Skip to main content
. 2024 Sep 5;76:102820. doi: 10.1016/j.eclinm.2024.102820

Table 3.

Optimal machine-learning algorithms for predicting various outcomes corresponding to patient categories.

Outcomes ROC training (AUROC) ROC internal validation (AUROC) PR curve (AUPRC) DCA
All-hospdeath Adaboost (0.999) XGBoost (0.967) Adaboost (0.979) XGBoost
All-1month XGBoost (0.886) Logistic (0.609) XGBoost (0.728) XGBoost
All-180death XGBoost (0.988) XGBoost (0.857) XGBoost (0.960) XGBoost
ICU-hospdeath Adaboost (0.999) XGBoost (0.963) XGBoost (0.992) XGBoost
ICU-1month XGBoost (0.933) Adaboost (0.687) XGBoost (0.811) XGBoost
ICU-180death XGBoost (0.988) XGBoost (0.864) XGBoost (0.964) XGBoost
ICU-operation-hospdeath XGBoost (0.987) XGBoost (0.961) XGBoost (0.925) XGBoost
ICU-operation-1month XGBoost (0.908) Adaboost (0.683) XGBoost (0.758) XGBoost
ICU-operation-180death XGBoost (0.982) XGBoost (0.828) XGBoost (0.924) XGBoost

ICU, intensive care unit; ROC, Receiver Operating Characteristic curve; AUROC, area under the receiver operating characteristics curve; PR, Precision-Recall; AUPRC, area under the precision-recall curve; DCA, Decision Curve Analysis; XGBoost, eXtreme Gradient Boosting; AdaBoost, Adaptive Boosting; Logistic, Logistic regression.