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Abstract
Novel bovine parechoviruses (Bo ParVs) were isolated from the feces of Japanese black cattle. Phylogenetic analysis revealed 
that the novel Bo ParVs formed an independent cluster, exhibiting 72.2–75.6% nucleotide sequence identity to previous Bo 
ParVs, suggesting that they represent a new genotype. Bo ParVs, including the novel Bo ParVs, shared sequence similar-
ity with each other in the 3' untranslated region (3'UTR) and exhibited low sequence similarity (<38.9% identity) to other 
parechoviruses. However, a secondary structure prediction of the 3'UTR revealed that the Bo ParVs shared conserved motifs 
in domain 2 with parechovirus B and E, suggesting some evolutionary constrains in this region.

Parechoviruses are small, icosahedral, non-enveloped 
viruses belonging to the genus Parechovirus within the fam-
ily Picornaviridae [1]. They possess a non-segmented pos-
itive-sense RNA genome with 7339–7608 nucleotides (nt), 
including a single long open reading frame (ORF) flanked 
by 5' and 3' untranslated regions (UTRs) and a poly-A tail 
[1]. The ORF encodes a polyprotein, which is divided into 
the P1, P2, and P3 regions encoding the capsid structural 
proteins VP4–VP1 and the non-structural proteins 2A–2C 
and 3A–3D, respectively. Their 5'UTRs include a type II 
or type IV internal ribosomal entry site (IRES) upstream 
of the translational start site [2]. Bovine parechovirus (Bo 
ParV) is a candidate for a new species in the genus Pare-
chovirus whose genome sequence was first discovered in a 
public database of metagenomic libraries [3]. Although Bo 
ParV sequence reads have been detected in various tissues, 

including lymphatic, central nervous system, and diges-
tive tissues, based on public RNA-seq data from cows, the 
only currently available nearly complete genome sequence 
of Bo ParV (Bo ParV/2018/4/KOR) was assembled from 
sequence reads from the lower digestive tract of a cow sam-
pled in 2018 in South Korea [3]. In 2021, the first Bo ParV, 
Den1/2021/JPN, was isolated in Japan from diarrheic feces 
of a lactating cow infected with group C rotavirus, using 
MA104 cells [4]. Subsequently, three additional Bo_ParVs 
were isolated from diarrheal calves in Japan in 2022, and 
6.3% of bovine fecal samples were found to be positive for 
Bo ParV using qRT-PCR [5]. Therefore, Bo ParV is consid-
ered to have an affinity for the intestinal tract. Furthermore, 
only five nearly complete genome sequences of Bo ParV 
are currently available from South Korea and Japan. In the 
present study, novel Bo ParVs were isolated from the feces 
of Japanese black cattle with or without diarrhea and geneti-
cally characterized.

To identify bovine enteric viruses in Japanese black cat-
tle, fecal samples were collected directly from the rectums 
of four diarrheic calves (eight-day-old to three-month-old) 
and 40 healthy cattle (one-day-old to adult) kept on a farm 
located in the Chubu region of the main island of Japan in 
2021. Fecal samples were diluted at a 1:9 (w/v) ratio using 
Eagle’s minimal essential medium (EMEM) (Nissui, Tokyo, 
Japan) and then centrifuged at 12,000 × g for 10 minutes. 
The resulting supernatants were activated by adding equal 
volumes of 20 μg/mL trypsin (cat. no. 0303; Sigma-Aldrich, 
MO, USA) and incubated for 1 hour at 37 °C. The activated 
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samples were then inoculated onto the African green mon-
key kidney cell line Marc-145. Confluent monolayers of 
Marc-145 cells in 48-well plates were washed three times 
with EMEM and subsequently inoculated with 0.1 mL 
supernatant from the activated samples. After incubation 
at 37 °C for 1 hour for adsorption, the cells were washed 
three times using EMEM. Subsequently, the cells were incu-
bated with EMEM containing 1.0 μg of trypsin per mL for 
7 days at 37 °C in a 5% CO2 atmosphere. If a cytopathic 
effect (CPE) was not observed after 7 days, the cells and 
supernatant were subjected to three cycles of freezing and 
thawing before harvesting. Further passages were conducted 
following the same procedure. CPE was observed in seven 
out of 44 samples two or three days after inoculation in the 
second passage.

Viral RNA was extracted from the cell culture super-
natants using TRIzol LS Reagent (Life Technologies, 
Carlsbad, CA, USA). Subsequently, cDNA libraries for 
deep sequencing were constructed using an NEBNext 
Ultra RNA Library Prep Kit for Illumina (New England 
Biolabs, Ipswich, MA, USA) according to the manufac-
ture’s guidelines. After quantification of the cDNA using 
a Qubit 4.0 fluorometer (Invitrogen, Carlsbad, CA, USA), 
next-generation sequencing (NGS) was performed using an 
Illumina MiSeq benchtop sequencer (Illumina, San Diego, 
CA, USA). Sequence data analyzed using MiSeq Reporter 
(Illumina) to generate FASTQ-formatted sequence data files. 
The 151-nt paired-end reads were trimmed using the com-
mand “Trim Sequences” in the NGS core tools with default 
parameters in CLC 7.5.5 Genomics Workbench (CLC bio, 
Aarhus, Denmark) and then assembled de novo into contigs 
in CLC 7.5.5 with default parameters. The quality of the 
viral contigs was assessed by mapping the original reads 
back to the contigs, and a sufficient depth of mapped reads 
was observed (Supplementary Fig. S1). Nearly complete 
genome sequences of Bo ParV were obtained from six of the 
seven samples (3, 8oya, 8ko, 10, 18, and 101). Two of these 
samples (3 and 101) were obtained from diarrheic calves, 
while the remaining four were from two healthy calves 
and two healthy adult cows (Supplementary Table S1). To 
obtain the complete sequence of the 3'UTR, the 3' end of 
the viral genome was amplified by RT-PCR using a gene-
specific forward primer and the reverse primer TX30SXN 
[6] (Supplementary Fig. S2) and sequenced directly by the 
Sanger method. The whole-genome sequences from samples 
3 and 101, 8oya and 8ko, and 10oya and 18 were found to 
be identical. These sequences—Bo ParV/Mayo3/2022/JPN 
(Mayo3), Bo ParV/Mayo8oya/2022/JPN (Mayo8oya), and 
Bo ParV/Mayo18/2022/JPN (Mayo18)—have been depos-
ited in the DNA Data Bank of Japan under the accession 
numbers LC790729 to LC790731.

Bo ParV sequences were aligned using ClustalW [7], 
and pairwise sequence identity values were calculated 

using CLC Genomics Workbench 7.5.5 (CLC bio). Phy-
logenetic analysis based on nucleotide sequences was 
performed using the maximum-likelihood (ML) method 
with the best-fit model (K2+G for 5'UTR, T92 + G + I 
for VP1, GTR+G for 2C+3CD, and 3'UTR for HKY) in 
MEGA7 [8]. The trees were evaluated by bootstrap analysis 
with 1000 replicates [9]. In the phylogenetic trees, except 
for the 3'UTR, Mayo3, Mayo8oya, and Mayo18 branched 
distantly from other Bo ParVs and formed an independent 
cluster with 100% bootstrap support (Fig. 1A, B, and C). 
Pairwise complete nt and aa sequence identity was calcu-
lated using CLC Genomics Workbench. In the VP1 sequence 
comparison, Mayo3, Mayo8oya, and Mayo18 exhibited 
72.2–75.6% nt and 85.7–87.0% aa sequence identity to the 
other Bo ParV strains, which shared 85.1–99.1% nt and 
95.7–100% aa sequence identity with each other. The VP1 
sequences of parechovirus A and parechovirus B strains 
were 62.1–73.5% and 65.3–74.0% identical at the nucleo-
tide level and 63.3–80.6% and 69.7–86.1% identical at the 
aa level (Table 1A). No exact genotype classification criteria 
have been established for parechoviruses; however, previous 
reports have referred to the criteria used for enteroviruses: 
75% nt sequence identity and 88% aa sequence identity 
[10–13]. The nt sequence identity of the VP1 region between 
Bo ParVs in this study and previous Bo ParVs is borderline, 
but the aa sequence identity is below 88%, suggesting that 
these viruses might represent a novel genotype of Bo ParV. 
The 2C+3CD regions of Mayo3, Mayo8oya, and Mayo18, 
and other Bo_ParVs showed higher similarity than the VP1 
region (85.6–86.1% nt sequence identity and 97.3–98.6% 
aa sequence identity) (Supplementary Table S2). Similarity 
plot analysis performed using SimPlot software v. 3.5.1 [14] 
showed that the new Bo ParV isolates have a non-structural 
protein region from 3A to 3D that is most similar to those of 
the previously reported Bo ParV (Supplementary Fig. S3). 
The 2C+3CD sequence identity values obtained when 
excluding Mayo3, Mayo8oya, and Mayo18 and parechovirus 
A and parechovirus B strains were 89.6–99.0%, 76.0–80.8%, 
and 72.2–78.7% at the nt level and 98.2–98.8%, 91.9–98.0%, 
and 83.0–91.9% at the aa level (Supplementary Table S2). 
These results indicate that the non-structural genes, espe-
cially the 3A to 3D regions, are more conserved among Bo 
ParVs than they are among other parechoviruses. The Bo 
ParVs from this study and previous Bo_ParVs shared only 
69.2–71.5% sequence identity in the 5'UTR while show-
ing high sequence similarity (96.2–100% identity) in the 
3'UTR. However, the Bo ParVs exhibited great sequence 
divergence from other parechoviruses (19.1–38.9%) in the 
3'UTR (Table 1B).

The secondary structures of the viral RNAs were pre-
dicted using RNAfold in the ViennaRNA package (version 
2.4.18) [15]. The 3'UTR of the Bo_ParVs is 75 nucleo-
tides long, excluding the poly-A tract. Secondary structure 
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prediction analysis revealed that Bo ParVs possess two 
potential stem-loops that are structurally similar to those 
found in the 3'UTR of Ljungan virus 1-4 (LV-1/bank 
voles/87-012/SWE, LV-2/bank voles/145SL/SWE, LV-3/
vole/M1146/USA, and LV-4/64-7855/USA), belonging 
to the species Parechovirus beljungani, and Falcon/2014/

HUN, belonging to the species Parechovirus efalco [16, 17]. 
Although the 3'UTR of Bo ParV strains was the shortest 
among parechoviruses, the predicted stem-loop structures in 
domain II, corresponding to the 3' one-third of the 3'UTR, 
were conserved among these viruses (Fig. 2). The 3'UTR is 
important for maintaining viral genomic RNA stability and 
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Fig. 1   Phylogenetic analysis based on nucleotide sequences of the 
5′UTR (A), VP1 region (B), 2C+3CD region (C), and 3′UTR (D) of 
the Bo_ParVs identified in this study (red text) and of other parecho-
viruses, obtained from the DDBJ/EMBL/GenBank database. Phylo-
genetic trees were constructed using the maximum-likelihood method 

in MEGA7 with best-fit models (K2+G for the 5′UTR, T92+G+I for 
VP1, GTR+G for 2B+3CD, and HKY for the 3′UTR). Bootstrap val-
ues above 70 (1000 replicates) are shown. The bars represent the cor-
rected genetic distances
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for replication of the picornavirus genome [18–20]. Sec-
ondary structure analysis of the internal ribosomal entry 
site (IRES) in the 5'UTR and the putative cis-acting RNA 
element (cre) located in the 3B region, which are neces-
sary for viral RNA replication, showed that these structures 
in Bo ParVs, including the novel Bo_ParVs, were simi-
lar to those of Ljungan virus 1-4 and falcon parechovirus 

(Supplementary Fig. S4). These results indicate that there 
are some evolutionary constrains in these regions.

In summary, novel Bo ParVs were isolated from Japa-
nese black cattle with or without diarrhea. The genome 
sequences of these viruses exhibited differences when com-
pared to previous Bo ParVs, suggesting that they represent a 
novel genotype of Bo ParV. Secondary structure prediction 

Table 1   Pairwise nucleotide (lower left) and amino acid (upper right) sequence identities (%) of theVP1 among parechoviruses (A)
ParV C ParV DParV E ParV F

Mayo3 Mayo8oya Mayo18 Den1 2018/KOR LaV218040 Lav228012 CEP128 EV22 Gregory A308/99 K251176 CT86-6760 NII561 PAK5045 BR/217 M36/CI 87-012 145SL M1146 64-7855 Fuzl JL2014-2 Sebokele Ferret Falcon Gecko
Bo ParV/Mayo3/2021/JPN 99.7 100 85.7 87.0 86.1 86.1 85.7 31.2 34.9 33.9 32.1 33.8 34.6 29.9 33.2 32.2 49.7 47.8 50.0 48.8 48.8 51.2 46.9 30.6 58.6 31.8
Bo ParV/Mayo8oya/2021/JPN 99.0 99.7 85.7 87.0 86.1 86.1 85.7 31.2 34.9 33.9 32.1 33.8 34.6 29.9 33.2 32.2 49.7 47.8 50.0 48.8 48.8 51.2 46.9 30.6 58.3 31.8
Bo ParV/Mayo18/2021/JPN 99.3 99.5 85.7 87.0 86.1 86.1 85.7 31.2 34.9 33.9 32.1 33.8 34.6 29.9 33.2 32.2 49.7 47.8 50.0 48.8 48.8 51.2 46.9 30.6 58.6 31.8
LC650808_Bo ParV/Den1/2021/JPN 72.4 72.3 72.2 96.7 98.3 98.3 98.0 32.6 35.2 34.6 32.5 33.8 34.6 30.9 33.6 32.6 51.2 48.2 49.1 47.8 49.4 49.4 47.2 30.6 57.4 32.1
BR001751 Bo ParV/cow/2018/KOR 75.4 75.4 75.2 85.7 96.0 96.0 95.7 32.6 35.6 34.2 32.8 34.1 34.2 31.2 33.6 32.6 51.2 48.5 49.7 47.5 49.7 50.3 48.8 30.9 59.3 32.1
LC740522_Bo ParV/LaV218040/2022/JPN 75.6 75.5 75.5 85.4 84.5 100 99.7 32.9 35.2 33.9 32.1 33.4 33.9 31.2 33.2 32.6 51.9 48.8 49.7 47.8 49.7 49.1 46.9 30.9 57.7 31.8
LC740523_Bo ParV/Lav228012/2022/JPN 75.3 75.2 75.2 85.1 84.2 99.1 99.7 32.9 35.2 33.9 32.1 33.4 33.9 31.2 33.2 32.6 51.9 48.8 49.7 47.8 49.7 49.1 46.9 30.9 57.7 31.8
LC740524_Bo ParV/CEP128/2022/JPN 74.9 74.8 74.5 85.1 84.9 96.0 96.0 33.2 35.2 33.9 32.1 33.4 33.9 31.2 33.2 32.6 51.9 48.8 49.7 47.8 49.7 49.1 46.9 30.9 57.4 31.5
NC_038319_Human_parechovirus_1_EV22 38.7 38.5 38.7 37.7 37.8 38.9 38.5 38.1 78.6 70.2 77.5 74.9 80.6 68.5 73.9 69.1 30.5 30.5 32.8 32.2 30.2 30.0 28.6 26.9 30.1 24.9
AJ005695_Human_parechovirus_2_Gregory 39.2 39.2 39.2 37.9 38.6 37.7 37.8 37.6 71.5 70.5 75.7 72.8 72.6 68.4 73.4 67.7 34.0 31.8 33.8 34.1 32.4 31.2 30.2 27.9 32.0 25.9
AB084913_Human_parechovirus_3_A308/99 38.3 38.4 38.7 37.9 36.9 37.8 37.8 37.2 66.8 66.8 68.2 64.8 72.6 77.3 71.1 80.0 32.4 30.5 31.9 33.8 30.5 31.2 30.2 26.0 32.0 27.4
DQ315670_Human_parechovirus_4_K251176-02 36.7 36.8 36.8 37.2 37.3 37.8 37.4 37.5 70.2 71.1 67.9 80.0 71.9 66.5 74.9 67.1 29.8 28.5 31.1 31.1 29.5 29.3 29.8 27.2 30.0 24.6
AF055846_Human_parechovirus_5_CT86-6760 37.1 36.6 36.8 38.7 37.4 38.4 38.2 37.9 69.9 69.2 63.0 72.6 70.6 64.8 71.5 65.0 30.1 29.2 30.8 31.8 30.4 29.3 29.5 26.9 31.0 25.2
AB252582_Human_parechovirus_6_NII561-2000 38.9 38.9 39.1 39.6 39.9 39.8 39.6 39.5 71.9 65.8 67.5 67.7 65.7 63.3 71.3 67.9 30.8 30.2 32.2 33.1 29.9 30.9 29.9 26.9 31.4 26.5
EU556224_Human_parechovirus_7_PAK5045 38.1 38.0 38.0 39.0 38.5 40.5 40.1 39.5 64.7 65.7 69.1 66.8 63.3 62.3 71.6 76.5 30.2 28.9 30.9 31.2 28.6 28.1 28.0 24.7 29.5 24.9
EU716175_Human_parechovirus_8_BR/217/2006 38.4 38.3 38.5 37.8 37.8 38.5 38.2 37.7 69.1 67.4 68.4 68.5 66.5 65.1 68.3 68.2 31.8 30.5 32.2 34.1 30.2 30.6 28.6 26.3 28.6 24.6
KT319121_Human_parechovirus_17_M36/CI/2014 35.9 36.0 36.0 36.7 37.1 37.0 36.9 36.8 65.0 65.0 73.5 67.5 62.1 65.4 70.9 67.4 30.2 28.9 31.6 32.5 29.9 30.0 28.9 25.3 29.8 26.8
NC_003976_Ljungan_virus_1_87-012 52.6 52.3 52.3 52.0 52.9 54.1 53.8 53.9 35.6 34.4 35.3 33.7 34.8 34.9 32.3 34.3 33.4 79.2 71.6 69.7 86.1 69.7 45.6 31.5 53.5 34.9
FJ384560_Ljungan_virus_2_145SL 51.8 51.7 51.5 52.1 51.7 53.0 52.9 52.9 34.8 33.3 33.5 32.5 33.5 35.0 32.7 33.1 34.2 71.9 71.3 72.2 82.0 70.0 45.6 30.6 52.0 33.0
AF538689_Ljungan_virus_3_M1146 54.0 53.8 53.9 52.2 50.7 52.6 52.3 52.6 33.2 34.4 32.4 33.7 32.4 34.4 33.3 35.6 33.5 67.1 66.1 80.7 71.9 79.1 44.1 30.9 53.2 34.2
EU854568_Ljungan_virus_4_64-7855 53.7 53.6 53.8 52.2 51.8 52.6 52.7 52.3 35.6 34.0 33.9 33.8 34.1 36.2 33.3 35.2 34.9 66.2 67.0 72.1 71.6 83.2 45.3 30.6 51.7 32.1
LC133331_Ljungan_virus_5_Fuz1 52.5 52.4 52.4 54.8 51.2 53.0 52.8 53.0 34.4 34.7 33.8 34.2 34.2 35.5 32.6 33.6 33.1 72.6 70.6 66.1 67.4 71.0 46.9 30.3 53.2 34.6
KY432929_Ljungan_virus_6_JL2014-2 52.7 52.7 52.8 50.8 51.5 51.8 51.5 51.1 34.9 32.9 34.8 33.1 32.8 36.2 33.2 34.8 34.7 65.3 66.6 70.0 74.0 68.6 45.6 30.3 51.7 33.0

ParV C HF677705_Sebokele_virus_1 50.1 50.2 50.3 50.3 50.7 50.2 50.2 50.5 34.7 34.3 35.3 34.5 33.9 36.3 32.6 33.9 33.7 52.2 49.9 50.1 49.1 51.3 50.8 31.7 51.7 33.8
ParV D NC_034453_Ferret_parechovirus 40.3 40.6 40.4 39.4 39.3 38.6 38.4 38.9 31.5 31.9 31.1 32.8 32.2 33.8 32.0 31.8 31.7 40.1 40.7 41.2 40.6 41.2 40.6 41.8 33.5 39.3
ParV E KY645497_Falcon_parechovirus 57.2 57.1 57.1 58.6 57.6 57.0 57.2 57.5 34.4 35.2 37.1 35.0 33.3 35.6 35.3 35.1 34.4 54.8 52.7 54.8 52.4 54.7 52.2 49.7 40.6 33.8
ParV F MG600084_Gecko parechovirus 38.5 38.4 38.4 39.4 39.6 38.8 38.3 38.7 32.2 30.2 32.2 32.0 32.5 33.0 31.5 31.9 31.0 42.8 41.9 42.4 42.1 42.0 41.3 42.6 52.1 37.6

ParV C ParV E
Mayo3 Mayo8oya Mayo18 cow/2018 Den1 LaV218040 Lav228012 CEP128 EV22 Gregory A308/99 K251176 CT86-6760 NII561 PAK5045 BR/217 M36/CI 87-012 145SL M1146 64-7855 JL2014-2 Sebokele Sebokele

Bo ParV/Mayo3/2021/JPN 99.1 98.8 69.6 71.4 70.5 69.5 71.1 43.0 41.6 42.0 42.7 - 43.5 - 43.2 - - 37.9 - - 36.7 36.7 51.0
Bo ParV/Mayo8oya/2021/JPN 100 98.4 69.4 71.2 70.2 69.2 70.5 43.1 41.7 42.0 42.6 - 43.1 - 43.0 - - 37.6 - - 36.5 36.7 51.3
Bo ParV/Mayo18/2021/JPN 98.7 98.7 69.2 71.5 70.6 69.6 70.7 42.9 41.4 42.0 42.7 - 43.2 - 43.0 - - 37.9 - - 36.8 36.2 50.9
BR650808 Bo ParV/cow/2018/KOR - * - - 81.2 79.6 78.8 79.2 43.7 42.6 43.0 42.9 - 44.2 - 43.2 - - 36.5 - - 37.0 34.8 51.0
LC650808 Bo ParV/Den1/2021/JPN 100 100 98.7 83.3 82.4 82.8 44.1 43.1 43.4 44.4 - 45.1 - 44.7 - - 37.4 - - 37.1 35.7 53.0
LC740522 Bo ParV/LaV218040/2022/JPN 98.7 98.7 97.5 - 98.7 97.2 94.9 43.3 42.6 43.5 44.2 - 45.7 - 43.7 - - 37.1 - - 37.7 35.4 53.7
LC740523 Bo ParV/Lav228012/2022/JPN 97.5 97.5 96.2 - 97.5 98.7 95.2 43.2 42.8 43.5 44.0 - 45.7 - 43.2 - - 36.4 - - 37.7 35.4 52.9
LC740524 Bo ParV/CEP128/2022/JPN 98.7 98.7 97.5 - 98.7 97.5 96.2 43.1 42.6 43.6 44.3 - 45.5 - 43.5 - - 36.7 - - 37.8 35.7 53.2
NC_038319_Human_parechovirus_1_EV22 21.2 21.2 21.2 - 21.2 21.2 20.2 20.2 82.9 82.9 85.0 - 84.9 - 80.8 - - 40.9 - - 42.1 39.8 37.6
AJ005695_Human_parechovirus_2_Gregory 25.0 25.0 25.0 - 25.0 25.0 24.0 26.0 86.3 84.5 83.5 - 84.8 - 80.1 - - 41.0 - - 40.3 40.2 38.9
AB084913_Human_parechovirus_3_A308/99 23.8 23.8 23.8 - 23.8 23.8 22.9 22.9 85.3 88.4 85.7 - 86.4 - 82.1 - - 42.2 - - 41.9 39.4 38.1
DQ315670_Human_parechovirus_4_K251176-02 23.8 23.8 23.8 - 23.8 23.8 22.9 22.9 83.2 88.4 96.8 - 88.3 - 87.2 - - 40.5 - - 40.3 39.5 39.8
AF055846_Human_parechovirus_5_CT86-6760 21.7 21.7 21.7 - 21.7 21.7 20.8 22.6 82.3 86.5 82.3 81.3 - - - - - - - - - - -
AB252582_Human_parechovirus_6_NII561-2000 23.6 23.6 23.6 - 23.6 23.6 22.6 24.5 78.4 85.6 80.4 80.4 91.8 - 85.2 - - 42.4 - - 41.9 39.7 39.6
EU556224_Human_parechovirus_7_PAK5045 22.9 22.9 22.9 - 22.9 22.9 21.9 21.9 84.2 88.4 95.8 94.7 82.3 80.4 - - - - - - - - -
EU716175_Human_parechovirus_8_BR/217/2006 24.5 24.5 24.5 - 24.5 24.5 23.6 23.6 85.4 90.6 87.5 86.5 87.5 86.6 87.5 - - 41.2 - - 40.5 38.1 38.8
KT319121_Human_parechovirus_17_M36/CI/2014 24.5 24.5 24.5 - 24.5 24.5 23.6 23.6 85.4 87.5 88.5 87.5 85.4 84.5 88.5 93.8 - - - - - - - -
NC_003976_Ljungan_virus_1_87-012 28.9 28.9 28.1 - 28.9 28.1 28.1 28.1 26.7 28.3 28.3 28.3 30.8 30.0 29.2 30.0 29.2 - - - - - -
FJ384560_Ljungan_virus_2_145SL 28.2 28.2 27.4 - 28.2 27.4 27.4 27.4 26.7 27.7 29.2 29.2 30.0 29.2 30.0 29.2 29.2 91.5 - - 73.5 56.3 36.6
AF538689_Ljungan_virus_3_M1146 26.1 26.1 25.2 - 26.1 25.2 25.2 26.1 28.1 29.8 27.8 27.8 29.6 29.6 28.7 29.6 28.7 60.5 61.2 - - - -
EU854568_Ljungan_virus_4_64-7855 20.0 20.0 19.1 - 20.0 19.1 19.1 20.0 19.3 21.1 21.7 21.7 24.4 23.5 22.6 22.6 21.7 61.0 63.5 73.8 - - -
KY432929_Ljungan_virus_6_JL2014-2 26.8 26.8 25.9 - 26.8 26.8 27.7 25.9 28.1 28.1 27.8 27.8 30.4 30.4 27.8 28.7 29.6 63.6 67.0 75.5 64.8 55.6 36.1

ParV C HF677705_Sebokele_virus_1 35.2 35.2 34.1 - 35.2 34.1 33.0 35.2 21.9 21.1 22.6 22.6 24.1 23.3 23.5 22.4 21.6 42.2 42.4 46.8 45.4 43.2 36.9
ParV E KY645497_Falcon_parechovirus 38.9 38.9 38.0 - 38.9 38.0 37.0 38.0 33.3 35.3 35.0 35.9 35.9 35.9 34.2 34.2 35.0 50.4 52.1 48.7 40.9 51.3 39.1 39.1

*: Not done (full-length or comparable sequences could not be obtained)
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suggested structural conservation in the 5'UTR, cre, and 
3'UTR between Bo ParVs and other parechoviruses.
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Fig. 2   Secondary structure 
prediction of the 3′UTR of Bo_
ParVs (A) and other parechovi-
ruses (B) using RNAfold in the 
ViennaRNA package (version 
2.4.18). Analysis of the 3'UTR 
included 10 nt of the poly(A) 
tail to simulate the authentic 
viral RNA molecule
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