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ABSTRACT

Introduction: Neural crest cells (NCCs) are cell populations that originate during the formation of neural
crest in developmental stages. They are characterized by their multipotency, self-renewal and migration
potential. Given their ability to differentiate into various types of cells such as neurons and Schwann
cells, NCCs hold promise for cell therapy applications. The conventional method for obtaining NCCs in-
volves inducing them from stem cells like induced pluripotent stem cells (iPSCs), followed by a long-term
passage or purification using fluorescence-activated cell sorting (FACS). Although FACS allows high purity
induced neural crest cells (iNCCs) to be obtained quickly, it is complex and costly. Therefore, there is a
need for a simpler, cost-effective and less time-consuming method for cell therapy application.

Methods: To select differentiated iNCCs from heterogeneous cell populations quickly without using FACS,
we adopted the use of scaffold material full-length laminin 211 (LN211), a recombinant, xeno-free protein
suitable for cell therapy. After fist passage on LN211, iNCCs characterization was performed using po-
lymerase chain reaction and flow cytometry. Additionally, proliferation and multipotency to various cells

were evaluated.
Result: The iNCCs obtained using our new method expressed cranial NCC- related genes and exhibited
stable proliferation ability for at least 57 days, while maintaining high expression level of the NCCs
marker CD271. They demonstrated differentiation ability into several cell types: neurons, astrocytes,
melanocytes, smooth muscle cells, osteoblasts, adipocytes and chondrocytes. Furthermore, they could be
induced to differentiate into induced mesenchymal stem cells (iMSCs) which retain the essential func-
tions of somatic MSCs.
Conclusion: In this study, we have developed novel method for obtaining high purity iNCCs differentiated
from iPSCs in a short time using LN211 under xeno-free condition. Compared with traditional methods,
like FACS or long-term passage, this approach enables the acquisition of a large amount of cells at a lower
cost and labor, and it is expected to contribute to stable supply of large scale iNCCs for future cell therapy
applications.
© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Abbreviations: ACTB, beta actin; aSMA, a-smooth muscle actin; BDNF, brain-derived neurotrophic factor; BMP4, bone morphogenetic protein-4; BM-MSCs, bone marrow
derived mesenchymal stem cells; BrdU, bromodeoxyuridine; dbcAMP, dibutyryl cyclic adenosine monophosphate; DLX1, distal-less homeobox 1; DMEM, dulbecco's modified
eagle medium; ELISA, enzyme-linked immunosorbent assay; ESCs, embryonic stem cells; FACS, fluorescence-activated cell sorting; FCM, flow cytometric measurement; FN,
fibronectin; GFAP, glial fibrillary acidic protein; GDNF, Glial cell line-derived neurotrophic factor; GvHD, graft-versus-host disease; HOXA2, homeobox A2; HOXA3, homeobox
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1. Introduction

In 1998, human embryonic stem cells (ESCs) were first established
[1], followed by the successful generation of human induced plurip-
otent stem cells (iPSCs) in 2007 [2]. Since then, numerous studies
have been conducted to uncover the pathogenesis of previously un-
explained refractory diseases [3], develop novel treatments [4],
elucidate disease etiology and harness their potential for regenerative
medicine. For the application of iPSCs in regenerative medicine or cell
therapy, it is crucial to obtain only target cells and eliminate unnec-
essary cells, as contamination with residual undifferentiated iPSCs
can cause severe side effects [5]. Therefore, it would be particularly
beneficial to have intermediate cells between iPSCs and the targeted
differentiated cells that are free from iPSCs contamination, possess
multiple differentiation potentials, and exhibit stable proliferation.
High purity neural crest cell (NCC) [6] free from undifferentiated iPSCs
is one of the promising candidates for cell therapy.

The neural crest, a transient structure that forms between the
epidermal ectoderm and the neural plate during early vertebrate
development [7], play significant important role in vertebrate
evolution, often referred to as the “fourth germ layer” [8]. NCCs are
a group of cells that migrate to various sites in the embryo after
undergoing de-epithelialization from the neural crest and
epithelial-mesenchymal transition, and differentiate into specific
cell types depending on their location [9]. For instance, NCCs
located in the dorsal neural tube differentiate into specialized
axonal-origin cell types [10]. Cranial NCCs form the craniofacial
structures of the head, including the skull's cartilage and bone
tissue, cranial neurons, glia and facial connective tissue. Trunk NCCs
differentiate into various cell types, including dorsal root ganglia
that contain sensory neurons, satellite glial cells, adrenal gland
endocrine cells and Schwann cells along spinal nerves [11]. Some of
these NCCs differentiate into skin melanocytes and vagal NCCs form
the enteric nervous system along the gut length [12], and
contribute to the arteries’ connective tissue, the outflow tract
septum, and the cardiac ganglia [13].

NCCs were initially identified in rodents by Stemple and
Anderson [14], who isolated these cells using cell sorting against
the NCC-specific cell surface protein, p75NTR (neurotrophin re-
ceptor [NTR]). These p75NTR positive cells demonstrated self-
renewal ability and generated both myofibroblasts and peripheral
nervous system neurons and glia. Notably, since NCCs have been
shown to be one of the originating cells of MSCs [15], which are
frequently used in cell therapy, the generation of iMSCs from iPSCs
via iNCCs lineage has been viewed as a promising approach in
innovative medicine. To date, numerous studies have been con-
ducted to establish a robust and efficient method for inducing
iNCCs from ESCs/iPSCs [16—22]. The traditional method to purify
iNCCs from heterogeneous cell populations is long-term passage
[20] or fluorescence-activated cell sorting (FACS) [23]. The former
method simply selects only robust and high growth iNCCs by long-
passage, but is time-consuming and difficult to obtain high purity
iNCCs. The latter method was first proposed as xeno-free method
which can be useful for cell therapy and could dramatically shorten
the period compared with the former method. The advantage of
FACS method is to obtain high purity iNCCs, however several
following bottlenecks must be improved for clinical use in near
future: administrative costs of instrument, complexity of operation
and limited processing capacity associated with the equipment
used in cell processing facilities.

To overcome these issues, we have established a novel simple
and cost-effective purification method by adapting scaffold mate-
rial Laminin 211. This method simply utilizes Laminin 211 as a
specific scaffold for selecting iNCCs from heterogeneous cell pop-
ulations composed of undifferentiated iPSCs and some ectodermal
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cells. Additionally, the differentiation and purification processes are
carried out under completely xeno-free conditions, which can be
applied to cell therapy. Compared to the long-term passage method
that takes approximately 4 weeks, a single passage on the scaffold
is able to be performed in just 1 week and to enhance the purity of
iNCCs. The cells obtained through this method retained their iNCC
surface marker profiles even after 57 days and the obtained iNCCs
successfully differentiated into various cell types, such as neurons,
corneal endothelial cells and iMSCs.

2. Materials and methods
2.1. Cells and materials

iPSCs (201B7, 1210B2 and 1231A3) were obtained from iPS
Portal Inc (Kyoto, Japan). The culture substrate used was 6-well
plates (BD Biosciences, NJ, USA, 353046). As scaffolds, iMatrix-511
(Nippi, Tokyo, Japan, 892012; LN511-E8), Vitronectin-N (FUJIFILM
Wako Pure Chemical, Osaka, Japan, 220-02041; VN), Laminin211
(Biolamina, Sundbyberg, Sweden, BLA-LN211-0; LN211) and
Fibronectin (Sigma-Aldrich, MO, USA, F2006; FN) were used.

2.2. Induction and culturing of iNCCs from iPSCs

The differentiation of iNCCs from iPSCs was carried out
following previously reported methods [16,23]. Initially, iPSCs were
seeded in a 6-well plate with a density of 6500 cells/well in a 1.5 mL
suspension of StemFit® AKO3 N (Ajinomoto, Tokyo, Japan) mixed
with 4.8 uL LN511-E8. After five days of cultivation, the medium was
switched to iNCC induction medium: StemFit BasicO3 (Ajinomoto)
containing 0.6 tM CHIR99021 (FUJIFILM Wako Pure Chemical, 038-
23101; CHIR) and 10 uM SB431542 (Reprocell, Kanagawa, 04-0010).
The medium was changed every two days, and the cells were
cultured for 14 days to induce iNCCs. Following induction, colonies
obtained were dissociated into single cells using a cell detachment
solution: TrypLE™ Select CTS™ (Thermo Fisher Scientific, MA, USA,
A12859-01) containing 50 U/mL DNase (QIAGEN, Venlo, Nederland,
79254). These cells were then cultured and maintained in iNCC
maintenance medium: StemFit BasicO3 containing 10 pM
SB431542, 20 ng/mL Epidermal Growth Factor (Sigma-Aldrich, MO,
USA, E9644), 20 ng/mL CORYNEX® basic FGF (Ajinomoto) and
0.4 pL/mL LN211 for a week. Medium exchanges were performed
every 2—3 days. During long-term maintenance culture experi-
ments, cells were passaged every 3—7 days once they reached 80%
confluency. In this study, scaffolds were added to the medium
during the culture of iPSCs and the purification and expansion
culture of iNCCs. This approach has been shown to achieve the
same effect as coating with scaffolds, as reported in previous
studies [24].

2.3. Differentiation of iNCCs

2.3.1. Neuron differentiation

Cells were suspended at a concentration of 2 x 10%/150 pL in
iNCC maintenance medium and seeded onto Sumitomo PrimeSur-
face U (Sumitomo Bakelite, Tokyo, Japan) to form spheres after 24 h.
The spheres were seeded onto Poly-ornithine and mouse Laminin-
coated 48-well plates and cultured for 9 days in Neurobasal me-
dium (Thermo Fisher Scientific, 21103049) supplemented with 2%
B27 (Thermo Fisher Scientific, 12587010), 5 ng/mL BDNF (Pepro-
tech, NJ, USA, 450-02-10UG), 10 ng/mL GDNF (Peprotech, 450-10-
10UG), 400 pM dbcAMP (Nacalai Tesque, Kyoto, Japan, 11540-74)
and 200 pM ascorbic acid (FUJIFILM Wako Pure Chemical, 012-
04802). After the culture period, cells were fixed with 4% para-
formaldehyde  (PFA) (Nacalai Tesque, 09154-85) for
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immunostaining. Nuclei were stained with Cellstain®- Hoechst
33342 solution (DOJINDO, 346-07951; Hoechst) and the antibodies
used are listed in Table 1.

2.3.2. Astrocyte (Schwann cell) differentiation

Cells were seeded onto Poly-ornithine and Laminin-coated 24-
well plates at a density of 2.5 x 10%/cm? and cultured for 10 days
in DMEM/F12 (Thermo Fisher Scientific, 11330-032) supplemented
with 1% N2 supplement (Thermo Fisher Scientific, 17502), 2 mM
GlutaMAX-I supplement (Thermo Fisher Scientific, 35050) and 1%
fetal bovine serum (Thermo Fisher Scientific, 26140-079; FBS). Af-
ter the culture period, cells were passaged, fixed the next day with
4% PFA, and used for immunostaining. Nuclei were stained with
Hoechst and the antibodies used are listed in Table 1.

2.3.3. Melanocyte differentiation

Cells were seeded onto fibronectin-coated 24-well plates at a
density of 1.25 x 10%cm? and cultured in DMEM/F12 supple-
mented with 20% StemFit for Differentiation (Ajinomoto), 1 uM
CHIR, 25 ng/mL BMP4 (R&D SYSTEM, MN, USA, 314-BP-050) and
100 nM Endothelin-3 (Peptide institute, Ibaraki, Japan, 4199-v).
After 3 days, cells were passaged and cultured for an additional 7
days, then fixed with 4% PFA and used for immunostaining. Nuclei
were stained with Hoechst and the antibodies used are listed in
Table 1.

2.3.4. Smooth muscle cell differentiation

Cells were seeded onto 24-well plates at a density of 1.25 x 10%/
cm? and cultured in oMEM (Nacalai Tesque, 21444-05) supple-
mented with 10% FBS. After being passaged twice at sub-
confluence, cells were fixed with 4% PFA for immunostaining.
Nuclei were stained with Hoechst and the antibodies used are listed
in Table 1.

2.3.5. Osteoblast differentiation

Cells were suspended in iNCC maintenance medium at a con-
centration of 2 x 10%/500 puL and seeded onto 24-well plates. When
cells reached 60% confluence, they were cultured in DMEM-HG
(Thermo Fisher Scientific, 11965092) supplemented with 10 mM
B-glycerol phosphate (Nacalai Tesque, 1713022), 100 nM dexa-
methasone (FUJIFILM Wako Pure Chemical, 047-18863; Dex) and
50 uM ascorbic acid for 31 days, then fixed with 4% PFA and stained
with Alizarin Red S (Nacalai Tesque, 01303-52) staining.

2.3.6. Adipocyte differentiation

Cells were suspended in iNCC maintenance medium at a con-
centration of 3 x 10%/500 uL and seeded onto 24-well plates. When
cells reached 60% confluence, they were cultured in DMEM-HG
supplemented with 100 nM Dex, 500 uM isobutylmethylxantine
(FUJIFILM Wako Pure Chemical, 099-03411) and 50 pM indometh-
acin (Sigma-Aldrich, 17378) for 31 days, then fixed with 4% PFA and
stained with Oil Red O (Sigma-Aldrich, 00625) staining.

Table 1
Antibody list for iNCC differentiation ability test.
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2.3.7. Chondrocyte differentiation

Cells were suspended in DMEM-HG supplemented with 100 nM
Dex, 50 uM Ascorbic Acid, ITS liquid supplement (Sigma-Aldrich,
13146), 1 mM Sodium Pyruvate (Nacalai Tesque, 06977-34), 10 ng/
mL TGF-1 (Peprotech, 100-21C) and 50 pg/mL L-proline (Sigma-
Aldrich, P5607) at a concentration of 2.5 x 10%/500 L and seeded
onto 24-well plates. After 33 days of culture, cells were fixed with
4% PFA and stained with Alcian blue (FUJIFILM Wako Pure Chemi-
cal, 015-13805) staining.

2.3.8. iMSC differentiation

Cells were seeded onto 6-well plates coated with 1.5 pg/cm? VN
at a density of 1 x 10° cells/well for proliferation and maintained in
iMSC medium; StemFit for Mesenchymal Stem Cell (Ajinomoto)
with 90 nM dexamethasone. iMSC was induced by cultivation for
12—14 days with medium change in every 2—3 days and passage in
every 4—5 days. The same procedure was followed for long-term
maintenance culturing of iMSCs however, medium change was
conducted every 2—3 days, and passage was performed every 5—7
days.

2.4. Differentiation of iMSCs

2.4.1. Osteoblast differentiation

Cells were suspended in iMSC medium at a concentration of
2 x 10* cells/500 pL and seeded onto 24-well plates coated with
VN. After reaching 60% confluence, the cells were cultured for 41
days in DMEM-HG supplemented with 10% FBS, 10 mM B-glycerol
phosphate, 100 nM Dex and 50 uM ascorbic acid. The cells were
fixed with 4% PFA and subjected to Alizarin Red S staining.

2.4.2. Adipocyte differentiation

Cells were suspended in iMSC medium at a concentration of
3 x 10* cells/500 pL and seeded onto 24-well plates coated with
VN. At 60% confluence, the cells were cultured for 38 days in
DMEM-HG supplemented with 10% FBS, 100 nM Dex, 500 puM iso-
butylmethylxanthine and 50 pM indomethacin. The cells were
fixed with 4% PFA and subjected to Oil Red O staining.

2.4.3. Chondrocyte differentiation

Cells were suspended in DMEM-HG supplemented with 10%
FBS, 100 nM Dex, 50 pM ascorbic acid, 1% N-2 Supplement, 1 mM
Sodium Pyruvate, 10 ng/mL TGF-f1 and 50 pg/mL L-proline at a
concentration of 2.5 x 10% cells/500 pL and seeded onto 24-well
plates. After 44 days of culture, the cells were fixed with 4% PFA
and subjected to Alcian blue staining.

2.5. Inflammatory response of iMSCs
iMSCs were suspended in iMSC medium and seeded onto 6-well

plates coated with VN at a density of 3.0 x 10 cells/well. When
they reached 80% confluence, 50 ng/mL of Interferon y (R&D

Cell Primary antibody

Secondary antibody

Tertiary antibody

Astrocyte Anti-GFAP antibody (abcam, ab7260)

Melanocyte Anti-MiTF antibody [C5] (abcam, ab12039)

Goat anti-Rabbit IgG (H + L) Cross-Adsorbed
Secondary Antibody, Biotin-XX (Thermo Fisher, B-2770)
Goat anti-Mouse IgG (H + L) Cross-Adsorbed

Streptavidin, Alexa Fluor™ 488 conjugate
(Thermo Fisher, S11223)

Secondary Antibody, Biotin-XX (Thermo Fisher, B-2763)

Neuron Anti-Tubulin Antibody, beta III isoform,
CT, clone TU-20 (Millipore, MAB1637)
Smooth muscle  Anti-Actin, ¢-Smooth Muscle antibody,

cell Mouse monoclonal (Sigma, A5228-100UL)

Anti-mouse IgG (H + L), F(ab')2 Fragment -
(Alexa Fluor® 555 Conjugate) (Cell Signaling, 4409S)
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Systems, 285-IF-100; IFNy) was added, and the cells were further
cultured for 48 h. Additionally, BM-MSCs (Lonza, Basel,
Switzerland, PT-250) cultured in StemFit for Mesenchymal Stem
Cell containing 0.2 pg/mL LN511-E8 were used as controls.

2.6. Immunosuppressive effect of iMISCs

To evaluate the ability of iMSCs to inhibit the proliferation of
peripheral blood mononuclear cells (Lonza, CC-2702; PBMCs), BM-
MSCs and iNCCs were used as a positive control and a negative
control, respectively. These cells were seeded onto a 96-well plate
coated with VN (0.5 pg/cm?) at a density of 5 x 10%/well (n = 3) in
their respective growth medium. The day after seeding, the me-
dium was replaced with 100 pL/well of RPMI supplemented with
GlutaMAX-I (1 x ) (Thermo Fisher Scientific, 61870-036; RPMI),
2.5 ug/mL Mitomycin C (Nacalai Tesque, 20898-21), 10% FBS, and
the cells were treated for 1 h at 37 °C. After washing twice with PBS
(Nacalai Tesque, 14249-24), the medium was switched to RPMI
supplemented with 10% FBS, and 1 x 10°/well PBMCs along with
the stimulant, 2.5 pL/well of Dynabeads Human T-Activator CD3/
CD28 (Thermo Fisher Scientific, 11131D) and 30 U/mL Interleukin-2
human (Sigma-Aldrich, 11011456001), were added and incubated
at 37 °C. Cell proliferation of PBMCs was evaluated by the absor-
bance measured using Cell Proliferation ELISA, BrdU (colorimetric;
Sigma-Aldrich, 11647229001) three days after co-culturing.

2.7. Flow cytometric measurement (FCM)

For the analysis of MSC surface markers, cells were incubated at
room temperature for 10 min in Human TruStain FcX™ (Biolegend,
CA, USA, 422301) diluted 50 times with PBS. Afterward, an antibody
solution diluted 10 times with FCM buffer: PBS with 1% FBS was
added and incubated on ice and in the dark for 20 min. After
washing three times with FCM buffer, the cells were suspended in
Attune 1x focusing fluid (Thermo Fisher Scientific, A24904), and
analysis was performed using the Attune NXT Flow Cytometer
(Thermo Fisher Scientific). To analyze IDO's stimulus responsive-
ness, cells were fixed with 4% PFA at room temperature for 30 min.
Then the cells were blocked with Blocking One Histo (Nacalai,
06349-64) at room temperature for 60 min and treated with a
primary antibody diluted 20 times for 30 min on ice, followed by a
secondary antibody diluted 500 times in the dark on ice for 30 min
before measurement. The antibodies used are listed in Table 2.
During measurement, the laser intensity was adjusted so that the
fluorescence intensity of the cells stained with the isotype control
was below 103. Cell populations showing fluorescence intensity
above 10% were defined as positive cells, and specifically, above 10*
were defined as high-expression populations. From this point

Table 2
List of antibodies for FCM.
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forward, cells with high expression of CD271 will be referred to as
CD271"igh cells,

2.8. Gene expression analysis

The cells to be analyzed were stored at —80 °C in Buffer RLT Plus
(QIAGEN, 1053393), and RNA was extracted using the RNeasy Plus
mini kit (QIAGEN, 74134). cDNA was synthesized using SuperScript
VILO MasterMix (Thermo Fisher Scientific, 11756050). RealTime-
PCR was performed using the TagMan™ Gene Expression Master
Mix (Thermo Fisher Scientific, 4369016) for the Tagman probe and
the Fast SYBR Green Master Mix (Thermo Fisher Scientific,
4385612) for other synthetic primers. The list of used Tagman
probes and synthetic primers are shown in Table 3. The expression
levels of each gene were normalized by the expression level of the
housekeeping gene, B-actin (ACTB). Subsequently, the values cor-
responding to the gene expression levels in undifferentiated iPSCs
(201B7) were charted on a graph.

2.9. Statistical analyses

All statistical analyses were performed using the GraphPad
Prism10 software (GraphPad Software Inc., CA, USA). For compari-
sons between two groups, an unpaired t-test was used. For com-
parions involving more than two groups, a two-way ANOVA
followed by Bonferroni's post hoc test was conducted. Statistical
significance was indicated as follows: *p<0.05, **p<0.01,
*xxp<0.001, ***+*p<0.0001. Data are presented as means + SD, and
the number of replicates (n) is specified in the figure legends.

Table 3
List of Tagman probes and synthetic primers.

Tagman probe

Target gene Primer ID

ACTB Hs01060665_g1
SOX10 Hs00366918_m1
TFAP2A Hs01029413 _m1
SOX9 Hs01001343_g1
TWIST1 Hs01675818_s1
0TX2 Hs00222238_m1

Synthetic primer

Target Forward Reverse

gene

ACTB CATAGTCCGCCTAGAAGC GTTGCTATCCAGGCTGTG

OCT3/4 CCTCACTTCACTGCACTGTA CAGGTTTTCTTTCCCTAGCT

DLX1 CGACCTTCAGCTTTGTGGGACTA  GACGGATGAGGACCTGGACTTTAC
HOXA2  ATTGTCATTGGGCAGAAGCA GGACCGCGCTACTATTAAACTATTG
HOXA3  GGATGCTTCGCGGTCTGTTA CTCCGTTTGCTGGAGACCTG

Marker Primary antibody Secondary antibody Isotype Control

NCC PE Mouse Anti-Human CD271 (BD, 557196) — PE Mouse IgG1, kappa Isotype
MSC positive PE anti-human CD105 Antibody (Biolegend, 323205) — Ctrl (Biolegend, 400139)

MSC negative PE anti-human CD34 Antibody (Biolegend, 343605) -

MSC positive FITC anti-human CD73 (Biolegend, 344016) — FITC Mouse IgG1, kappa Isotype
MSC positive FITC anti-human CD90 (Thy1) Antibody (Biolegend, 328107) — Ctrl (Biolegend, 400110)

MSC negative FITC anti-human CD45 Antibody (Biolegend, 304005) -

MSC positive APC anti-human CD44 Antibody (Biolegend, 338805) — APC Mouse IgG2a, k Isotype

Pharmacological
activity

Human Indoleamine 2,3-dioxygenase/IDO Antibody
(R&D, MAB6030)

Control (BD, 555576)
Purified Mouse IgG1, kappa Isotype
Ctrl (Biolegend, 401401)

Goat anti-Mouse IgG (H + L)
Highly Cross-Adsorbed Secondary
Antibody, Alexa Fluor™ 488
(Thermo Fisher, A11029)
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3. Results
3.1. Optimization of iNCC induction and purification methods
First of all, the induction method for iNCCs from iPSCs was

optimized, with reference to previous reports [16,23]. iPSCs were
cultivated with StemFit AKO3 N for 5 days, followed by iNCC
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induction for 14 days with StemFit Basic03 supplemented with
CHIR99021 (CHIR). Subsequently, iNCCs were purified from het-
erogeneous colonies. (Fig. 1A). For effective iNCC induction, the
concentration of CHIR at the induction stage is crucial [16], there-
fore the concentration of CHIR during differentiation was optimized
for the cell line, 201B7. To evaluate iNCC differentiation efficiency,
CD271 was adopted as a marker, which is highly expressed in NCCs
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Fig. 1. Optimization of iNCCs induction and purification methods. A. The diagram illustrates the iNCC induction and purification method. SB, SB431542. CHIR, CHIR99021. B. The
histogram represents the results from flow cytometry measurements of the heterogeneous cell population following NCC induction, stained with isotype control (a) or CD271
antibody (b). Among the CD271 positive cells, the populations with a fluorescence intensity of 10* (marked with a line) or higher were defined as high CD271 expression (CD271"")
cells. C. Morphology of colonies on day 14 when iNCCs were induced from iPSCs under various CHIR concentrations (0.3 uM (a), 0.6 uM (b), 0.9 uM (c)), along with the percentage of
CD271"8" cells induced at each concentration (d). Statistical significance was determined using an unpaired t-test. *p<0.05. Data are represented as the mean + SD, n = 3. Scale Bar:
500 pum. D. Representative microscopic images of iPSCs (201B7) cultured in StemFit AKO3 N supplemented with either LN211 or LN511-E8 at their respective concentrations.
Arrowheads indicate the colonies. Scale Bar: 500 pm. E. The percentage of CD271"&" cells in the first passage after culture with each scaffold. The low dose of LN511-E8, LN211, and
VN was 0.6 pL/mL, and the high dose was 6 pL/mL. The low dose of FN was 15 puL/mL, and the high dose was 30 uL/mL. F. The relative gene expression of NCC Marker Genes (SOX10,
TFAP2A, SOX9, TWIST1) and pluripotency marker (OCT3/4) in iNCCs purified using LN211 compared with the expression of iPSCs (201B7). The expression levels of each gene were
normalized by that of the housekeeping gene, B-actin (ACTB). Data are represented as the mean + SD, n = 3. G. The histograms display the results from flow cytometry mea-
surements of various iPSC-derived cells pre (upper) and post (lower) iNCCs purification (left: 201B7, middle: 1210B2, right: 1231A3). Cell populations with a fluorescence intensity
of 10* or above (the right side of the vertical line) are classified as CD271"e" cells. The data were obtained with N = 1.
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[14,25] along with other NCC marker proteins. Since the expression
level per cell is important for the quality of iNCCs, we have defined
a suitable CD271 expression level for functional iNCCs as CD271high
by flow cytometry (Fig. 1B). At the day 14 of iNCC differentiation,
heterogenous colonies were observed among all CHIR concentra-
tions (Fig. 1C a, b, ¢). Among three concentrations 0.6 uM of CHIR
consistently showed a higher population of CD271M8" cells
compared to 0.3 uM (Fig. 1C d), although no significant difference
was observed between 0.3 uM and 0.9 uM or between 0.6 uM and
0.9 uM. Therefore, the CHIR concentration was set at 0.6 uM in this
study.

Secondly, the iNCC purification method was investigated. Since
it was reported that the usage of laminin211-E8 fragment (LN211-
E8) could enhance efficiency of differentiation from iPSCs to
iNCCs when used as a scaffold [26], it was hypothesized to be
beneficial for the purification of iNCCs. However, it was deemed
unsuitable due to it reports indicating its support for iPSCs prolif-
eration [26]. Given the lower growth supportive ability of full-
length laminin211 (LN211) to iPSCs compared to that of LN211-E8
while that to iNCCs are still retained by LN211, LN211 may possess
the potential for purification of iNCCs in the post-differentiation
stage. In order to clarify the growth-supportive ability of LN211,
iPSCs were cultured either on LN511-E8 or LN211 for 5 days, and
iPSCs colony formation was observed on LN511-E8 at all concen-
trations, while LN211 was not (Fig. 1D). This suggests that, unlike
LN211-E8 as shown in the previous report [26], LN211 cannot
support proliferation of iPSCs. Furthermore, this presents the pos-
sibility of it being a scaffold for purification.

To evaluate the potential applicability of LN211 for iNCC puri-
fication, the ability to isolate iNCCs was examined in comparison
with other commonly used scaffolds. During the differentiation
stage, iPSCs were cultured with three different concentrations of
CHIR on scaffold, LN511-E8 for 14 days. The obtained colonies,
comprised of iNCCs and iPSCs, were enzymatically dissociated
into single cells and subsequently seeded on various scaffolds,
including LN211, at both low and high concentrations in the iNCC
maintenance medium. Among all scaffolds, LN211 showed the
highest population of CD271M8" regardless of its coating con-
centrations and even when the CHIR concentration was not
optimal (Fig. 1E).

The gene expression patterns of the CD27 cells obtained
using LN211 were investigated to determine whether they possess
characteristics of NCCs, as opposed to those of iPSCs. In comparison
to the undifferentiated state, the expression of NCC markers
TFAP2a, SOX9, SOX10 and TWIST1 was elevated, while the
expression of OCT3/4, an undifferentiated marker for iPSCs,
significantly decreased (Fig. 1F). Consequently, the usage of LN211
was considered to be the optimal purification scaffold for obtaining
high-purity iNCCs without the need for long-term passage. In
addition to 201B7 cell line, iNCC differentiation and purification
with LN211 was investigated using 1210B2 and 1231A3 cell lines,
with a significant increase in the CD271M8" population observed
post purification across all cell lines (Fig. 1G).

1high

3.2. Investigating the characteristic of iNCCs obtained using
established methods

The self-renewal and multilineage capacities of the obtained
iNCCs using newly established method with LN211were examined,
given that NCCs typically possess these abilities [27]. In terms of
self-renewal ability, the iNCCs were cultured for 57 days with iNCC
maintenance medium, exhibiting an approximate population
doubling level (PDL) of 36 while maintaining CD271M&" profiles
(Fig. 2A).
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Prior to assessing the multilineage capacity, in order to ascertain
whether the obtained iNCCs exhibit embryological character of
NCC, using cells post the first passage on LN211 were analyzed for
the expression of NCC marker genes, including OTX2 for the
mesencephalon [28], DIx1 for the first (maxillary) and second
(lingual) pharyngeal arches [29], and HOXA2 and HOXA3 for the
second and third (thymus) pharyngeal arches [30,31] (Fig. 2B). Only
DIx1, the marker for the first and second pharyngeal arches,
exhibited significantly high expression (Fig. 2C).

The multilineage capacity of the iNCCs was also substantiated.
Generally, migrating NCCs from the first and second pharyngeal
arches have the potential to differentiate into variety of the cell
types, including neurons, Schwann cells, melanocytes, smooth
muscle cells, osteoblasts, adipocytes and chondrocytes. Prior
studies have indicated that iNCCs, which exhibit characteristics
resembling those of the first and second pharyngeal arches as in
this study, capable of differentiating into the aforementioned cell
types [16]. In order to substantiate the potential for differentiation
into these cell types, differentiation inductions were performed
using the iNCCs procured in this study. As a result, the cells post
each induction were found to express TUJ1 (neurons; Fig. 2D a),
GFAP (astrocytes; Fig. 2D b), MiTF (melanocytes; Fig. 2D c¢) and
aSMA (smooth muscle cells; Fig. 2D d). Furthermore, adipocytes,
osteoblasts and chondrocytes were stained with Oil Red O (Fig. 2D
e), Alizarin Red (Fig. 2D f) or Alcian Blue, respectively (Fig. 2D g).
These findings corroborated the multipotency of the iNCCs in this
study.

3.3. Induction and functional verification of iMSCs from iNCCs
obtained with LN211

Finally, the ability of the obtained iNCCs into iMSCs and their
functional characteristics were investigated. Although MSCs are
beneficial for cell therapy [32—36], somatic MSCs suffer from a lack
of sufficient donor cells, and the proliferative and differentiation
capacities of MSCs vary depending on the donor [37]. To address
this issues, various methods for inducing iMSCs from iNCCs have
been established [16,19,21—23,38—41]. iNCCs obtained in this study
were cultured in StemFit for Mesenchymal Stem Cell supplemented
with dexamethasone [41] for a period of 12 days.

MSCs are defined by International Society of Cell & Gene Ther-
apy (ISCT) as cells that i) adhere to plastic under standard culture
conditions, ii) express specific surface markers and iii) possess the
capacity to differentiate into tri-lineages: osteoblasts, adipocytes
and chondrocytes [42]. To confirm criterion i), the cells were
cultured on a plastic dish where they exhibited stable cell prolif-
eration for a duration of 57 days, demonstrating a finite prolifera-
tive capacity akin to that of somatic MSCs (Fig. 3A). To validate
criterion ii), the expression of surface marker proteins was
analyzed, revealing significant expression of CD44, CD90, CD73 and
CD105, and negative expression of CD34 and CD45, thereby
demonstrating the expression pattern characteristic of MSCs
defined by ISCT. (Fig. 3B). To validate criterion iii), the cells obtained
were subjected to differentiation induction towards the lineages
previously mentioned. The results indicated significant stain with
Oil Red O (adipocytes; Fig. 3C a), Alizarin Red (osteoblasts; Fig. 3C
b), and Alcian Blue (chondrocytes; Fig. 3C c). This effectively
confirmed their capacity for tri-lineage differentiation. Given that
they fulfill all three criteria for MSCs, it could be inferred that the
cells obtained may be iMSCs. Additionally, it was elucidated that
the iNCCs obtained in this study also potentially possess the
capability to differentiate into iMSCs.

Then the functionality of the iMSCs obtained in this study, in
comparison with somatic MSCs was scrutinized. In order to
validate inflammatory response, both iMSCs and BM-MSCs,
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Fig. 2. Characteristics of iNCCs obtained with LN211. A. The self-renewal ability of iINCCs maintained in culture with LN211. The left axis shows the Population Doubling Level (PDL)
in cell proliferation, while the right axis shows the percentage of CD271"#" cells determined by flow cytometry measurements. B. The map displays the distribution of marker-
positive cells in a human fetus at 4 weeks. ME, mesencephalon; PA1 to PA3, pharyngeal arch 1 to pharyngeal arch 3. C. The relative gene expression of NCC site-specific marker
in iNCCs purified using LN211 compared with iPSCs (201B7). The expression levels of each gene were normalized by that of ACTB. Data are represented as the mean + SD, n = 3. D.
Staining images of cells post-differentiation induction and iPSCs (201B7): (a) Neuron (Red: TUJ1, Blue: Hoechst), (b) Astrocyte (Green: GFAP, Blue: Hoechst), (c) Melanocyte (Green:
MITF, Blue: Hoechst), (d) Smooth Muscle Cell (Red: aSMA, Blue: Hoechst), Tri-lineage (Osteoblast, Adipocyte, Chondrocyte): (e) Oil Red O Staining (Red: Adipocyte) (f) Alizarin Red

Staining (Deep Red: Osteocyte) (g) Alcian Blue Staining (Blue: Chondrocyte).

serving as the positive control for somatic MSCs were stimulated
with IFNy. It was observed that iMSCs, akin to BM-MSCs
exhibited an increase in IDO (indoleamine 2,3-dioxygenase)
protein expression (Fig. 3D). To assess the immunosuppressive
effect of iMSCs, PBMCs (peripheral blood mononuclear cells)
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stimulated with CD3/CD28/IL-2 were co-cultured with either
iMSCs or BM-MSCs, or with iNCCs serving as a negative control.
Contrary to iNCCs, which failed to inhibit the proliferation of
CD3/CD28/IL-2-stimulated PBMCs, iMSCs effectively suppressed
growth in a manner akin to BM-MSCs (Fig. 3E a). Furthermore,
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mean + SD, n = 3.

the effect of suppressing cell proliferation was nullified with the
introduction of IDO inhibitors (Fig. 3E b). The observations imply
that the iMSCs acquired in this study suppress the proliferation of
PBMCs by the same mechanism as somatic MSCs.

4. Discussion

In this study, we pioneered the utilization of LN211 as a puri-
fication scaffold, thereby establishing a straightforward method to
derive high-purity iNCCs from a heterogeneous population
comprising iNCCs and iPSCs within a limited time frame (Fig. 1A).
In comparison to the conventional long-term passage method, the
purification process was significantly condensed from approxi-
mately 4 weeks to 1 week. Moreover, in comparison to the FACS
method, our innovative method does not necessitate expensive
equipment or intricate operations, thereby significantly miti-
gating costs. Previous methodologies [16,20] have incorporated
animal-derived materials during iNCC differentiation, which re-
stricts their clinical application due to potential immunogenicity
and risk of disease transmission [43,44]. The methodology
established in this study circumvents the utilization of animal-
derived materials during both the differentiation and purifica-
tion phases, thereby augmenting the potential of iNCCs as a source
for cell therapies.

Full-length laminin211 (LN211) has the capability to selectively
isolate CD271M8M cells from a heterogenous cell population, which
includes iNCCs, iPSCs and an assortment of differentiated cells. A
prior study proposed the laminin211-E8 fragment (LN211-E8) as an
appropriate scaffold for iNCC induction. However, it was also

observed to support proliferation of undifferentiated iPSCs [45],
indicating a necessity for enhanced specificity in iNCC isolation. To
eliminate growth-supportive ability to iPSCs, we utilized LN211
instead of LN211-E8 in this research. Laminin-E8 is a fragment
where the integrin binding site found in the full-length is entirely
preserved, and other areas such as heparin/heparan sulfate binding
are excised [46,47]. It has been documented that the cell adhesion
and proliferative capacity of iPSCs cultivated with the laminin511-
E8 fragment surpassed those cultivated with the full-length lami-
nin511 [48]. Consequently, the cell growth-supportive ability of
LN211 to undifferentiated iPSCs might be inferior to that of LN211-
E8. In our study, iPSC cultivation on LN211 failed across all tested
concentrations (Fig. 1D), indicating that LN211 may be more
appropriate for eliminating undifferentiated iPSCs and isolating
iNCCs compared to LN211-E8.

Throughout the differentiation period, the application of
CHIR99021 (CHIR), a GSK-3 inhibitor capable of activating the Wnt/
B-Catenin pathway with low cytotoxicity [49], was optimized. CHIR
has been employed for a variety of objectives, such as somatic cell
reprograming [50,51], pluripotency maintenance [52,53], cell
growth promotion [54,55] and differentiation induction into spe-
cific tissue cells [56—59]. The impact of CHIR on pluripotent stem
cells appear to be influenced by multiple factors, including the
developmental stage of cell proliferation and differentiation
[56,59], and the cell type [60,61]. Therefore, optimizing the appli-
cation of CHIR is critical regarding timing, concentration and dif-
ferentiation stage. Previous studies have indicated that induction
efficiency varied due to CHIR concentrations for induction into
iNCCs [16]. In this experiment, it was determined that 0.6 uM was
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optimal for 201B7 cell line (Fig. 1C). Furthermore, when differen-
tiation induction with other cell lines (1210B2 and 1231A3) was
performed under the 0.6 uM CHIR condition, the induction effi-
ciency of 1210B2 and 1231A3 was lower than that of 201B7 (Fig. 1G,
Pre purification). This implies that 0.6 M was optimal for 201B7,
and the ideal CHIR concentration might be dependent on the iPSC
cell line. After differentiated cells were cultured on LN211 (Fig. 1G,
Post purification), the proportion of CD271M&" cells significantly
increased among all cell lines, suggesting that LN211 could serve as
a strong scaffold to isolate iNCCs irrespective of cell lines. Moreover,
more than 90% iNCCs could be achieved in a single culture passage
when LN211 was used as a scaffold for purified culture of iNCCs,
regardless of CHIR concentrations (Fig. 1E). Given these results, the
innovative method developed in this study for obtaining iNCCs
with high efficiency using LN211 is a technique-independent
method with no human variability, potentially contributing to a
stable supply for cell therapy. While VN and LN511-E8 presented a
high cD271"8" population in several concentrations, these scaf-
folds also adhere iPSCs [45,62], hence they were deemed unsuitable
for iNCC purification.

The objective of this study was to ascertain whether the
CD271M8" cells, designated here as iNCCs, exhibit the character-
istics of NCCs. The gene expression patterns of the cells in the first
passage of purification culture suggested that the iNCCs closely
resembled the migrating NCCs of the first and second pharyngeal
arches (Fig. 2B and C). Previous reports have proposed that CHIR
can facilitate differentiation into hindbrain NCCs by inhibiting
OTX2 expression [63], and steering cells towards cranial or
trunk identity in a dose-dependent manner [64]. In this study,
OTX2 expression at the end of induction was low in a CHIR
concentration-dependent manner in the induction medium
(Fig. S1 A), indicating that CHIR in the iNCC induction medium
may play a substantial role in determining the type of iNCCs. At
the conclusion of CD271™8" cells induction, the mesencephalic
NCC marker and the first, second, and third pharyngeal arch
marker genes were expressed. However, in the first culture pas-
sage of purification culture, only DIx1, the marker for first and
second pharyngeal arches, was highly expressed (Fig. S1 B), while
the expression of other marker genes was notably reduced (Fig. S1
A, C, D). These findings suggest that while the induction method
for CD271M8 cells utilized in this study generates head NCC-like
cells from various sites, a purified culture with LN211 may
enrich iNCCs with characteristics of the first and second pharyn-
geal arch.

The iNCCs acquired using LN211 also displayed self-renewal and
multipotency, which are characteristics of NCCs. The iNCCs could be
cultured on LN211 for 13 passages (approximately 57 days) or
longer while maintaining CD271"#" profiles (Fig. 2A), suggesting
that LN211 is suitable not only for purification but also for subse-
quent growth maintenance culture of iNCCs. It is recognized that
SOX10 and SOX9 play a role in regulating the differentiation of NCCs
[65,66]. Moreover, it is known that NCCs of the first and second
pharyngeal arches possess the ability to differentiate into various
cell types, including neurons, Schwann cells, melanocytes, smooth
muscle cells, osteoblasts, adipocytes and chondrocytes [7,67]. As
previous studies have demonstrated, the iNCCs with gene expres-
sion patterns similar to those observed in this study can differen-
tiate into these cell types [16]. The iNCCs in this study exhibited
high levels of gene expression for both SOX9 and SOX10 (Fig. 1E)
and demonstrated the ability to differentiate into each of the
aforementioned tissues (Fig. 2D). These findings regarding the self-
renewal and multipotency of iNCCs procured with LN211 suggest
their potential as a source for cell therapy, providing the necessary
quantities and cell types.
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Mesenchymal stem cells (MSCs) are among the most promising
cellular therapeutics, being employed in various therapies such as
graft-versus-host disease (GvHD), cardiovascular disease, neuro-
degenerative and orthopedic diseases [68]. To overcome donor
limitations, various groups have attempted to induce iMSCs from
iPSCs [16,69,70], and multiple groups have reported that iNCCs
could be differentiated into iMSCs, serving as intermediate cells for
cell therapy sources. The iMSCs derived from iNCCs obtained in this
study exhibited MSC surface marker expression (Fig. 3B) and dif-
ferentiation ability (Fig. 3C). Furthermore, the cells obtained
demonstrated limited cell proliferation (Fig. 3A), suggesting the
acquisition of iMSCs with features comparable to somatic MSCs.
MSCs are known to sense inflammatory sites in vivo and inhibit the
function of activated T cells by producing IDO, among other factors
[71,72]. Such immunosuppressive properties are therefore antici-
pated to have therapeutic effects on refractory diseases such as
GvHD. In the iMSCs obtained, similar to somatic BM-MSCs, the
protein expression of IDO was upregulated upon IFNy stimulation
(Fig. 3D), indicating the suppression of proliferation of activated
PBMCs via an IDO-mediated mechanism (Fig. 3E). These results
suggest that iNCCs procured with LN211 might be beneficial as
intermediate cells for producing iMSCs for cell therapy.

5. Conclusion

This study aimed to overcome the constrains of conventional
methods by establishing a straightforward, cost-effective, and
highly efficient procedure for producing iNCCs from iPSCs with a
brief culture period. This is the first instance where LN211 has been
employed as a purification scaffold material to isolate iNCCs from
heterogeneous cell populations, enabling the high-efficiency puri-
fication of iNCCs without the necessity for expensive equipment
such as FACS or long-term passage. The iNCCs obtained via this
method retained CD271M8" profiles even after more than ten pas-
sages and successfully differentiated into various cell types.
Furthermore, the induction of iMSCs from these iNCCs was
confirmed, displaying properties akin to BM-MSCs. These results
suggest that this newly established method could contribute to the
stable supply of iNCCs, thereby paving the way for future cell
therapies.
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