielded a total of 110 variables.

Investigation of the Reliability of Kinematic Variables

To analyze the reliability of the extracted kinematic variables, the performed reaching 

movements were divided into two groups, alternating their occurrence during the motor 

tasks. For instance, one group encompassed odd repetitions of the performed reaching 

movements (e.g., first, third, fifth reaches, etc.), while the other comprised even repetitions 

(e.g., second, fourth, sixth reaches, etc.). This data division approach was chosen over the 

conventional splitting of data into the first and second halves of the time duration in order to 

mitigate the impact of patients’ fatigue on kinematic variables. Each kinematic variable was 

derived from the two groups and subsequently analyzed for reliability using the two-way 

mixed intra-class correlation coefficient (ICC (3,1)). We used a threshold of 0.90 for ICC to 

identify kinematic variables demonstrating excellent reliability.47

Statistical Analysis for Convergent Validity

Within this pool of reliable variables, we sought to identify those consistently demonstrating 

strong correlations with the clinical measures (i.e., convergent validity). The primary 

analysis was to evaluate the associations using Pearson’s correlation analysis with 

standardized clinical measures of motor impairment (i.e., FMA-UE), movement quality 

(WMFT-FA), and functional capacity (WMFT-PT). As a secondary objective, we examined 

the associations with the measures of motor performance (i.e., MAL and sensor-based limb 

activity measures). The overall data analytic pipeline is depicted in Supplementary Figure 

S2.
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Wearable-Based Measures of Upper-Limb Activities

We derived the established measures of limb activity, namely the intensity ratio and use 

ratio,16–19 using the continuous accelerometer data collected throughout the experiment. 

Detailed computational derivations for these measures are provided in the Supplementary 

Materials. These measures are designed to assess the level of engagement of the stroke-

affected limb during ADLs, reflecting a distinct construct from our primary focus on motor 

ability. Although our primary objective differs from what these measures are intended to 

capture, their inclusion allows for a more comprehensive analysis of the kinematic variables.

Results

Initially, 19 stroke survivors were enrolled in the study, a sample size chosen for 

convenience, drawing from prior research that similarly explored correlations between 

upper-limb kinematics and motor capacity.11 However, data collected from two participants 

were compromised due to technical complications. Consequently, the final analysis included 

data gathered from 17 subjects. Table 2 summarizes the demographic and clinical 

characteristics of the study participants. Study participants performed 10.3 ± 0.82 motor 

tasks over a duration of 49.7 ± 10.4 minutes (mean ± standard deviation). Throughout the 

experiment, each participant performed 374.2 ± 235.6 point-to-point movements using the 

stroke-affected limb. The average duration of these movements was 0.48 ± 0.09 seconds.

Kinematic Analysis of Point-to-Point Movements

Among the 110 kinematic variables considered in this study, 25 variables exhibited 

excellent test-retest reliability (i.e., ICC > 0.90).47 Within this pool of reliable variables, 

we identified a particular variable that consistently demonstrated strong correlations with 

the primary and secondary clinical measures. The variable identified, denoted as P90(|daff|), 

represents the 90th percentile of the traveled distance of movement segments during point-

to-point motions of the stroke-affected limb. It is derived by first calculating the absolute 

traveled distance of movement segments obtained by double-integrating the gravity-free 

acceleration along the point-to-point direction: |daff[i]|, where i represents the movement 

segment index. Subsequently, we determined the 90th percentile of the distance across all 

movement segments (i.e., P90(|daff|)). Therefore, P90(|daff|) signifies the subject’s functional 

capacity, representing the near-maximum distance of real-world point-to-point movements 

(see Discussion section for detailed interpretations). Figure S3 illustrates the effects of the 

percentile threshold on the correlation coefficients with the primary measures of motor 

capacity.

Table 3 presents a summary of correlations observed between P90(|daff|) and the established 

clinical measures of motor ability: FMA-UE for motor impairment, WMFT-FA for 

movement quality, and WMFT-FA for functional capacity. The inter-correlations among the 

clinical assessments are detailed in Supplementary Table S1. Figure 1 illustrates the scatter 

plots depicting the relationships between P90(|daff|) and the primary clinical measures. The 

red data points indicate patients whose dominant limb was affected by stroke, while the blue 

data points represent those whose non-dominant limb was affected. A comprehensive set of 
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scatter plots, encompassing all sensor-based measures and clinical assessments explored in 

this study, is available in Supplementary Figure S4.

In Figure 2, the reliability of P90(|daff|) is evident, displaying an ICC(3,1) of 0.93, which 

signifies excellent reliability (i.e., ICC > 0.90).47 The Bland-Altman plot reveals a minimal 

bias in the mean of the two measurements (i.e., 6.5 × 10−3), an insignificant 95% limit 

of agreement (i.e., 0.021), and no discernible trend in their relationships (i.e., ρ = −0.32 

and p-value = 0.20; Pearson correlation analysis). These findings collectively affirm the 

consistency and reliability of the kinematic variable.

Figure 3 illustrates the distributions of the traveled distance of movement segments (i.e., 

|daff|), extracted from the upper limbs of two participants: one moderately impaired 

participant (Figure 3a; FMA-UE score of 37) and one mildly impaired study participant 

(Figure 3b; FMA-UE score of 65). In Figure 3a, which pertains to a moderately impaired 

subject, there is a disparity in the distribution between the stroke-affected and less-affected 

limbs. Specifically, the distribution of the stroke-affected limb shows lower values compared 

to the less-affected limb, indicating that the stroke-affected limb yielded shorter movement 

segments during point-to-point movements. This results in a reduced value of P90(|daff|) in 

individuals with more severe impairments, as also apparent in Figure 1a. The effect size 

between the two distributions, measured using Cohen’s d, was −0.16 with a confidence 

interval (CI) of −0.26 and 0.06.

Conversely, Figure 3b, derived from a mildly impaired subject, displays comparable 

distributions between the two limbs, with an effect size of −0.022 (CI: −0.11 to 0.062), 

although the distribution of the limb affected by the stroke appears marginally lower than 

that of the less-affected limb. This suggests that the kinematic characteristics of the two 

limbs, as represented by the distribution of movement segment distance, become more alike 

with milder motor impairments. Interestingly, the disparity between the less-affected limbs 

of the moderately impaired and mildly impaired individuals was also small, with an effect 

size of −0.043 (CI: −0.12 to 0.034). This is intuitive as the kinematic characteristics of the 

less-affected limbs of the two subjects, resembling almost normal characteristics, should 

exhibit similar distribution profiles. Conversely, as expected, the effect size between the 

affected limbs of the two subjects was considerably large, measuring at −0.18 (CI: −0.29 to 

−0.077). Taken together, these results significantly bolster the evidence supporting the strong 

construct validity of P90(|daff|).

Discussion

This study introduces a new approach with potential application to assessing upper-limb 

motor ability in stroke survivors using an ecologically valid kinematic measure of real-world 

upper-limb movements. Notably, the identified kinematic variable, P90(|daff|), exhibited 

a valid construct, excellent reliability, and strong correlations with established clinical 

assessments of motor capacity, which underscores its potential as an effective assessment 

tool for stroke rehabilitation.
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In Table 2, we observe that P90(|daff|) shows strong agreements with the measures of 

motor capacity, which substantiate its construct validity: FMA-UE for motor impairments 

(ρ = 0.81 and p-value = 7.4 × 10−5) and WMFT-FA for movement quality (ρ = 0.77 

and p-value = 2.8 × 10−4). As previously discussed, we posit that these associations 

exist because P90(|daff|) represents performance capacity (e.g., what patients actually do 

to their maximum extent), which captures a construct similar to the measures of motor 

capacity (e.g., what patients are capable of doing). The robust agreement of P90(|daff|) with 

both FMA-UE and WMFT-FA can be explained by the acknowledgment that movement 

quality—reflecting the proficiency of movements in terms of appropriate joint coordination, 

speed, smoothness, and accuracy7,38—directly represents motor impairment,48 supported 

by evidence of strong correlations between FMA-UE and WMFT-FA.49,50 This is also 

corroborated by a considerably strong correlation between P90(|daff|) and MAL-QoM, which 

quantifies the self-perceived quality of movements performed.

Table 2 also highlights an interesting finding that P90(|daff|) shows a comparatively weaker 

correlation with WMFT-PT. This observation is consistent with earlier research that reported 

notably weaker correlations of WMFT-PT with both WMFT-FA and FMA-UE.49,50 The 

discrepancy is attributed to the distinct underlying constructs50: WMFT-PT measures task 

completion speed (i.e., functional capacity), differing from comprehensive assessments of 

motor impairment (FMA-UE) and movement quality (WMFT-FA).50 Moreover, the two 

widely accepted sensor-based measures of limb activity (i.e., intensity and use ratios) 

showed notably weak correlations to FMA-UE and WMFT, as well as P90(|daff|). This 

disparity also likely arises from the fact that the limb activity measures address a distinct 

construct from inherent motor capacity.5

The findings presented herein also align with prior studies on kinematic characteristics 

of point-to-point motions in stroke survivors, although these studies were constrained 

to analyzing 2D point-to-point movements in the transverse plane within controlled 

laboratory settings, rather than examining naturalistic 3D motions occurring during 

ADLs. A pivotal kinematic indicator of motor impairment following a stroke is the 

smoothness—or conversely, jerkiness—of movements.38–40 Specifically, spasticity in stroke 

survivors with severe motor impairments restricts the range of motion and speed of upper-

limb movements.51,52 As a consequence, the resulting upper-limb movements become 

fragmented, with smaller movement segments with reduced traveled distance, as shown 

in Figure 3a, demonstrating jerkiness in the performed movements. Conversely, stroke 

survivors with milder impairments tend to produce movement segments with larger 

distances, as observed in Figure 3b. This leads to smoother point-to-point motions with 

fewer movement segments and a greater range of motion and speed. In fact, we have noted 

that the traveled distance of movement segments (i.e., |daff|) shows a strong correlation with 

their peak velocity, with a Pearson’s correlation coefficient of 0.82 (p-value < 0.01).

Leveraging kinematic variables of performed upper-limb movements to aid in the 

assessment of motor recovery offers a clear advantage. Firstly, due to its continuous 

nature, P90(|daff|) helps mitigate ceiling and floor effects. Moreover, leveraging statistical 

bootstrapping from a large volume of data, wearable-based kinematic measures could 

offer reduced assessment variance and improved sensitivity to detect subtle changes (i.e., 
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responsiveness) compared to standardized measures reliant on clinicians’ observations.53,54 

Therefore, rehabilitation specialists—particularly, occupational therapists—could employ 

wearable-based assessment for continuous monitoring of patient responses under prescribed 

treatment regimens and opportunistically administer the standardized assessments for a 

more in-depth evaluation of patients’ motor ability when necessary (e.g., when patients 

are not responding and adjustments to treatment strategies are needed). Thus, we envision 

that this newly proposed assessment approach could enable more frequent monitoring of 

stroke recovery while alleviating the clinical workload, offering a valuable complement to 

traditional assessment methods. Another significant benefit of the proposed assessment tool 

is that it is not susceptible to the learned non-use phenomenon or limb dominance, as shown 

in Figure 1, because its values are not contingent on the amount of limb activity or type 

of ADLs performed. For instance, the scatter plots correlating sensor-based limb activity 

measures with clinical measures in Figure S3b and c highlight that certain individuals 

rely more on their less-affected limb during motor tasks, resulting in significantly lower 

intensity ratio values, even when their overall motor capacity (e.g., FMA-UE and WMFT-

FA) is similar to others. In contrast, the scatter plots of P90(|daff|) in Figure 1 show a 

more cohesive association with clinical measures without such discrepancies. However, 

relying solely on kinematic variables to monitor recovery progress might not fully describe 

a patient’s motor recovery. For example, if a patient makes minimal movement with the 

stroke-affected limb, the resulting kinematic variable—even if it appears within a healthy 

range—could misinterpret the patient’s recovery process. Therefore, the kinematic analysis 

of performed movements should be complemented with comprehensive assessments of 

limb activity in order to provide a more comprehensive understanding of the patient’s 

rehabilitation progress. Lastly, it is important to highlight that since the proposed method 

can extract information regarding patients’ motor ability during naturalistic ADLs in a 

task-free manner, we anticipate its potential extension to other neurological conditions and 

diseases characterized by motor impairment.

This study presents several limitations, which also highlight important directions for future 

research. Firstly, it is important to acknowledge that our study had a relatively small 

sample size and did not examine the responsiveness of the proposed upper-limb kinematic 

measure to changes in patients’ motor ability over time. To ensure generalizability and 

responsiveness, future investigations should encompass a longitudinal study with larger 

and more diverse cohorts. Moreover, with such an expanded dataset, a future study could 

explore the use of machine learning algorithms to integrate multi-dimensional kinematic 

variables and other relevant clinical variables to improve the validity of the wearable-based 

measure. Secondly, while the study participants performed the ADLs in a naturalistic 

manner, it is essential to recognize that the collected data might not fully reflect their real-

world motor performance. This underscores the necessity to gather data within naturalistic 

environments. Thirdly, the point-to-point movements used for the kinematic analysis were 

manually annotated by research staff using video recordings. However, future investigations 

require the development of an algorithm capable of automatically detecting point-to-point 

movements using inertial data for practical application. A promising direction for this lies in 

the application of deep learning-based methodologies, which have demonstrated significant 

potential in accurately detecting specific movement patterns, such as 3D point-to-point 
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movements, within unstructured inertial data streams gathered during real-world ADLs.55 

Finally, the proposed method does not offer detailed information about the quality of 

performed movements, such as inter-joint coordination or compensatory movements, which 

could be clinically important. Inferring these aspects based on the kinematics of wrist 

movements remains an important research area.

Conclusion

This study investigated a reliable, objective, and continuous measure of upper-limb 

kinematics to aid in monitoring the stroke motor recovery process. To achieve this, we 

examined the kinematic characteristics of point-to-point upper-limb movements performed 

during naturalistic ADLs using a six-axis IMU on the wrist affected by stroke. The study 

highlights the potential of ecologically valid kinematic analysis to offer additional insights 

into evaluating patients’ impairment, thereby enhancing our understanding of their response 

to prescribed treatment regimens. The findings of this research could open new clinical 

and research opportunities for a more comprehensive and multi-dimensional perspective on 

stroke survivors’ motor progression through rehabilitation.
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Figure 1. 
Correlations between P90(|daff|) and the primary clinical outcome measure: a) FMA-UE, b) 

WMFT-FA, and c) WMFT-PT.
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Figure 2. 
a) A scatter plot to show the reliability of P90(|daff|) with an ICC(3,1) of 0.93. b) The 

corresponding Bland-Altman plot.
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Figure 3. 
Distributions of movement segment distance extracted from the upper limbs of two 

participants: a) one moderately impaired participant with an FMA-UE score of 37 and b) 

one mildly impaired participant with an FMA-UE score of 65.
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Table 1:

Motor tasks resembling ADLs performed by study participants.

# Motor Task

1 Unloading a grocery bag

2 Placing a tablecloth on a table

3 Assembling a sandwich

4 Drinking water from a cup

5 Transferring the plat from the kitchen counter to a washing machine

6 Mopping the floor

7 Cleaning the table

8 Folding bath towels

9 Brushing teeth

10 Writing on paper

11 Donning/doffing a coat
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Table 2.

The demographic and clinical characteristics of the study participants.

ID Age (yrs) Sex Chronicity (months) Dominant Side Affected Side FMA-UE WMFT-FA WMFT-PT

1 69 Male 171 Right Left 43 3.7 2.88

2 63 Male 49 Right Left 55 4.4 1.59

3 61 Female 113 Left Left 57 4.1 4.19

4 76 Male 53 Right Left 36 3.0 4.68

5 66 Male 75 Right Right 44 3.7 2.88

6 74 Female 34 Right Left 55 4.6 1.88

7 67 Male 42 Right Left 64 4.3 1.47

8 38 Male 22 Right Right 53 4.3 3.69

9 55 Male 10 Right Right 65 5.0 1.56

10 58 Male 18 Right Left 37 2.9 3.81

11 64 Female 33 Right Right 61 4.7 1.87

12 74 Male 50 Right Left 44 3.7 6.50

13 45 Male 4 Right Right 59 4.5 1.40

14 48 Female 26 Right Right 64 4.7 2.03

15 67 Male 41 Right Right 61 4.7 1.85

16 61 Male 6 Left Right 65 5.0 1.84

17 32 Female 6 Right Left 60 4.7 1.75
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Table 3.

Pearson’s correlation coefficients between the clinical assessments (i.e., FMA-UE, WMFT, and MAL) and the 

identified kinematic measure (P90(|daff|)), alongside the representative measures of limb activity. Bold numbers 

indicate the maximum correlation attained for each clinical measure.

Clinical Assessments Sensor-based Measures

Motor Capacity Motor Activity Motor Activity

Sensor-based Measures FMA-UE WMFT-FA WMFT-PT MAL-AoU MAL-QoM Intensity Ratio Use Ratio

 P90(|daff|) 0.81* 0.77* −0.68* 0.64* 0.71* 0.46 0.47

Intensity Ratio 0.62* 0.61* −0.41 0.61* 0.62* - -

Use Ratio 0.67* 0.58 −0.37 0.56 0.52 - -

*
Statistical significance with a confidence range of 0.01 (i.e., p-value < 0.01).
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