
Article
ERCC2 mutations alter the
 genomic distribution
pattern of somatic mutations and are independently
prognostic in bladder cancer
Graphical abstract
Highlights
d ERCC2mutations are an independent predictor of prognosis

in bladder cancer

d ERCC2 mutant bladder cancer has altered genomic

distribution of somatic mutations

d CTCF-cohesin binding sites are mutation hotspots in ERCC2

mutant bladder cancer

d Somatic mutation distribution distinguishes passenger and

driver ERCC2 mutations
Barbour et al., 2024, Cell Genomics 4, 100627
August 14, 2024 ª 2024 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.xgen.2024.100627
Authors

Jayne A. Barbour, Tong Ou,

Haocheng Yang, ..., Nikola A. Bowden,

Song Wu, Jason W.H. Wong

Correspondence
wusong@szu.edu.cn (S.W.),
jwhwong@hku.hk (J.W.H.W.)

In brief

ERCC2 driver mutations in bladder

cancer are associated with cisplatin

sensitivity, but their effect on genome

instability and prognosis has not been

clarified. In their recent reanalysis of 382

whole-genome-sequenced bladder

cancers, Barbour et al. find that ERCC2

mutations cause substantial alterations

to genome-wide patterns of somatic

mutations.
ll

mailto:wusong@szu.edu.cn
mailto:jwhwong@hku.hk
https://doi.org/10.1016/j.xgen.2024.100627
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2024.100627&domain=pdf


OPEN ACCESS

ll
Article

ERCC2 mutations alter the genomic
distribution pattern of somatic mutations
and are independently prognostic in bladder cancer
Jayne A. Barbour,1 Tong Ou,2 Haocheng Yang,1 Hu Fang,1,3 Noel C. Yue,1 Xiaoqiang Zhu,1 Michelle W. Wong-Brown,4,5

Yuen T. Wong,6 Nikola A. Bowden,4,5 Song Wu,2,7,* and Jason W.H. Wong1,8,9,10,*
1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
2Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
3Institute of Biomedical Data, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
4Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
5Hunter Medical Research Institute, Newcastle, NSW, Australia
6Adult Cancer Program, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
7Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
8Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
9Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
10Lead contact

*Correspondence: wusong@szu.edu.cn (S.W.), jwhwong@hku.hk (J.W.H.W.)
https://doi.org/10.1016/j.xgen.2024.100627
SUMMARY
Excision repair cross-complementation group 2 (ERCC2) encodes the DNA helicase xeroderma pigmento-
sum group D, which functions in transcription and nucleotide excision repair. Point mutations in ERCC2
are putative drivers in around 10%of bladder cancers (BLCAs) and a potential positive biomarker for cisplatin
therapy response. Nevertheless, the prognostic significance directly attributed to ERCC2 mutations and its
pathogenic role in genome instability remain poorly understood.We first demonstrated that mutant ERCC2 is
an independent predictor of prognosis in BLCA.We then examined its impact on the somaticmutational land-
scape using a cohort of ERCC2 wild-type (n = 343) and mutant (n = 39) BLCA whole genomes. The genome-
wide distribution of somatic mutations is significantly altered in ERCC2 mutants, including T[C>T]N enrich-
ment, altered replication time correlations, and CTCF-cohesin binding site mutation hotspots. We leverage
these alterations to develop a machine learning model for predicting pathogenic ERCC2 mutations, which
may be useful to inform treatment of patients with BLCA.
INTRODUCTION

Excision repair cross-complementation group 2 (ERCC2) en-

codes xeroderma pigmentosum group D (XPD), a 50-30 helicase
that is a component of the transcription factor II H (TFIIH) protein

complex. TFIIH plays essential roles in transcription initiation

through its interaction with RNA polymerase II subunit A and

nucleotide excision repair (NER) when recruited to damaged le-

sions. Compound heterozygous mutations in ERCC2 can cause

the recessive genetic disorders xeroderma pigmentosum, Cock-

ayne syndrome, and trichothiodystrophy, which typically present

with ultraviolet (UV) light sensitivity due to deficiencies in NER

function.1 These compound heterozygous mutations include

the complete loss of function in one allele and a less deleterious

point mutation in the other. The location of the ERCC2 point mu-

tations can vary but have been shown to affect XPD’s helicase

activity, stability, and interactions with other TFIIH proteins.2,3

Somatic missense mutations in XPD are also putative drivers in

cancers, with �10% of bladder cancer (BLCA) samples
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harboring these alterations.4,5 ERCC2 BLCA mutations do not

overlap those underlying genetic disorders but are commonly

found in the helicase domains of XPD. ERCC2 mutant BLCAs

are sensitive to cisplatin therapy, indicating a reduced capacity

for the repair of cisplatin adduct DNA lesions, implying a defi-

ciency in NER of these samples.4,6,7 Clinically, although

ERCC2 mutation status has also been demonstrated to be a

marker for good prognosis in BLCA,8 it has never been shown

to be an independent predictor due to insufficient cohort size.

While experimental evidence points to ERCC2mutations lead-

ing to NER deficiency, its functional impact on cancer develop-

ment remains unclear. ERCC2 mutant BLCA has previously

been associated with the enrichment of the mutational signature

SBS5,9 but how mutant XPD causes this mutational signature is

unknown. The other major mutational process occurring in

BLCA can be attributed to the nucleic acid editing enzyme apoli-

poprotein B mRNA editing catalytic polypeptide-like family

(APOBEC).10 APOBEC is a cytosine deaminase that deaminates

cytosine to uracil, causing C>T mutations targeted at viral RNA,
gust 14, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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but it can also affect host DNA.10 Whether ERCC2 mutations

interact with APOBEC-associated mutagenesis has not been

examined. Furthermore, somatic mutation density can be highly

varied across the genome, correlating strongly with various

epigenetic features, including chromatin accessibility,11 histone

modifications,12,13 transcription factor binding,14,15 and cytosine

methylation.16 How mutant XPD affects the distribution of so-

matic mutations across the genome remains to be explored.

In this study, we sought to determine how hotspotmutations in

ERCC2 are associated with changes in the distribution of muta-

tions across the genome, with the aim to improve our functional

understanding of how ERCC2 mutations affect global mutagen-

esis and identify genomic characteristics that will help differen-

tiate driver and passenger ERCC2 mutations. We first showed

that ERCC2 mutation status is indeed an independent predictor

of prognosis. To gain an insight into the ERCC2-mutant-driven

mutational process, we compared the mutation distribution of

ERCC2 wild-type (WT) and mutant BLCA across a range of ge-

netic and epigenetic features. ERCC2 somatic mutations alter

the mutational landscape of a range of mutational processes,

with evidence implicating XPD in the repair of genomic uracil.

We applied a machine learning approach to use the distribution

of somatic mutations to differentiate driver and passenger

ERCC2mutations in patients with BLCA, potentially enabling ge-

nomics-driven patient stratification for prognosis and platinum

therapy.

RESULTS

Mutant ERCC2 is an independent predictor of favorable
prognosis in BLCA
Previous studies have shown that ERCC2 mutation status pre-

dicts platinum sensitivity and is associated with good prognosis

in patients with BLCA. However, these studies were carried out

in relatively small cohorts (<100 patients). As ERCC2 mutation

status correlates with earlier tumor stage and tumor mutation

burden, both of which are also associated with good prognosis,

further analysis is required to establish the independent clinical

significance of ERCC2 mutation status.

We reanalyzed mutation data from a previously published se-

ries of 1,244 patients with bladder urothelial cancer sequenced

using the MSK-IMPACT assay, including mutational profiling of

the ERCC2 gene.17 In total, 156 patients were found to have an

ERCC2 mutation, while 1,088 patients were WT. Of the 156

mutant samples, 134 were missense at recurrent hotspots (see

STAR Methods), 11 were other missense mutations, and 11

were nonsense or splice site mutations. As the pathogenicity

of non-recurrent missense, nonsense, and splice site mutations

is uncertain, only ERCC2 missense at recurrent hotspots

(labeled as mutant) and WT samples were retained. Finally,

113 ERCC2 mutant and 886 ERCC2 WT samples with complete

age, mutation count, and specimen stage information were used

for analysis.

Consistent with previous findings, ERCC2 mutants had a

significantly better prognosis than WT (p = 0.0023, log-rank

test, Figure 1A). Proportionately, ERCC2 mutants had signifi-

cantly more early-stage (I-II) BLCA samples than WT (30.97%

vs. 24.38%, p < 0.0175, Fisher’s exact test, Figure 1B). The tu-
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mor mutation burden of ERCC2mutants was significantly higher

than WT samples (median 27 vs. 9, p < 0.0001, Mann-Whitney

test, Figure 1C), also consistent with previous findings.9

To resolve whether ERCC2mutation status is an independent

predictor of prognosis in BLCA, we performed multivariable Cox

regression, adjusting for sex, age, tumor stage, and tumor muta-

tion burden. Despite strong correlations with tumor mutation

burden and tumor stage, patients with mutant ERCC2 indepen-

dently have a significantly better prognosis thanWT (hazard ratio

[HR] = 0.62, p = 0.025, Figure 1D). To further demonstrate the in-

dependence of the ERCC2mutation and tumor mutation burden

on prognosis, we selected patients with top and bottom quartile

mutation counts and then stratified both these groups based on

ERCC2 mutation status, such that the difference in mutation

count between the ERCC2 mutant and WT is not significantly

different within the top and bottom quartiles (Figure S1A). For

ERCC2WT samples, there was no significant difference in prog-

nosis between high- and low-mutation-burden tumors (p =

0.8824, log-rank test, Figure S1B). ERCC2 mutants with high

mutation burden had significantly better prognoses than both

ERCC2 WT groups (p = 0.0191 vs. WT low and p = 0.12 vs.

WT high, log-rank test, Figure S1B). Only 3 ERCC2 mutants

had a low mutation burden, and the prognosis of these patients

was worse than that of the other groups (Figure S1B).

As ERCC2 is co-mutated with several genes at moderately

high frequency (Figure S1C), we further sought to explore

whether co-mutations may confound the independent influence

of ERCC2mutations on prognosis. Of the 6 genes with a co-mu-

tation frequency of >30% with ERCC2, TP53 and KDM6A

mutations are significantly associated with poorer (HR: 1.35

[1.10–1.66], p = 0.04, Cox’s regression) and better prognoses

(HR: 0.77 [0.61–0.96], p = 0.019, Cox’s regression), respectively

(Figure S1D). When combined with ERCC2 mutations, it is

evident that patients with ERCC2mutations always have a better

prognosis than ERCC2 WT, regardless of the effect of the co-

mutated gene (Figures S1E–S1J). Thus, although certain rarer

co-mutations may still influence the prognostic effect of

ERCC2mutations, our results strongly support it as an indepen-

dent factor in determining patient prognosis in BLCA.

Variable contribution of APOBEC-associated and other
mutations in a cohort of 392 WGS BLCA samples
ERCC2 mutations have been linked to a specific mutational

signature in BLCA,9 but the genome-wide distribution of muta-

tions associated with ERCC2 mutants is unknown. To investi-

gate this, we utilized the Genomics England (GE) cohort18 of

whole-genome-sequenced (WGS) BLCA and characterized

samples that harbored putative ERCC2 driver mutations. Out

of 392 samples, 39 were characterized as ERCC2 mutant and

343 as WT due to the complete absence of protein-altering

ERCC2 mutations. A further 10 samples were excluded from

initial analyses, as they harbored a non-recurrent, protein-

altering mutation in ERCC2 that we could not confidently assign

as either ERCC2 mutant or WT (see STAR Methods).

To ensure that the phenotype responsible for these 39 samples

is due to ERCC2, we compared the proportion of ERCC2 mutant

andWT samples with protein-alteringmutations in cancer drivers.

As with the MSK cohort, no other oncogene besides ERCC2 was



Figure 1. Association of ERCC2 mutation status with clinical features in MSK BLCA cohort

(A) Kaplan-Meier estimate for ERCC2 mutant and wild-type (WT) samples.

(B) Distribution of tumor stage in ERCC2 mutant and WT samples.

(C) Boxplot of tumor mutation burden (mutation count) in ERCC2 mutant and WT samples (****p < 0.0001, Mann-Whitney test).

(D) The hazard ratio (HR) and statistical significance using univariable and multivariable Cox regression models predicting survival based on sex, age, ERCC2

mutation status, tumor stage, and mutation count (Log2Muts).

See also Figure S1.
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exclusively found in theERCC2mutant samples (FigureS2A). Pre-

vious studies have found the presence of strong APOBEC muta-

tionalsignatures inmanyBLCAsamples10and increasedsignature

5 (SBS5), specifically in ERCC2 mutant BLCA samples, but the

analysis was restricted to exomes.9 Since APOBEC-relatedmuta-

tions are frequent in BLCA and have a distinctmutational process,

we first assessed the contribution of APOBEC and non-APOBEC-

related processes (other) in ERCC2mutant and WT BLCA, where

APOBEC-associated mutations are those in the T[C>R]N context

(Figure 2A). ComparedwithWT samples, ERCC2mutant samples

had higher and lower contributions to SBS2 and SBS13, respec-

tively (p <0.0001 andp = 0.0005, respectively, unpaired t test, Fig-

ure 2B), while, in linewith previous findings,ERCC2mutants had a

higher contribution of SBS5 compared with WT samples, but this

did not reach significance in this cohort (p = 0.063, unpaired t

test, Figure 2B). However, a significant difference in contribution

to SBS1 was observed (p < 0.0001, unpaired t test, Figure 2B).

As APOBEC is a highly distinctive mutational process, for

further analyses, we split APOBEC and other mutations (Fig-

ure 2C). For confirmation, APOBECmutations were more similar

to SBS2 and SBS13, while other mutations were more similar to

SBS5 (Figure 2D). We next investigated the distribution of
APOBEC and other mutations across the genome by calculating

the observed/expected mutation ratio in 1 Mb windows. For an

illustration, the variation in the mutation distribution of chromo-

some 1 is shown in Figure 2E. Based on the principal-component

analysis of the observed/expected mutation ratio of these win-

dows, the genome-wide distribution of other and APOBEC mu-

tations in WT and ERCC2 mutant samples could be readily

distinguished (Figure 2F).

ERCC2 mutant samples display altered genomic
distribution of somatic mutations
Mutations in most mismatch-repair-proficient cancers show

variation in mutation burden in relation to replication timing,

chromatin accessibility, and gene expression.11 To further

explore the relationship between mutation density and these ep-

igenomic features, mutation densities for APOBEC and other

mutations were calculated for gene bodies and replication time

in ERCC2 mutant and WT BLCA. Expressing mutation density

as the observed-expected mutation ratio (see STAR Methods),

we found that the distribution of APOBEC and other mutations

was significantly higher in all genic regions and lower in inter-

genic regions in ERCC2 mutant samples compared with WT
Cell Genomics 4, 100627, August 14, 2024 3



Figure 2. Contribution and distribution of APOBEC and other mutations in ERCC2 mutant and WT BLCA

(A) Total number of mutations attributed to T[C>D]N (APOBEC) or not T[C>D]N (other) in GEWGS BLCA cohort arranged by genotype and total mutation number.

(B) Signature contribution (as a fraction calculated with deconstructSigs) of all SNVs in WT and ERCC2mutant GE BLCA samples for COSMIC signatures 1, 2, 5,

and 13. Box and whiskers represent quartiles and 5th–95th percentile, respectively.

(C) Trinucleotide mutational spectra of APOBEC and other mutations for WT (orange) and ERCC2 mutant (pink) GE BLCA samples.

(D) Heatmap of cosine similarities tomutational signatures in GEBLCA SNVs that were separated into APOBEC and other from (C), where theta = 1 ismost similar.

Signatures 1, 2, 5, and 13 are from COSMIC, and the other signature, TCGA.130.DFCI.MSK.50.signature5, is from the supplementary material from Kim et al.9

(E) Observed-expected mutation density ratios for 1 Mb windows of hg38 chromosome 1 for APOBEC and other SNVs.

(F) Principal-component analysis (PCA) plots representing PC1 and PC2 of observed-expectedmutation density ratios were calculated across each 1Mbwindow

of hg38 genome wide for APOBEC SNVs and other SNVs. n.s., not significant, ***p = 0.005 and ****p < 0.0001, unpaired t test.

See also Figure S2.
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(Figure 3A). We found an increase in the burden of APOBEC-

related mutations in the 50 UTR relative to what is expected by

chance (observed-expected ratio >1) in both ERCC2 mutant

and WT groups (Figure 3A). The increased burden of APOBEC-

related mutations in the 50 UTR in both ERCC2 mutant and WT

groups (Figure 3A) is consistent with previous findings that

APOBEC causes mutation clusters around the start of active

genes, which could be from single-stranded DNA (ssDNA) expo-

sure as transcription commences.19 A linear regression between

other mutation densities and replication time showed that WT

samples had a slope of �0.01382 compared with �0.002548

for mutant (Figure 3B), with significantly decreased and

increased burdens of mutations in mutant samples compared

with WT in late- and early-replicating regions, respectively (q =
4 Cell Genomics 4, 100627, August 14, 2024
0.000086 and q < 0.000001, Student’s t test with multiple testing

correction, Figure S3A). APOBEC mutations had a striking trend

of being negatively associated with replication time in WT sam-

ples (slope = �0.007405) but positively associated with replica-

tion time in ERCC2 mutant samples (slope = 0.006413)

(Figures 3B and S3A). The observed relationship between repli-

cation time and other mutations from ERCC2 mutant BLCA is

consistent across all mutation types (Figure S3B). The differential

burden of other mutations between mutant and WT samples in

gene bodies and over the replication time landscape suggested

that transcriptionally active or open chromatin plays a role in the

distribution of ERCC2-related mutagenesis.

We next examined the effect that transcriptional activity has

on mutagenesis in the BLCA genomes. ERCC2 mutant samples



Figure 3. Genome-wide distribution of APOBEC and other mutations in ERCC2 mutant and WT BLCA
(A) Mutation densities as log2 observed-expected ratios (log2(obs/exp)) in exons, and 30 and 50 UTRs, introns, or not in any of these regions (intergenic) in WT

samples in orange and ERCC2 mutant samples (mutant) in pink, with other SNVs displayed on the left and APOBEC SNVs displayed on the right. Median is

indicated by a solid line.

(B) Mutation densities as log2(obs/exp) for 5 genomic bins organized by replication time. BrdU immunoprecipitation coverage was used for binning, where a

higher number indicates an earlier replication time. Plots and error bars represent mean and standard deviation of different samples, and the line represents a

linear regression model between mutation densities and the mean replication time for each of the bins. Points represent the mean with standard error.

(C) Observed-expectedmutation density ratio profile plots of other SNVs (left) and APOBECSNVs (right) across gene bodies of genes expressed in bladder tissue

(expressed genes) or genes not expressed in bladder tissue (silent genes). TSS, transcriptional start site; TES, transcriptional end site. The gene body was

organized into 150 bins, and the region 2.5 kb up- or downstream of the TSS or TES was organized into 50 bins.

(D) Mutation densities as log2(obs/exp) for 5 genomic bins organized by chromatin accessibility measured by DNase hypersensitive coverage, where a higher

number is more accessible. Plots and error bars represent mean and standard deviation of different samples, and the line represents a linear regression model

between mutation densities and the mean DHS coverage for each of the bins. Points represent the mean with standard error

(E) Mutation densities as log2(obs/exp) mutation density ratios for genomic regions previously annotated in normal bladder to be either a chromatin A

compartment (open) or chromatin B compartment (closed).42 ***q < 0.0001 and *****q < 0.000001, Student’s t test with multiple testing correction. Median is

indicated by a solid line.

See also Figure S3.
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have an increased genic mutation burden for other and APOBEC

mutations compared to WT, specifically at expressed genes

(Figure 3C). This was particularly pronounced immediately

before the transcriptional start site (Figures 3C and S3C).

To look more generally at active and inactive chromatin

genome wide, we next used DNase I hypersensitivity (DHS) to

compare the burdens of APOBEC and other mutations between

ERCC2mutant andWT samples. Regression was performed be-

tween DHS coverage and somatic mutation densities across 5
bins, and we found a marked difference in the relationship be-

tween ERCC2 mutant and WT cancer (Figure 3D). ERCC2

mutant and WT samples had slopes of �3.526 and �0.6667,

respectively, for other SNVs and �1.464 and 0.7976 for

APOBEC SNVs. For APOBEC SNVs, there were significantly

more mutations in ERCC2 mutants compared with WT in most

accessible DHS regions and significantly less in less accessible

regions (q < 0.000001, Student’s t test with multiple testing

correction, Figure 3D). We also found significantly increased
Cell Genomics 4, 100627, August 14, 2024 5



Figure 4. APOBEC mutagenesis in WT and ERCC2 mutant cancer

(A) The log ratio of APOBEC mutations that can be attributed to T[C>T]N or T

[C>R]N, where R is A or G. Box and whiskers represent quartiles and 10th–90th

percentile, respectively.

(B) Mutation densities for T[C>T]N (SBS2) and T[C>R]N (SBS13) mutations as

log2(obs/exp) for 5 genomic bins organized by replication time for ERCC2

mutant and WT BLCA. Points represent the mean with standard error.

(C) Mutation densities as log2(obs/exp) for 5 genomic bins organized by

replication time for the following cell lines that contain endogenous APOBEC

mutational signatures: BC-1, BT-474, HT-1376, JSC-1, and MDA-MB-453.

Of these cell lines, BC-1 and BT-474 have low UNG expression.

(D) Mutation densities as log2(obs/exp) for 5 genomic bins organized by

replication time for WT and UNG CRISPR knockout in BT-474 and MDA-MB-

453 cells. Mutation data for cell lines are from Petljak et al.21 ****p < 0.00001 by

unpaired t tests.

See also Figure S3.
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and decreased burdens of other mutations in ERCC2 mutant

samples in open compartments and closed compartments,

respectively, compared with WT (q < 0.000001 and q =

0.000024, Student’s t test with multiple testing correction, Fig-

ure 3E). The exclusion of CTCF-cohesin binding sites (CBSs)

and genes did not affect the observed associations

(Figures S3D and S3E).

Earlier, we had shown that SBS1 was a significant contributor

to many samples (Figures 2B and 2C). We further separated

other mutations into [C>T]pG mutations and other remaining

(i.e., non-[C>T]pG) mutations. However, we did not find this to in-

crease the distinction between WT and ERCC2 mutant samples

in relation to replication timing and DNase hypersensitivity

(Figures S3F and S3G). Together, our results provide evidence

that ERCC2 protects accessible chromatin from mutagenesis.

ERCC2 mutant cancers are enriched in APOBEC-
induced cytosine-deamination-associated C>T
mutations
APOBECmutational signatures can be further divided into SBS2

and SBS13, where SBS2 is dominated by T[C>T]N and SBS13 is

dominated by T[C>R]N (where R is A or G). Earlier, we showed

that ERCC2 mutant BLCAs have higher signature contributions

to SBS2 compared with WT BLCAs, and the converse for

SBS13 (Figure 2B). The differences in the distribution of

APOBEC mutations across the replication time landscape were
6 Cell Genomics 4, 100627, August 14, 2024
also particularly striking, with WT having a slope of �0.007405,

while ERCC2 mutants had a slope of 0.006413 (Figure 3B). We

next explored APOBEC-related mutagenesis in more detail by

separating mutations associated with SBS2 and SBS13 for

further analysis.

The proportion of APOBEC mutations being T[C>T]N (i.e.,

SBS2) relative to T[C>R]N (i.e., SBS13) was significantly higher

in ERCC2 mutants compared with WT (p < 0.001, Student’s t

test, Figure 4A). APOBEC-associated T[C>T]N is known to be

caused bymutations resulting from unrepaired U>Gmismatches

resulting from APOBEC-induced cytosine deamination to

uracil.10 APOBEC overexpressing yeast that are WT for uracil-

DNA glycosylase (UNG) exclusively acquire C>D somatic muta-

tions, whereas APOBEC overexpressing yeast that are alsoUNG

mutants exclusively acquire C>T somatic mutations.20 A recent

study also found that human cancer cell lines with strong endog-

enous APOBEC signatures were enriched in SBS2 when they

were UNG deficient.21

We next examined the relationship between APOBEC-associ-

ated mutations and replication time. We found that T[C>T]N mu-

tations had a positive relationship with replication time in ERCC2

mutant samples (slope = 0.008926) but a negative relationship

with replication time in WT samples (slope = �0.007569) (Fig-

ure 4B). T[C>R]N mutations, on the other hand, display a less

prominent difference in their relationship with replication time

between WT and ERCC2 mutants, with slopes of �0.007186

and �0.001147, respectively (Figure 4B).

We reanalyzed mutation patterns in previously published can-

cer cell line sequencing data with APOBEC signatures21 for com-

parison to WT and ERCC2 mutant BLCA to dissect APOBEC

mutagenesis processes. BC-1 and BT-474 cells, which have

low UNG expression, both displayed a positive relationship be-

tween T[C>T]N mutations and replication time, while the other

UNG-proficient cell lines showed a strong negative trend (Fig-

ure 4C), corresponding to the ERCC2 mutant and WT profiles,

respectively. The study also profiled somatic mutations accumu-

lated by cells with knockout (KO) of genes related to the APOBEC

pathway, includingUNG. BothBT-474 andMDA-MB-453KOcell

lines displayed a redistribution of T[C>T]N mutations toward a

positive association with replication time (Figure 4D). Thus,

APOBEC-associated mutations in ERCC2 mutant BLCA share

characteristics of mutations associated with cytosine-deamina-

tion-induced genomic uracil in UNG-deficient cells, suggesting

that ERCC2 may have a role in genomic uracil repair.

ERCC2 mutant cancers display strong mutation
hotspots in CBSs
DHSs are associated with cis-regulatory elements, including

promoters, enhancers, and CBSs. As mutations in ERCC2 mu-

tants showed increased mutation density at DHS regions (Fig-

ure 3D), we examined the different classes of cis-regulatory re-

gions. We found striking mutation hotspots in ERCC2 mutants

at CBSs, with only aminor increase inmutation rate at promoters

or enhancers (Figure 5A). We similarly observed CBS hotspots in

a total of 7 ERCC2 mutant BLCA samples from three other

studies22–24 (Figure S4A), as well as 3 ERCC2mutant liver cancer

samples from the Pan-Cancer Analysis of Whole Genomes

(PCAWG) Consortium22 (Figure S4B).
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While somatic mutation hotspots in CBSs have previously

been reported in UV-associated skin cancers25 and SBS17-

associated gastrointestinal cancers,26–28 it is a striking and novel

observation that ERCC2mutant BLCAs also have CBS mutation

hotspots. We also observed increased mutation densities in

flanking regions in ERCC2 mutant samples compared with WT,

which may generally reflect greater chromatin accessibility of

the CBS flank but is substantially lower compared with the

CBS itself (Figure 5B). APOBEC SNVs also displayed elevated

mutation densities at CBSs for ERCC2 mutant, but not WT,

BLCA (Figure S4C). However, these elevated mutation density

profiles across the CTCF motif were not as striking in terms of

observed/expected ratios as other SNVs (Figure 5A). To deter-

mine if CTCF binding directly affects mutagenesis at CBSs, we

separated CBSs into quartiles by CTCF chromatin immunopre-

cipitation sequencing (ChIP-seq) signal. We found that themuta-

tion density increasedwith an increasing CTCF signal (Figure 5C,

p < 0.001, paired t test comparing mutation density across quar-

tiles in each patient), and conversely, mutated sites also had a

higher CTCF signal comparedwith non-mutated sites (Figure 5D,

p < 0.0001, Mann-Whitney test), suggesting that CTCF binding is

indeed important. Previous reports of CBS hotspots found spe-

cific mutational patterns and signatures across the CBS

motif.25,26 We observed that the CBS mutations in ERCC2 mu-

tants also have a similar distribution across the CTCF motif

compared with CBS hotspots found in esophageal adenocarci-

noma (ESAD) (Figures 5E and 5F), with a correlation coefficient

of 0.925, but is different from melanoma (Figure 5G), which

had a correlation coefficient of �0.034. This potentially impli-

cates a shared mechanism of CBS mutagenesis with ESAD. In

terms of the type of the CBS-specific trinucleotide mutational

spectrum, there is strong enrichment for T>N mutations, with

the strongest enrichment being T>G, which is absent from the

CBS flank (Figure 5H). This is similar to gastroesophageal can-

cers with SBS17, where predominantly T>G and T>C mutations

accumulate at CBSs.26,27 For CBS enrichment, we further sepa-

rated other mutations to [C>T]pG and remaining non-[C>T]pG

mutations. Those that are non-[C>T]pG had a log2 mean of the

difference between WT and ERCC2 mutant groups of 3.27, but

this was just 0.87 for C[C>T]pG mutations (Figure S4D),

providing more evidence that T>G and T>C are the key muta-

tional processes associated with CBS hotspots.

We next explored whether XPD may engage at CBSs. Using

previously published XPD ChIP-seq data,29 we found a strong

enrichment of XPD at CBSs, with XPB also enriched (Figure 5I),

implying that these proteins are co-bound to CBSs as part of

the TFIIH complex. DNA binding was observed at both genic

and intergenic CBSs (Figure 5I), suggesting that binding is inde-

pendent of transcriptional activity. To investigate this further, we

used TFIIH excision repair-sequencing (XR-seq) data from Hu

et al.,30 which measures TFIIH repair of cisplatin damage.

ERCC2 mutant BLCA samples lost the negative relationship be-

tween TFIIH repair andmutation burden, especially for other mu-

tations (Figures S4E and S4F). This supports the hypothesis that

defective repair is responsible for the mutation redistribution in

ERCC2 BLCA. Together, these results illustrate that the pres-

ence of XPD in the TFIIH complex may play a role in the mainte-

nance of CBSs.
Genomic uracil accumulates at CBSs
Earlier, we found that ERCC2 mutants may be associated with

the dysfunctional repair of genomic uracil that results from

APOBEC-associated cytosine deamination in BLCA. To deter-

mine if genomic uracil might also be associated with CBS muta-

genesis, we took advantage of previously published genome-

wide maps of genomic uracil in UNG KO cells (UdgX cross-link-

ing and polymerase stalling sequencing [Ucaps-seq]).31 Since

Ucaps-seq is at base-pair resolution, uracil from incorporation

and deamination can be identified based on whether the refer-

ence base is A/T or C/G, respectively. We found a strong enrich-

ment of the incorporation of genomic uracil at CBSs (Figure 6A).

As with themutations, the distribution of uracil across themotif is

asymmetric, mirroring ERCC2 mutant CBS mutation hotspots

(Figure 6B) with a correlation coefficient of 0.835. Treatment

with pemetrexed, which increases uracil misincorporation, re-

sults in an even greater enrichment of uracil at CBSs (Figure 6A).

Analysis of the trinucleotide context of uracil misincorporation

shows that the frequency of uracil incorporation sites was

most enriched in TTT, followed by CTT (Figure 6C). This resem-

bles trinucleotides most strongly mutated in the CBS motif in

ERCC2mutant cancers and is also the most prevalent trinucleo-

tide context in SBS17, where CBS hotspots are also

observed.16,17,20 In contrast, uracil from cytosine deamination

did not share the same trinucleotides as APOBEC mutations

(Figure S5), but this may be because the Ucaps-seq data were

acquired in HeLa cells, which do not constitutively express

active APOBEC.

To further confirm the relationship between CTCF binding and

the presence of genomic uracil, we stratified CBSs into quartiles

based on ChIP-seq/control signal and calculated the normalized

uracil count in each quartile. We observed an increasing trend of

higher uracil content for CBSs with higher CTCF binding (Fig-

ure 6D). Consistently, CBSs with enrichment of uracil (i.e., dU-

input count >0) had significantly stronger CTCF binding

compared with those without (Figure 6E, p < 0.0001, Mann-

Whitney test). Together, these findings suggest that the CBS

mutational hotspots in ERCC2 mutants may result from misin-

corporation of uracil and subsequent error-prone DNA repair.

Genome-wide distribution of somatic mutations
predicts pathogenic ERCC2 mutations in BLCA
Patients with cancer with tumors harboring ERCC2 mutations

have favorable responses to cisplatin.4,6 ERCC2 is included on

most somatic targeted sequencing panels. However, the patho-

genicity of ERCC2 mutations is not always apparent, as they

often occur outside of known hotspots.6 We, therefore, wanted

to test if it is possible to predict a sample’s ERCC2mutation sta-

tus based on its genome-wide distribution of somatic mutations

with the idea that WGS data could be used to verify the pathoge-

nicity of uncertain ERCC2 mutations. To this end, we generated

support vector machine (SVM) models to classify whether a

sample is ERCC2mutant based on the local and global distribu-

tions of somatic mutations.

First, using leave-one-out cross-validation on the GE BLCA

cohort with well-defined ERCC2 mutation status (WT = 343,

mutant = 39), the SVM models achieved 98.69% accuracy

(sensitivity: 97.22%, specificity: 98.84%, Figure 7A). One of the
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Figure 5. Mutation densities at DNase hypersensitive regions in ERCC2 mutant and WT BLCA

(A) Profile plots of mutation densities as obs/exp for Other mutations in regions annotated in normal bladder as the promoter, enhancer, or CTCF-cohesin binding

site (CBS) ± 0.5 kb of the TSS, center, and motif, respectively.

(B) Mutation densities as log2 (obs+1/exp+1) of CBS motif and ± 1 kb flanking regions for WT and ERCC2mutant GE BLCA samples. ****q < 0.0001, Student’s t

test with multiple testing correction. Box and whiskers represent quartiles and minimum-maximum, respectively.

(C) Mutation densities as log2 (obs+1/exp+1) at CBSs were organized into quartiles based on ENCODE kidney CTCF ChIP-seq coverage where Q1(low) and

Q4(high) represent CBSs with the lowest and highest CTCF coverage, respectively. ****q < 0.0001, Student’s t test with multiple testing correction. Box and

whiskers represent quartiles and minimum-maximum, respectively.

(D) ENCODE kidney CTCF ChIP-seq coverage at CBSswith the presence (mutated) or absence of (not mutated) of other mutations from ERCC2mutant GE BLCA

samples. ****p < 0.0001, Mann-Whitney test. Box and whiskers represent quartiles and 10th–90th percentile, respectively.

(E–G) Observed/expected mutational profile of GE BLCA ERCC2mutant (E), esophageal adenocarcinoma (F), and melanoma (G) samples across the CBSmotif.

(H) Trinucleotide mutation frequencies of BLCA ERCC2 mutations in CBS and flanking regions. This was normalized using manual normalization in decon-

structSigs to account for the trinucleotide composition of the regions.

(I) Profile and heatmaps of coverage of XPD and XPB ChIP-seq across intergenic (left) and genic (right) CBS. Data were accessed from GEO: GSE44849.

See also Figure S4.

Article
ll

OPEN ACCESS
WT samples that was misclassified was predicted to have the

highest probability of being a mutant. We manually examined

the unfiltered VCF file for mutations in ERCC2 in this sample

and found that the sample, in fact, contains a N238T mutation

at a relatively low variant allele frequency (4/84 reads), which
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was filtered by the variant caller. N238 is a known mutation hot-

spot in BLCA; thus, our classifier is also able to identify functional

ERCC2 mutations that are missed by variant callers. For com-

parison, we also trained an SVM model using only trinucleotide

context mutations. The trinucleotide model was less accurate,



Figure 6. Genomic uracil distribution at CBSs

(A) Profiles of Ucaps-seq data (SRA: SRP319102) as input (inp) subtracted from experiment (exp) across CBSs with a 0.5-kb flank up- (+) and downstream (�).

(B) Ucaps-seq exp-inp across each base of the CTCF motif of CBSs.

(C) Frequency of single base sites of uracil incorporation in the trinucleotide context as Ucaps-seq exp-inp. T>U indicates that a uracil was detected where the

reference base is a thymine.

(D) Uracil (dU) incorporation at CBSs organized into quartiles based on ENCODE kidney CTCF ChIP-seq coverage where Q1(low) and Q4(high) represent CBSs

with the lowest and highest CTCF coverage, respectively. dU incorporation is normalized by the count of the number of dT and dA in each region based on the

reference genome

(E) ENCODE kidney CTCF ChIP-seq coverage at CBSs with the presence of (with uracil) or absence of (without uracil) dU. Here, uracil presence was defined as a

CBSwith Ucaps-seq exp-inpR 1 and absence as Ucaps-seq exp-inp% 0. ****p < 0.0001, Mann-Whitney test. Box and whiskers represent quartiles and 5th–95th

percentile, respectively.

See also Figure S5.
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at 95.83% (sensitivity: 84.85%, specificity: 96.87%, Figure S6),

but may nevertheless be valuable when whole-genome

sequencing data are unavailable.

We further evaluated the SVMmodel trained on the GE cohort

using an independent TCGA WGS BLCA cohort (WT = 19,

mutant = 4), achieving 100% accuracy in classifying WT and

mutant samples (Figure 7B). A sensitivity analysis was performed

on the SVM model to determine the relative importance of the

mutational features in predicting ERCC2 mutation status. This

found that the observed/expected ratio of Other mutations at

CBS was by far most important, followed by the observed/ex-

pected ratio of APOBECmutations at CBSs (Figure 7C), support-

ing our observation that CBS hotspots are highly distinctive in

ERCC2 mutant cancers.

Finally, we apply our SVM model to the GE BLCA cohort,

which we had excluded from our earlier analysis, as their

ERCC2 mutation status is uncertain due to the mutations not

being located at known hotspots (n = 10). The SVM predicted

all but two samples to be ERCC2mutant. The two samples pre-

dicted to be WT included one with an F157L mutation and one

with an F651V mutation (Figure 7D). F157L is outside the heli-
case domains, while F651V is not within a conserved helicase

motif, which may explain the lack of functional effect in these

samples.

DISCUSSION

In this study, we show that ERCC2 mutation status is an inde-

pendent prognostic factor in BLCA. We further show that these

cancers display a distinctive genomic distribution of somatic

mutations, including mutation hotspots at CBSs. We leverage

this knowledge to build an SVM model that differentiates driver

and passenger ERCC2 mutations. This is particularly useful for

mutations in ERCC2, as pathogenic mutations appear as point

mutations that are widely distributed across the protein. Patho-

genicity is currently inferred based on hotspot sites found across

patients with BLCA. However, this means that pathogenic muta-

tions appearing at rarer sites can be missed. Our SVMmodel not

only classified the ERCC2 mutation status of samples with 99%

accuracy but also identified one sample where the ERCC2muta-

tion was filtered due to low variant allele frequency. Using our

SVM model, we further identified 8 samples with non-recurrent
Cell Genomics 4, 100627, August 14, 2024 9



Figure 7. SVM model predicts ERCC2 mutation status based on genome-wide distribution of somatic mutations

(A) Classification of samples as WT (orange) or ERCC2 mutant (pink) from SVM and associated confusion matrix showing the accuracy of predictions by leave-

one-out cross-validation of the GE cohort.

(B) Classification of samples as WT (orange) or ERCC2mutant (pink) from SVM and associated confusion matrix showing the accuracy of predictions of PCAWG

BLCA samples.

(C) Sensitivity analysis showing the importance of features as predictors in SVM model.

(D) Prediction from SVMwhen applied to 10 GE samples with non-recurrent but protein-altering mutations in ERCC2. Probability is the prediction from themodel,

and the domain impacted refers to the protein domain of XPD where the mutation is located.

See also Figure S6.
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(from over 120,000 cancer samples, including over 3,000 BLCA

samples) functional ERCC2mutations. Besides prognostic strat-

ification, this WGS approach to detect pathogenic ERCC2muta-

tions can have clinical significance, as patients with BLCA with

these mutations are more sensitive to cisplatin treatment.5,7

Our approach can be analogous to the use of somatic mutations

to infer the homologous recombination deficiency score to pre-

dict response to PARP inhibitors32 and other DNA-damaging

agents,33 an approach that is now commonly used in clinical

settings.33

While the biological mechanisms underlying ERCC2-muta-

tion-driven mutagenesis require further investigation, our results

support the role of ERCC2 mutants in compromised DNA repair

at open chromatin. NER is more active at open chromatin,34 and

NER proteins ERCC135 and ERCC636 are located at and actively

participate in DNA repair at CBSs, making it feasible that XPD

(ERCC2) does as well. It is plausible that in ERCC2 mutant

BLCA, NER activity is lost, increasing the relative mutation

burden in those regions. We also found that mutations from

ERCC2mutant BLCA had an inverse relationship betweenmuta-

tion burden and TFIIH-mediated repair (Figures S4E and S4F),

which supports a loss of NER activity in ERCC2mutant samples.

Analysis of mutations from cell lines with endogenous

APOBEC signatures and KO of APOBEC-related genes re-

vealed that the mutations of ERCC2 mutant BLCA mirror those

of UNG-deficient cell lines (Figures 4C and 4D) implying that the

damage that ERCC2 is repairing is uracil. UNG encodes a uracil

excision enzyme (UDG2), implicating a role for ERCC2 in the
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repair of genomic uracil. Interestingly, SBS17, which is also

associated with mutation hotspots at CBSs, may also be

caused by genomic uracil. SBS17 can be recapitulated in cell

culture experiments by treatment with 5-FU, and SBS17 muta-

tions develop in breast and colorectal cancer tumors when pa-

tients are treated with 5-FU.37 dUTP can be incorporated into

DNA by mammalian polymerases at similar efficiencies to

dTTP, but the cell gets around this by keeping dUTP levels

low. However, 5-FU is a thymidylate synthase inhibitor, which

increases the dUTP/dTTP ratio in the cell, leading to genomic

uracil misincorporation. Incorporation of dUTP can cause T>G

mutations,38–40 which are the hallmark of SBS17. UDG2 does

not distinguish between dU generated by cytosine deamination

attributed to APOBEC activity or erroneous misincorporation of

dUTP from the free nucleotide pool, such as those from 5-FU

treatment.41 Therefore, these seemingly unrelated mutational

processes of APOBEC cytidine deamination in BLCA and uracil

misincorporation in SBS17 may be related by uracil excision,

whether by deamination or misincorporation. As further evi-

dence for the relationship between genomic uracil and SBS17,

we also found that somatic mutation hotspots frequently found

in cancers with SBS17 are also sites with increased accumula-

tion of genomic uracil. We therefore hypothesize that ERCC2

and UDG2 collaborate in the repair of genomic uracil. Given

that uracil misincorporation is not necessarily mutagenic,

mutant ERCC2may cause increased erroneous repair of abasic

sites following the excision of uracil by UDG2. Another intriguing

possibility is that ERCC2 unwinds DNA around genomic uracil,
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as UDG2 has an order of magnitude higher activity against uracil

in ssDNA than double-stranded DNA.41 Further experiments will

be required to fully elucidate the role of ERCC2 in the repair of

genomic uracil.
Limitations of study
A limitation of our study is that the findings reported were made

through an analysis of existing cancer genomics data. Future

experimental studies can be performed to confirm the underlying

mechanism linking mutant ERCC2 to altered mutational distribu-

tion. Although our research has already been conducted on the

largest BLCA whole-genome dataset to date (n = 382), the num-

ber of whole cancer genomes with these mutations is still rela-

tively small due to the modest frequency of ERCC2 mutations

(�10%). In the future, larger cohortsmay help identify weaker as-

sociations between genomics features and their mutation

burden. Another limitation of our study is that the retrospective

analysis of existing data means we do not have broader access

to the patient’s clinical parameters. A prospective study or a clin-

ical trial will help validate the clinical utility of ERCC2 mutation

status in predicting BLCA patient prognosis and fully evaluate

its impact on chemotherapy.
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Materials availability
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Data and code availability
This paper analyses existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

The original code has been deposited at https://github.com/jasonwong-lab/ERCC2 (https://doi.org/10.5281/zenodo.12676717)

and is publicly available as of the date of publication. Additional code is available in the Genomics England Research Environment
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For the analysis of the independent prognostic significance of ERCC2mutations, somatic mutation calls and patient clinical charac-

teristics were obtained for 1,244 from theMemorial Sloan Kettering (MSK) BLCA cohort.17 Somaticmutation calls were obtained from

the cBioportal repository. ERCC2mutations were classified as recurrentmissense hotspot, othermissense or nonsense. For the defi-

nition of recurrent missense hotspot mutations, the AACR-GENIE database (n = 137,401) was used to find recurrent ERCC2 muta-

tions, with recurrence defined as a protein-altering mutation in ERCC2 found in at least one BLCA sample plus one other sample of

any cancer type. For patients with multiple samples, primary samples with earlier specimen stage were used. Patients without com-

plete age, mutation count, and specimen stage information were excluded from the analysis. In total, 113 samples were classified as

ERCC2 mutant and 886 as ERCC2 WT.

For the analysis of genome-wide mutation distribution, somatic mutation calls from 392 Genomics England (GE)18 whole-genome

sequenced (WGS) BLCA samples were accessed directly from the GE research environment. Of the 392 GE BLCA samples, 39 con-

tained recurrent ERCC2 mutations, were classified as ERCC2 mutant and 343 samples that had no protein-altering mutations in

ERCC2were classified asWT. A further ten samples had protein-alteringmutations inERCC2 that were not recurrent. These ten sam-

ples were excluded from analysis as we could not confidently assign them as either WT or ERCC2 mutant (Table S1).

For bothMSK and GE cohorts, to analyze the proportion of oncogene protein-altering mutations inWT and ERCC2mutant groups,

we counted the number of samples in each group with either missense, nonsense or frameshift mutations in genes from the IntOGen

database.43

For SBS17 and SBS7 cancers, we used somatic mutations from GE esophageal adenocarcinoma (ESAD) and GE melanoma

(MELA), respectively. This resulted in 3,692,032mutations from 106 samples for ESAD and 363,284,245mutations from 337 samples

for MELA.

For analysis of APOBEC mutations in cell lines, data was accessed from.21 This dataset included somatic mutation data from sin-

gle-cell clones and included the following cell lines with endogenous APOBEC mutational signatures – BC-1, BT-474, HT-1376,

JSC-1 and MDA-MB-453. BT-474 and MDA-MB-453 cells also had mutations from clones that were either WT and UNG (encoding

UDG2) knockout by CRISPR. We pooled daughter mutations together by cell line.

We additionally utilised somatic mutations from Pan-cancer analysis of whole genomes (PCAWG) BLCA and liver cancer,22 a study

of WGS urothelial bladder carcinomas23 and a study of WGS neuroendocrine bladder cancer.24 The PCAWG BLCA study had 4

ERCC2 mutant and 19 WT samples. The urothelial bladder carcinoma study had 2 ERCC2 mutant and 63 WT. The neuroendocrine

BLCA had 1 ERCC2mutant and 5WT samples. These 3 studies of BLCAwere combined, giving 7 ERCC2mutant and 87WT. For liver

cancer samples from PCAWG, there were 3 ERCC2 mutant samples and 302 WT.

METHOD DETAILS

Somatic mutations and simulation
For GE cohorts, SNV calls for hg38 were obtained directly from the GE research environment (RE) and hg38 annotations were used

for these analyses. For BLCA, SNVs that were C >D (D represents A, G or T) at TCN context were defined as APOBEC, whilst all SNVs

not in this context were defined as ‘Other’ (Other). Other mutations were assigned as Other [C>T]pG and Other non-[C>T]pG.

APOBEC mutations were separated into SBS2 or SBS13 like if they were T[C>T]N or T[C>R]N, respectively. Simulations were

used to establish the chance of genomic positions being mutated based on sequence context and mutation burden using SigPro-

filerSimulator.44 For BLCA and ESAD, 100 simulations were performed and were merged and divided by 100 giving what we refer

to as ‘expected’. For MELA mutations, 10 simulations were used for the expected calculations due to memory constraints. For mu-

tations from APOBEC expressing cell lines and other studies, including PCAWG, hg19 mutation calls were used and hg19 annota-

tions were used to generate those figures.

Calculation of local mutation densities and generation of mutation profiles across genomic sites
To calculate mutation densities at specific genomic regions, we counted the number of actual mutations (observed) and simulated

mutations overlapping these regions using the tool ‘intersectBed’.45 Mutations of 100 or 10 simulations weremerged for analysis and

then divided by 100 or 10 to give an ‘‘expected’’ value, and then local mutation density was expressed as the ratio of observed to

expected mutations for profile plots and as log2(obs/exp) for mutation densities in all regions expect CBS and flank. For mutation

densities for CBS and flank, due to the low number of expected mutations falling in these regions, we calculated as log2

(obs+1/exp+1).

Genome-wide distribution of mutations was performed by calculating mutation densities as described above for one megabase

(mb) window of the human genome. Mutation densities for chromosome 1 were plotted positionally, and then principal component

analysis (PCA) was performed genome wide in R using prcomp() function with scaling and centering. To perform statistics on local

mutation densities of bins based on genomic coverage, we calculated the mean coverage of each bin and performed linear regres-

sion between mutation densities and coverage for each sample, displaying the mean and standard deviation and regression line on

the graph. To generate mutation density profiles across regions, windows were generated within, upstream or downstream, with

each region separated according to the number of bins and number of bases flank specified. Where regions contain sites of varied
Cell Genomics 4, 100627, August 14, 2024 e2
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lengths e.g., gene bodies, the number of windows for each site was fixed, therefore changing the number of bases per window in the

region. Mutation densities were then calculated in each of the windows as described above.

Mutation trinucleotide frequency calculations
Mutation trinucleotide frequencies were calculated using DeconstructSigs.46 For frequencies across the whole genome, ‘‘genome’’

normalisation was used. For frequencies on specific regions, such as CBSmotifs, the trinucleotide composition was calculated using

grep scripts, and then these were input into DeconstructSigs with ‘‘manual’’ normalisation.

Genomic annotations and data binning
Gene expression data was taken from the GTEx portal and the top half of expressed genes were defined as ‘‘expressed’’ in bladder.

Genes with 0 counts in bladder were defined as ‘‘silent’’. Annotations of genic regions including, 50 untranslated region (UTR), 30 UTR,
exons and introns were accessed from UCSC table browser for hg19. Intergenic regions for hg19 were defined as parts of the

genome without overlap of any of these regions. Hg19 coverage and narrow peaks data for human bladder tissue DNase-seq exper-

iments were accessed from ENCODE47 (ENCSR813CKU) as bigWig and bed file, respectively. TFIIH XR-seq data was accessed as a

bigwig from GEO under accession GSE82213.30 1 kb windows of hg19 were generated and then filtered for blacklisted and low-

coverage regions of the genome. To divide the genome into bins based on coverage of different genomic assays, including

DNase-seq, replication time, TFIIH XR-seq ChIP-seq, the mean bedgraph signal from genomic assays was calculated for each of

the 1kb filtered genomic windows using bedtools map.45 For mutation density calculations, these filtered 1 kb windows were then

divided into quintiles based on coverage from lowest signal (bin 1) to highest signal (bin 5).

Bladder DHS peaks were overlapped with other DHS marks to generate annotations for bladder DNase hypersensitive regions

(DHS) as follows. Promoters were defined by overlap with bladder H3K4Me3 ChIP-seq peaks from ENCODE (ENCSR632OWD),

and then gene start sites to get promoters. Bladder DHS peaks were overlapped with high quality, experimentally determined

CBS accessed from supplementary materials of ref. 26 to generate CBS annotations. Later analysis of CBS uses these high quality

CBS annotations26 without overlapping with bladder DHS. Finally, enhancers were defined as the center of bladder H3K27Ac ChIP-

seq peaks from ENCODE (ENCSR054BKO) that overlapped bladder DHS peaks. Chromatin A/B compartments for the bladder were

taken from supplementary files of.42 For later analysis on CBS, all 31252 CBSwere used.26 The above annotations were converted to

hg38 using ‘‘liftOver’’. CBSwere further annotated for certain analyses. CBSwere defined as either genic or intergenic based on over-

lap with canonical genes from the UCSC table browser. CBS were also identified as either ‘‘mutated’’ or ‘‘not-mutated’’ based on if

the site had the presence or absence of an Othermutation from ERCC2mutant GEBLCA samples, respectively. For analysis of CTCF

occupancy, CBS were divided into quartiles using CTCF ChIP data acquired from kidney tissue from ENCODE (ENCSR000DMC).

Briefly, a CTCF over input fold change bigwig file was accessed, and the CTCF ChIP-seq coverage was mapped to CBS using bed-

tools map. CBSwere then arranged into quartiles based on ascending fold change where Q1 represents low CTCF coverage and Q4

represents high. CBS were annotated as uracil containing or not uracil containing based on Ucaps Seq data (see below).

CTCF ChIP coverage at CBS
Fold change over control bigwig file for kidney CTCF ChIP was directly accessed from ENCODE (ENCSR000DMC). This was con-

verted to bedgraph using ucsc tools and then the average coverage was mapped to CBS that were either mutated or not mutated

or CBS with or without uracil.

Generating coverage profiles across genomic regions for ChIP-seq data
BigWig files (hg19) for XPD and XPB ChIP-seq and input were accessed from gene expression omnibus (GEO) under accession

GSE44849, which was previously published.29 Deeptools ‘‘bigwigCompare’’48 was used to generate log2 ratio bigwig files of the

ChIP compared with input, with a pseudocount of 1. The centerpoint of hg19 genic and intergenic CBS was retrieved and deeptools

‘‘computeMatrix’’ was used to calculate the signal around 1000 bases organised into 200 bins both upstream and downstream of the

centerpoint. log2 ratio ChIP/input signals were averaged and individual data points were displayed as heatmaps using pheatmap

in R.

Uracil sequencing data
Uracil sequencing data (Ucaps-seq) previously published31 was accessed from European Nucleotide Archive under accession

PRJNA728500. Data was processed as the authors described. Briefly, fastq files were trimmedwith bbduk and aligned to hg19 using

bwa,49 then duplicates were removed using picard (http://broadinstitute.github.io/picard). Single base locations of uracil were

located using scripts ‘‘fetch_dU_by_chrom.py’’ from https://github.com/Jyyin333/Ucaps-seq. If the reference base matched a

T/A or a C/G it was considered to be from incorporation or deamination, respectively. Uracil sequencing data profiles were drawn

around hg19 CBS using coverageBed.45 Bedtools slop and fastaFromBed were used to retrieve the trinucleotide sequence context

of uracil. The number of uracil in the input file was subtracted from the experiment file for specific regions.
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Support machine vector model
Results of somatic mutation densities from GE for the following genomic regions: CBS motif, 1000 bp flanking CBS motif, coding

exons, introns, 30UTR, 50UTR, intergenic, open and closed chromatin and 5 regions of the genome binned by replication time, DNase

hypersensitivity, XPD ChIP-seq coverage and TFIIH XR-seq coverage was used as the input to train a support vector machine (SVM)

for classifyingwhether a sample was a driver or passengermutation. The svm function from the e1071 R packagewas used. The SVM

model was first evaluated using leave-one-out-cross validation using the GE cohort (samples with well-defined ERCC2mutation sta-

tus). We further trained the SVM model using all of these GE samples and tested this on the independent TCGA cohort. Finally, we

used the same model to evaluate the ERCC2mutation status of the GE samples with undefined ERCC2mutation status. The above

method was applied to generate a model with the input simply being the trinucleotide context of SNVs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Survival and hazard ratio analysis (univariable and multivariable) were performed in Rstudio (Version 2023.12.0) using R (version

4.3.2). The survival analysis was conducted utilising the open-source R package survminer (version 0.4.9), and group differences

were assessed by the log rank test. The hazard ratios were calculated using the proportional hazard regression model in the finalfit

(version 1.0.7) and then formatted by forestploter (version 1.1.1). Other statistical tests including Student’s t test and Mann-Whitney

test were performed using R or Graphpad PRISM. A p-value of less than or equal to 0.05 was considered statistically significant.
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