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SUMMARY
Several X-linked genes escape from X chromosome inactivation (XCI), while differences in escape across
cell types and tissues are still poorly characterized. Here, we developed scLinaX for directly quantifying
relative gene expression from the inactivated X chromosome with droplet-based single-cell RNA
sequencing (scRNA-seq) data. The scLinaX and differentially expressed gene analyses with large-scale
blood scRNA-seq datasets consistently identified the stronger escape in lymphocytes than in myeloid
cells. An extension of scLinaX to a 10x multiome dataset (scLinaX-multi) suggested a stronger escape in
lymphocytes than in myeloid cells at the chromatin-accessibility level. The scLinaX analysis of human
multiple-organ scRNA-seq datasets also identified the relatively strong degree of escape from XCI in
lymphoid tissues and lymphocytes. Finally, effect size comparisons of genome-wide association studies
between sexes suggested the underlying impact of escape on the genotype-phenotype association. Over-
all, scLinaX and the quantified escape catalog identified the heterogeneity of escape across cell types and
tissues.
Cell Genomics 4, 100625, August 14, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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INTRODUCTION

One of the two X chromosomes of females is epigenetically

silenced through X chromosome inactivation (XCI) to compen-

sate for the difference in the dosage between sexes. XCI is es-

tablished on the randomly determined X chromosome in each

cell during early embryonic development. Multiple biological

processes are involved in XCI, such as upregulation of the

non-coding RNA XIST, changes in the histone modifications,

and DNA methylation.1 However, several X-linked genes

(�23% of the X-linked genes2) escape from XCI and are then ex-

pressed from both active (Xa) and inactive (Xi) X chromosomes.

Expression from Xi due to escape can contribute to sex differ-

ences in gene expression and diseases, such as cancer3 and

autoimmune diseases.4–6 Furthermore, escape can introduce

changes in the effective allele dosage of females in the context

of genotype-phenotype association analyses7–9 (e.g., genome-

wide association study [GWAS] and expression quantitative trait

locus [eQTL] mapping). This effect has contributed to the tech-

nical difficulties in X chromosome analyses, resulting in the

exclusion of the X chromosome fromGWAS and eQTL analyses,

which is one of the current limitations of genetic studies. There-

fore, understanding XCI escape is important for elucidating bio-

logical sex differences and resolving the current limitation of ge-

netic analysis.10

Whether an X-linked gene escapes XCI has historically been

determined by evaluating the heterogeneity of metabolic

capacity of female cell lines harboring loss-of-function muta-

tions of X-linked genes encoding metabolic enzymes on one

allele.11,12 Subsequently, escape was evaluated for hundreds

of genes by analyses of female-derived cell lines with skewed

XCI13 (i.e., preferential inactivation of a specific X chromosome)

and hybridomas from the human and mouse cells.14 However,

concerns remained regarding the generalizability of the findings

to physiological conditions within the human body. Although

several methods had utilized incomplete XCI skew of the tissue

samples for evaluating escape,15–17 they were often not sensi-

tive and, moreover, were only compatible with samples

showing XCI skew.

Differentially expressed gene (DEG) analysis between sexes

was also utilized to investigate escape. For example, DEG anal-

ysis of Genotype-Tissue Expression (GTEx) project datasets

enabled a comprehensive exploration of escape in a tissue/

gene-wide manner.2 Although DEG analysis could identify

escape in a physiological condition, it did not directly evaluate

escape and it was difficult to separately evaluate the effects

of escape and other factors, such as sex-hormonal influences.

In addition, previous studies had utilized bulk RNA sequencing

(RNA-seq) datasets, so heterogeneity of escape across cell

types had not been evaluated.

Recently, the single-cell RNA-seq (scRNA-seq) technology

has been utilized to analyze XCI escape through inference of

the Xi and in silico generation of the nearly completely skewed

XCI condition.2,18,19 Although scRNA-seq analyses enabled

direct observation of escape under physiological conditions,

current computational methods require high per-cell read depth

and are compatible only with plate-based scRNA-seq data (e.g.,

smart-seq). Due to the plate-based method’s relatively limited
2 Cell Genomics 4, 100625, August 14, 2024
throughput, analyses have often been performed with a limited

number of samples and cells, and the heterogeneity of escape

across different cell types has remained unexplored. Given

that the droplet-based approach (e.g., 10x Genomics) is high

throughput and currently the most widely used method, the

development of a computation method compatible with the

10x dataset is necessary to fully utilize the growing number of

publicly available datasets and expand the knowledge of escape

across multiple cell types.

Here, we investigated escape across immune cell types uti-

lizing the �1,000,000 cell-scale 10x peripheral blood mononu-

clear cells (PBMCs) scRNA-seq datasets. We performed pseu-

dobulk and single-cell-level DEG analysis to evaluate escape

across cell types. To directly and quantitatively evaluate

escape, we developed a method, single-cell-level inactivated

X chromosome mapping (scLinaX), which identified heteroge-

neity of escape across cell types. We also developed an exten-

sion for the multiome (RNA + assay for transposase-accessible

chromatin [ATAC]) dataset, scLinaX-multi, to evaluate escape

at the chromatin-accessibility level. Our scLinaX analysis with

a multi-organ dataset, Tabula Sapiens,20 identified the hetero-

geneity of escape across tissues and cell types. Finally, utilizing

the quantitative estimates of escape, we evaluated the effect

sizes of sex-stratified eQTL and GWAS analysis to understand

how escape would affect the results of the genotype-pheno-

type association analyses. scLinaX and scLinaX-multi are pub-

licly available as an R package (https://github.com/ytomofuji/

scLinaX).

RESULTS

Pseudobulk and single-cell-level DEG analysis from the
scRNA-seq data of PBMCs
To investigate escape in immune cells, we generated scRNA-seq

data of PBMCs derived from healthy Asian subjects as a part of

the Asian Immune Diversity Atlas (AIDA) project (Figure 1A;

Table S1; 498 individuals, 896,511 cells; AIDA).21 We also utilized

previously published PBMC scRNA-seq data (Figure S1A;

Table S1; 147 individuals, 865,238 cells) derived from COVID-19

patients and healthy subjects of Japanese ancestry.22,23

To evaluate escape from XCI across immune cell types, we

performed DEG analysis between sexes for each cell type (Fig-

ure 1B). Cell types with a large number of cells tended to have

a large number of significant DEGs (Figure S1B; Table S2).

X-linked genes were enriched among the significant DEGs

(pFisher < 0.05/11 and pFisher < 0.05/8 across cell types, respec-

tively, for the two datasets; Figure S1C). The results of the

DEG analyses were consistent across the two datasets (Figures

S1D and S1E). We compared the effect sizes of the X-linked

genes in the DEG analysis across the XCI status defined in the

previous study2 and confirmed that known escapee genes

tended to have larger effect sizes than other classes of

X-linked genes (Figures 1C, S1F, and S1G). Consistent with

the previous study,2 the DEG profile of the X-linked genes is

often shared across immune cells (Figure 1D). However, lympho-

cytes tended to show larger effect sizes than myeloid cells, sug-

gesting differences in the degree of escape from XCI among im-

mune cells (Figures 1E, 1F, S1H, and S1I).

https://github.com/ytomofuji/scLinaX
https://github.com/ytomofuji/scLinaX
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Figure 1. Pseudobulk and single-cell-level differentially expressed gene analyses suggested escape from XCI across immune cells

(A) The scRNA-seq datasets used in this study.

(B) The DEG analysis methods used in this study (STAR Methods, Data S1).

(legend continued on next page)
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To further elucidate the heterogeneity of the female-biased

expression of escapee genes among immune cells, we per-

formed single-cell-level DEG analysis. We used batch-corrected

PCs as proxies for continuous cell state and evaluated the inter-

action between the sex and cell state using a negative binomial

model (Figure 1B; STAR Methods). Significant cell-state-inter-

acting sex-biased expression was frequently observed for

escapee genes (Figure S2A). The negative binomial model was

well calibrated and the results were consistent across the two

datasets (Figures S2B–S2D). Larger effect sizes were observed

for the lymphocytes in comparison to the myeloid cells for the

representative escapee genes (Figure 1G). On the other hand,

some of escapee genes, such as the protein kinase, X-linked

(PRKX) gene, showed different patterns of heterogeneity of the

effect sizes (Figure 1H). Overall, heterogeneity of escape across

immune cell types, namely the relatively strong degree of escape

in lymphocytes, was suggested from the DEG analysis.

scLinaX can directly evaluate escape from 10x scRNA-
seq data
To directly validate the evidence of the heterogeneity of escape,

which was indirectly suggested by the DEG analysis, it would be

advantageous to directly quantify escape from XCI, namely gene

expression from Xi. 10x scRNA-seq information could be useful

for the analysis of escape because single-cell-level information

enabled us to treat cells with different inactivated X chromo-

somes separately, while such a method had not been imple-

mented previously due to the sparse nature of 10x scRNA-seq

data. Therefore, we developed a method, scLinaX, which is

compatible with the 10x scRNA-seq data (Figure 2A; Data S1;

STAR Methods). In scLinaX analysis, samples derived from

different individuals are processed separately. First, pseudobulk

allele-specific expression (ASE) profiles are generated for cells

expressing each candidate reference single-nucleotide poly-

morphism (SNP). Then, alleles of the reference SNPs on the

same X chromosome are listed by correlation analysis of the

pseudobulk ASE profiles. Finally, scLinaX assigns which X chro-

mosome is inactivated to each cell based on the allelic expres-

sion of the reference SNPs and generates a nearly complete

XCI skewed condition in silico and the estimates for the ratio of

the expression from Xi.

We applied scLinaX to the PBMC scRNA-seq data and SNP

array data and found that previously identified escapee genes

tended to show a higher ratio of the expression fromXi than other

classes of genes, suggesting that scLinaX had worked success-
(C) A boxplot represents log2 fold changes in the gene expression between sex

study.2

(D) A heatmap represents differential gene expression between sexes. The colors

Only genes that satisfied Bonferroni-corrected significance thresholds at least in

<0.05. ***Bonferroni-corrected p < 0.05.

(E) A boxplot represents log2 fold changes of the escapee gene expression betw

(F) Scatterplots represent pairwise comparisons of the log2 fold changes of the

changes in monocytes and the x axes represent the log2 fold changes in lympho

(G and H) UMAPs represent the per-cell effect sizes of the sex in the single-cell-lev

corrected PCs (STAR Methods, top) and gene expression (bottom). Genes that sh

patterns of heterogeneity of effect sizes (H) are indicated. The p values for the inte

10�12 (H). DEG, differentially expressed genes; PC, principal component; PA

scRNA-seq, single-cell RNA-seq; UMAP, uniform manifold approximation and p

4 Cell Genomics 4, 100625, August 14, 2024
fully (Figures 2B and S3A–S3G; Tables S3, S4, S5, and S6). We

also performed the analysis based on the SNP data called

from scRNA-seq data and the results were almost consistent

with the results based on the SNP array data (Figures S3A–

S3J), suggesting that scLinaX would also be useful when germ-

line genotype data were not available. While genotype calls from

scRNA-seq data were generally accurate, utilization of the SNP

array is expected to yield more accurate and conservative re-

sults (Figures S3K and S3L; Data S2). Therefore, we prioritized

analyses using both SNP array data and scRNA-seq data when-

ever SNP array data were available. There was no association

between the gene expression level and scLinaX estimates for

the escapee genes (Figure S3M). The scLinaX estimates were

consistent between the two datasets, suggesting the robustness

of the scLinaX analysis (Figure 2C and S3N). In the scLinaX anal-

ysis with down-sampling, the number of cells that were mapped

with the inactivated X chromosome and the number of the genes

that could be included in the analysis increased as the cell num-

ber and unique molecular identifier (UMI) count per cell

increased (Figures S4A–S4D). Also, the higher the cell number

and UMI count per cell were, the higher the observed correlation

with the full dataset, while the correlations were overall high in all

conditions (Figures S4E–S4G). We observed agreement of

phase information inferred from scLinaX and derived from the

imputed SNP array data when the distance between SNPs was

not so far as to cause switch errors, suggesting the high accu-

racy of the phase information obtained through scLinaX analysis

(Figures S4H and S4I). We also observed agreement between

the phase information from scLinaX and PacBio HiFi long-read

sequencing (mean coverage = 16.03), again suggesting the

high accuracy of the scLinaX-based phasing (concordant for

83/83 [100%] pairs of SNPs; Figure S4J).

The relationship between the effect sizes of the DEG analysis

and the ratio of the expression from Xi estimated by the scLinaX

was compatible with the assumption that differential gene

expression between sexes is due to the expression from Xi

(Figures 2D and S5A; the ratio of the expression from Xi

[y axis] = 1 � 1/2log2 fold change [x axis]). In the scLinaX analysis,

SEPTIN6 was not annotated as an escapee gene in the previous

study2; it showed a relatively high ratio of expression from Xi

and female-biased expression, suggesting that SEPTIN6 was

thought to actually be an escapee gene as recently reported.17,24

Also, there existed genes that showed female-biased expression

in the DEG analysis but had a low ratio of expression from Xi. For

example, the CD40 ligand (CD40LG) gene was a female-biased
es. Genes are grouped according to the XCI status annotated in the previous

of the tiles represent log2 fold changes in the gene expression between sexes.

one cell type are shown. *p < 0.05. **Per-cell-type false discovery ratio (FDR)

een sexes across cell types.

escapee gene expression between sexes. The y axes represent the log2 fold

cytes. The dashed lines represent x = 0, x = y, and y = 0.

el DEG analysis calculated as a sum of the effect sizes of sex and sex3 batch-

ow a stronger degree of escape in lymphocytes than monocytes (G) and other

raction between sex and batch-corrected PCs were <13 10�200 (G) and 1.53

R, pseudoautosomal region; PBMC, peripheral blood mononuclear cells;

rojection; XCI, X chromosome inactivation.
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DEG in the PBMC analysis but its ratio of the expression from Xi

was low compared to escapee genes such as the DDX3X

(Figures 2E, 2F, and S5B). CD40LG was highly expressed by

CD4 T cells, but it was not a DEG in the pseudobulk analysis of

CD4 T cells, suggesting that it was detected as a DEG due to

the confounding effect of the relative subset composition of

CD4 T cells, not escape (Figures 2F and S5C). The ITM2A

gene was also detected as a significant female-biased DEG in

the PBMC analysis while the ratio of the expression from Xi

was low (Figures 2G, S5B, and S5C). Since ITM2A showed sig-

nificant female-biased expression in the per-cell-type DEG anal-

ysis, it might be that female-biased ITM2A expression was due

to other factors, such as sex-hormonal effects. Considering

these examples, scLinaX would be useful to directly evaluate

escape and complement the limitation of the DEG analysis.

Quantification of escape across cell types by scLinaX
Next, we evaluated escape by scLinaX as a ratio of the expres-

sion from Xi for each cell type (Figure S6A; Tables S4, S5, and

S6). Consistent with the results of the DEG analysis, lympho-

cytes tended to have a higher ratio of expression of the escapee

genes from Xi than monocytes (Figures 3A, 3B, and S6B–S6D).

When per-cell-type estimates from scLinaX were projected

onto the uniform manifold approximation and projection

(UMAP), the gradients of the ratio of expression from Xi showed

the same pattern as those from the single-cell-level DEGanalysis

(Figures 1G, 3C, 3D, S6E, and S6F). Although cell or organ

specificity of escape for a few genes had been suggested,2,6

consistent differences in the strength of escape across several

escapee genes, namely stronger escape in lymphocytes than

in monocytes, have not previously been reported. In addition,

the PRKX gene, which showed an atypical pattern of the hetero-

geneity of the effect sizes in the DEG analysis, also showed gra-

dients of the ratio of the expression from Xi with the same pattern

as those from the single-cell-level DEG analysis (Figures 1H, 3D,

S6G, and S6H). Considering the clear relationship between the

results of DEG and scLinaX analyses in the bulk PBMC analysis

(Figure 2D), these findings suggested that the inter-cell-type het-

erogeneity of escape quantified by scLinaX contributed to the

heterogeneity of sex differences in gene expression across cell

types. We also evaluated the effects of genetic variants on the

degree of escape (escape quantitative trait locus [QTL] analysis)
Figure 2. scLinaX, a method to quantify escape from XCI using drople

(A) A schematic illustration of scLinaX.

(B) A boxplot represents the estimated ratio of the expression from Xi. Genes are

(C) A plot represents the concordance of the ratio of the expression from Xi betwe

annotated as escapee genes and theSEPTIN6 gene are included. The black line in

0.82–0.97.

(D) A plot represents the relationship between the log2 fold changes in the DEG

annotated as escapee genes and the SEPTIN6 gene are included. The curved li

expression in males and Xa-derived gene expression in females are at the same

(E) A plot representing the ratio of the expression from Xa and Xi at an individual le

ratio of the expression from Xi across samples.

(F andG) Forest plots represent the log2 fold changes in the DEG analysis for each

and Xi at an individual level. The error bars indicate 95% CI. The colors of the

(baseMean). *p < 0.05. **Per-cell-type FDR <0.05. The dashed black horizontal li

Asian Immune Diversity Atlas; ALT, alternative allele; ASE, allele-specific expres

X chromosome; Xi, inactive X chromosome.
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but could not find significant associations (Figures S6I and S6J),

although future analyses with larger sample sizes may find

escape QTLs.

Evaluation of the differential escape in disease
conditions
It was reported that some autoimmune-disease-associated

genes, e.g., in systemic lupus erythematosus (SLE),were escapee

and that escape of such genes could be enhanced in patientswith

SLE.4–6,25 Despite the potential association between escape and

diseases, X chromosome-wide evaluation of escape in diseased

individuals had not been performed. We analyzed the changes

in escape in two diseases, COVID-1922 and SLE,26 based on the

scLinaX estimates. After multiple-test correction, we could not

detect a significant association, possibly because of the lack of

power, suggesting the need for future larger cohort analyses

(Figures S7A and S7B; Table S7; Data S3). We also evaluated

escape in a male sample with an XXY karyotype and the escape

status was almost consistent with that of healthy females (Fig-

ure S7C; Table S8).

scLinaX-multi can evaluate escape at the chromatin-
accessibility level
XCI escape, which we had observed at the transcription level,

was closely linked to gene regulation at the chromatin level.

XCI induces chromatin-level transcriptional repression on Xi,

while a transcriptionally active chromatin state on Xi can be

observed under escape from XCI. Although previous studies

had demonstrated escape at the chromatin level through the

comparative analyses between sexes27 and allele-specific

epigenetic investigations using cell lines,28 the chromatin-level

escape had not been directly quantified under physiological con-

ditions. To directly quantify the chromatin-level escape, we

developed an extension of scLinaX for multi-modal single-cell

data (RNA + ATAC), scLinaX for multi-modal data (scLinaX-multi;

Figure 4A; Data S4; STAR Methods). In multi-modal single-cell

data, each cell has both RNA and ATAC information. scLinaX-

multi utilizes allelic RNA expression information to estimate

which X chromosome is inactivated for each cell, as is done in

the scLinaX analysis. For the cells in which the inactivated X

chromosome has been successfully identified based on the

RNA information, allelic ATAC information is utilized to calculate
t-based scRNA-seq data

grouped according to the XCI status annotated in the previous study.2

en the AIDA dataset (x axis) and the Japanese dataset (y axis). Genes that are

dicates x = y. Pearson’s correlation = 0.92 with a 95%confidence interval (CI) of

analysis (x axis) and the ratio of the expression from Xi (y axis). Genes that are

ne indicates the theoretical relationship under the assumption that total gene

level. Pearson’s correlation = 0.94 with a 95% CI of 0.87–0.97.

vel for the DDX3X gene. The dashed black horizontal line represents the mean

cell type (left) and plots on the right represent the ratio of the expression fromXa

dots represent the log-scaled mean normalized count calculated by DEseq2

ne represents the mean ratio of the expression from Xi across samples. AIDA,

sion; REF, reference allele; SNP, single-nucleotide polymorphism; Xa, active
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Figure 3. The scLinaX-based quantification of escape from XCI across immune cell types

(A) A boxplot represents the estimated ratio of the expression from Xi for escapee genes across cell types.

(B) Scatterplots represent pairwise comparisons of the ratio of the expression from Xi for escapee genes. The dashed lines represent x = 0, x = y, and y = 0.

(C) UMAPs colored according to the ratio of the expression from Xi estimated for each cell type. Representative genes that showed a higher ratio of expression

from Xi in lymphocytes than monocytes, theDDX3X and EIF2S3 genes, are indicated. Cell types whose ratio of the expression from Xi could not be estimated are

colored gray.

(legend continued on next page)
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the ratio of the accessible chromatin derived from Xi, namely

escape at the chromatin-accessibility level.

We applied scLinaX-multi to the publicly available PBMCmulti-

ome datasets from a female and found that peaks whose nearest

genes were escapee genes tended to show a higher ratio of the

accessible chromatin derived from Xi than other classes of

peaks, suggesting that scLinaX-multi had worked successfully

(Figures 4B and S8A–S8E; Table S9). The correlation between

the ratio of the accessible chromatin derived from Xi (ATAC) and

the ratio of the expression from Xi (RNA) for peak-nearest gene

pairs, while strongly positive, was not significant for the escapee

genes in PBMCs (Figures 4C and S8F; Pearson’s correlation =

0.57andp=0.066 inAIDARNAvs. 10xmultiomeATAC;Pearson’s

correlation=0.62andp=0.055 in10xmultiomeRNAvs. 10xmulti-

ome ATAC). The ratio of the accessible chromatin derived from Xi

wasnominallyhigher in lymphocytes than inmonocytes (Figure4D,

pWilcoxon-signed < 0.05 in CD4+ T cells vs. monocytes and CD8+

T cells vs. monocytes). For example, peaks at the transcription

start sites (TSSs) of the escapee genes DDX3X, USP9X, and

ZRSR2 showed a higher ratio of accessible chromatin derived

fromXi in lymphocytes than inmonocytes (Figures4E–4G). Inaddi-

tion, we found chromatin-level escape at the myeloid cell-specific

enhancer in the ZRSR2 gene locus, which was also defined as a

cis-regulatory element (cCRE) in the Encyclopedia of DNA

Elements (ENCODE) project (EH38E3926410).29 We could not

observe such signs of escape at the chromatin level within peaks

around the non-escapee genes (Figures S8G–S8I). In summary,

scLinaX-multi could be useful in identifying chromatin-level

escape and its heterogeneity across cell types.

Direct quantification of escape acrossmulti-organswith
scLinaX
To evaluate the heterogeneity of escape beyond blood cells, we

applied scLinaX to Tabula Sapiens,20 the current largest publicly

available human multi-organ scRNA-seq dataset in terms of

number of cells and organs20 (https://tabula-sapiens-portal.ds.

czbiohub.org). Although the Tabula Sapiens dataset did not

contain genotype data, scLinaX could be applied to datasets

without genotype data (Figures S3A–S3L). Data from six females

were included in the analysis, and known escapee genes

showed relatively high scLinaX estimates across the organs

(Figures 5A and S9A–S9G; Table S10), consistent with the previ-

ous study.2 To evaluate the heterogeneity of escape across or-

gans, we performed pairwise comparisons of the ratio of the

expression from Xi and found that lymphoid tissues, such as

lymph node, thymus, and spleen, had a relatively high ratio of

the expression from Xi (Figures 5B and 5C).

In our analyses of PBMCs, we found that lymphocytes showed

relatively strong escape compared to myeloid cells. Therefore,

we hypothesized that the relatively high ratio of the expression

from Xi observed in lymphoid tissues was due to their high
(D) The ratio of the expression from Xa and Xi at an individual level for the DDX3X

expression from Xi across samples for each cell type. Since the definition of allel

expression from Xi may exceed 0.5 in some cell types.

(E) A UMAP colored according to the ratio of the expression from Xi estimated for

of escape across cell types, is indicated.

(F) The ratio of the expression from Xa and Xi at an individual level for the PRKX
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lymphocyte content. Consistent with the hypothesis, a higher ra-

tio of the expression fromXi was observed for the lymphocytes in

the pairwise comparisons of the ratio of the expression from Xi

across cell types in the Tabula Sapiens dataset (Figures 5D

and 5E; Table S11). In summary, scLinaX analysis suggested

a tissue-level escape heterogeneity linked to cell-type-level

escape heterogeneity.

A difference in the genetic effects on the complex traits
was observed at the escapee gene loci
Although genetic association studies such as GWAS and eQTL

mapping have successfully identified the genetic backgrounds

of human traits, the sex-associated difference is one of the re-

maining unresolved issues. Specifically, the X chromosome

has often been excluded from these analyses due to technical

difficulties, despite its apparent importance in the context of

sex-associated differences.10 One of these difficulties is the po-

tential need to adjust the dosage differences betweenmales and

females dependent on the degree of escape for obtaining the

per-allele estimate of the GWAS effect sizes. For example, pre-

vious literature suggested that the effective dosage of the alleles

should be 0/2 for males and 0/1/2 for females under the com-

plete XCI and 0/1 for males and 0/1/2 for females under the com-

plete escape.8 On the other hand, a previous study showed that

the inter-sex differences in the eQTL effects of escape genes

were consistent with complete XCI rather than escape in most

cases.7 Therefore, we evaluated the effects of escape on the

sex differences of the genotype-phenotype association analyses

with the quantified catalog of escape.

First, to evaluate the effects of escape on the eQTL analysis,

we performed eQTLmapping with all samples from the AIDA da-

taset (allele dosages of the males and females were 0/2 and

0/1/2, respectively) and found 202 significant eQTL signals

across 10 cell types (Table S12; p < 5 3 10�8). These eQTL sig-

nals were highly reproducible in the analysis with the Japanese

dataset (Figure S10A; Table S13). Then, we performed eQTL

mapping separately for males and females and compared the ef-

fect sizes of the significant eQTLs on the X chromosome be-

tween sexes. We did not observe apparent female-biased effect

sizes across all the XCI statuses including escapees (Figures 6A

and S10B). In addition, there was no clear relationship between

the sex-associated differences in effect sizes and the degree of

escape quantified by the DEG and scLinaX analyses (Figures 6B

and S10C). These results are consistent with a previous eQTL

study7 but inconsistent with other studies utilizing ASE or DEG

analyses2,13 and with the results of the DEG and scLinaX ana-

lyses in this study.We speculate that the sex differences in effec-

tive allele dosage caused by escape do not cause sex differ-

ences in the eQTL effect because of the transformation of the

expression data, such as log transformation, which stabilizes

variance and resolves heteroskedasticity (Figure S10D).
and EIF2S3 genes. The dashed horizontal line represents the mean ratio of the

es derived from Xa and Xi is consistent within the same individual, the ratio of

each cell type. The PRKX gene, which shows a unique pattern of heterogeneity

gene.

https://tabula-sapiens-portal.ds.czbiohub.org
https://tabula-sapiens-portal.ds.czbiohub.org
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Next, we evaluated the effects of escape on the genotype-

phenotype association using the two independent biobank

datasets. To focus on the association signals mediated by the

expression of escapee genes, we evaluated the association be-

tween the eQTL variants and blood-related traits using the

BioBank Japan (BBJ) dataset (N = 82,228–161,145; Tables

S14 and S15).30,31 Nine associations satisfied the significance

threshold, of which only an association between the eQTL

variant for PRKX (escapee gene) and lymphocyte counts was

replicated in the analysis of the UK Biobank (UKB) dataset

(Figures 6C, S11A, and S11B; Table S15; http://www.nealelab.

is/uk-biobank/). Pseudobulk and single-cell-level eQTL analyses

revealed that two different eQTL signals existed in this region,

namely a T/NK cell-specific one and a myeloid cell-specific

one, and only the T/NK cell-specific eQTL signal colocalized

with the GWAS signal (Figures 6D and 6E). Neither of the eQTL

signals showed a difference in the effect sizes between sexes

(Figure S11C). Interestingly, this locus was suggested to be

associated with white blood cell counts via PRKX expression

in a female-biased manner in a previous report on the UKB anal-

ysis.7 Given the results of the per-cell-type and single-cell-level

eQTL analysis, this locus could affect the white blood cell counts

via its effects on the lymphocytes. Then, we evaluated the effect

sizes of the PRKX gene loci-lymphocyte counts association in

each sex and found that effect sizes were significantly larger in

females than in males (Figures 6F and 6G; Table S16). Although

it was difficult to generalize the finding from a single locus, this

result might be evidence for the effect of escape on the differ-

ence in the GWAS effect sizes between sexes.

DISCUSSION

In this study, we quantitatively evaluated escape fromXCI across

multiple cell types with large-scale immune cell and multi-organ

scRNA-seq datasets. The scLinaXmethod enabled us to directly

evaluate escape across cell types, and both the DEG and scLi-

naX analyses revealed a stronger degree of escape in lympho-

cytes than in myeloid cells. We also implemented an extension

of scLinaX for the multi-modal dataset, scLinaX-multi, and re-

vealed a stronger degree of escape in lymphocytes at the chro-

matin-accessibility level. We also applied scLinaX to the multi-

organ dataset, Tabula Sapiens, and found that lymphatic tissues

and lymphocytes showed a stronger degree of escape in com-
Figure 4. scLinaX-multi, a method to estimate the chromatin accessib
(A) A schematic illustration of the scLinaX-multi (Data S4; STAR Methods).

(B) Boxplots represent the estimated ratio of the accessible chromatin derived fr

Peaks are grouped according to the XCI status of the nearest gene.

(C) A plot representing the relationship between the ratio of the expression from

(y axis) for each peak-nearest gene pair. Genes that are annotated as escape gene

from Xi > 0.15) are indicated. The black line indicates x = y. When a single gene h

accessible chromatin is used for the calculation of Pearson’s correlation.

(D) Scatterplots represent pairwise comparisons of the accessible chromatin de

represent the ratio of the expression from Xi in monocytes and the x axes represen

x = 0, x = y, and y = 0. The p values are calculated by the Wilcoxon signed-rank

(E–G) The results of the scLinaX-multi for the representative peaks around escape

across cell types are indicated with peak information (top). The ratio of the access

(bottom)with information onwhich SNPs are used for the analysis. Since the defini

ratio of expression from Xi may exceed 0.5 in some cell types. ATAC, assay for t
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parison to other tissues and cell types. Finally, we presented

an example of how escape might have affected sex differences

in genotype-phenotype association through the single-cell eQTL

analysis and GWAS with two biobank datasets.

scLinaX is a method that enables direct observation of escape

at the cell-cluster level, and its applicability to 10x data makes it

highly versatile. Because 10x scRNA-seq data are sparser than

plate-based scRNA-seq methods such as smart-seq, single-

cell-level ASE profiles generated from 10x data are difficult to

handle in the same way as plate-based scRNA-seq data. scLi-

naX resolves the technical difficulty associated with the sparsity

of the data by generating pseudobulk ASE profiles for each SNP

on the X chromosome and aggregating alleles on the same X

chromosome based on the correlation of the pseudobulk ASE

profiles of the SNPs. Since the raw output from scLinaX is sin-

gle-cell-level data, it is possible to evaluate escape in any

user-defined cluster, including cell types. This unique feature

of scLinaX is useful for evaluating the heterogeneity of escape

across various kinds of cells. Since scLinaX can quantify escape

at individual levels, which cannot be achieved by DEG analysis, it

can also be useful for evaluating the inter-individual differences

of escape as long as the measurement errors due to the sparsity

of scRNA-seq data are correctly considered.

scLinaX can map which X chromosome is inactivated for each

cell based on the single-cell-level transcriptome data, and this

information is also useful for evaluating escape at levels other

than the transcriptome level, as demonstrated by the scLinaX-

multi analysis with the 10x multiome dataset (RNA + ATAC). In

addition to RNA + ATAC, single-cell joint measurements of

RNA + other modalities, such as histone modifications,32 are

currently being developed. Such technologies can enable us to

directly observe escape at the level of the various X chromosome

regulations, whichwill be useful to elucidate the biological mech-

anisms of escape.

Through a series of analyses, we identified a unique feature of

the lymphocyte, a relatively strong degree of escape. In a previ-

ous analysis utilizing cell imaging, it was revealed that lympho-

cytes, especially naive ones, had an abnormally dispersed distri-

bution of XIST RNA and reduced normal heterochromatin

histone modifications.5,6 These results suggested that there

may be a unique mode of the regulation of XCI in lymphocytes

at the chromosome scale. In addition, a relatively strong degree

of escape in lymphocytes may also be related to the sex
ility of Xi from multi-modal single-cell omics data

om Xi for peaks within 2 kbp of TSS (left) and R2 kbp distant from TSS (right).

Xi (RNA level, x axis) and the ratio of the accessible chromatin derived from Xi

s or showed evidence of escape in the scLinaX analysis (ratio of the expression

as multiple peaks, the average across the peaks for the ratio of the Xi-derived

rived from Xi for peaks whose nearest genes are escapee genes. The y axes

t the ratio of the expression from Xi in lymphocytes. The dashed lines represent

test.

e genes, namely DDX3X (E),USP9X (F), and ZRSR2 (G). Normalized tag counts

ible chromatin derived from Xa and Xi across cell types is indicated as bar plots

tion of alleles derived fromXa and Xi is consistent within the same individual, the

ransposase-accessible chromatin; TSS, transcription start site.

http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
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differences in immune phenotype, which could be linked to

the higher prevalence of autoimmune diseases in females33

and Klinefelter syndrome patients, where males have an extra

X chromosome.34

Howwe should handle the allele dosage formales and females

and whether allele dosage should be adjusted in the presence of

escape is one of the technical difficulties associated with X chro-

mosome analysis.8,9 Currently, many GWAS software, such as

PLINK2,35 BOLT-LMM,36 and REGINIE,37 handle the dosage of

alleles assuming the complete XCI as a default setting, while pre-

vious literature argued that, in the presence of escape, the effec-

tive dosage in the female should increase.8,9 In our comparisons

of the eQTL effect sizes between sexes, we found no inter-sex

differences in eQTL effects regardless of the quantified esti-

mates of escape. Hence, it might be the case that the effective

dosage between sexes could be explained by the sex term in a

linear regression model, suggesting that it might not be neces-

sary to alter the scale of the genotype term in the eQTL analysis

of females (Figure S10D).

However, this holds true only for a limited trait, such as gene

expression, and does not apply to more complex traits contrib-

uted by multiple genes. Indeed, in this study, the PRKX gene lo-

cus was associated with lymphocyte count likely via its eQTL

effect in the lymphocytes, and the effect was larger in females

than in males. This difference in the effect sizes between sexes

might be linked to the increase in allele dosage and PRKX

expression in females due to escape. Although the limited

number of GWAS signals associated with the escapee gene

and the complexity of the mode of genotype-phenotype asso-

ciations made it difficult to generalize how escape affects the

sex difference of the GWAS signal, it would be important to

perform GWAS with care for the inter-sex heterogeneity (e.g.,

sex-stratified analysis8). Although the X chromosome has often

been excluded from the largest-scale GWAS meta-analyses

due to technical difficulties,38,39 there is a need to actively

conduct GWAS of the X chromosome, share sumstats, and

promote secondary use in order to overcome this technical

difficulty.

In summary, we developed scLinaX, a method to directly eval-

uate escape at the cell-cluster level. We believe that scLinaX and

the quantified catalog of escape identified the heterogeneity of

escape across cell types and tissues and will contribute to ex-
Figure 5. Quantitative evaluation of escape from XCI with a human mu

(A) The ratio of the expression from Xi across organs from the Tabula Sapiens data

the expression from Xa.) The color and size of the dots represent the ratio of th

represent the log2 fold change of gene expression between sexes (orange) and th

heatmap on the right of the dot plot represents the number of cells used for the

(B) The results of the pairwise comparison of the ratio of the expression fromXi acro

the expression from Xi is higher in organ 1 (y axis) than in organ 2 (x axis). The size

plots on the right of the dot plot represent the numbers and types of the cells tha

(C) The pairwise comparisons of the ratio of the expression from Xi for escapee ge

tissues and organs with a relatively weak degree of escape, respectively. Since

presented. The dashed line represents x = y. The numbers in each plot indicate the

left, red).

(D) The results of the pairwise comparison of the ratio of the expression from Xi

(E) The pairwise comparisons of the ratio of the expression from Xi for each escape

immune cell types (top, lymphoid; bottom, myeloid) and the x axes represent t

represents each sample.
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panding the current understanding of the XCI, escape, and sex

differences in gene regulation.

Limitations of the study
Evaluation of the functional effects of the heterogeneity of es-

capes on cell phenotypes was out of the scope of this study

because it is still technically difficult to manipulate escape

from XCI.

Since scLinaX is derived from ASE analysis, it inherits the

general limitations of ASE analysis, such as the requirement

for transcribed SNPs and sufficient read coverage. Therefore,

only samples with transcribed SNPs can be included in the

scLinaX analysis, which might decrease the power of the

case-control comparisons of escape from XCI (Figure S7).

Also, it is still difficult to directly quantify escape for all the ex-

pressed genes, especially for rare cell populations with poor to-

tal read coverages and genes (Figure S6A; Table S6). We

believe that future expansion of the scRNA-seq datasets or

new technologies such as long-read scRNA-seq40 will be

promising to address these limitations.

While we have evaluated escape across blood cells with the

current largest-scale datasets, some datasets (e.g., Tabula Sa-

piens and 10x multiome) have fewer samples compared to

such PBMC datasets. This is because there are currently no

available large-scale datasets for human multi-organ scRNA-

seq data or 10xmultiome, which is considered a limitation of cur-

rent single-cell omics research. We believe that cooperative ef-

forts on a community level, such as the Human Cell Atlas,41

are necessary to address this limitation.
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Figure 6. Detection of differential effect sizes between sexes in the genotype-phenotype association analysis

(A) The effect sizes of the significant eQTL signals (p< 53 10�8) in the female-only (x axis) andmale-only (y axis) analyses, separately for each XCI status. The error

bars indicate standard errors. The color of the plots indicates the cell type in which the eQTL signals are identified. The oblique lines correspond to the female/

male effect size ratios described in the plots. The bar plots in the lower right of each plot indicate the number of eQTL signals that have larger effect sizes in

females (left) and males (right).

(B) Scatterplots for escapee genes (A, upper left) are colored according to the estimated female/male effect size ratio based on the DEG analysis (top) and scLinaX

analysis (bottom). Genes that were not evaluated in the scLinaX analyses are colored gray.
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Coloc Giambartolomei et al.50 https://chr1swallace.github.io/coloc/
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DESeq2 Love et al.51 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

DoubletFinder McGinnis et al.52 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

DRAGEN software Illumina https://support.illumina.com/downloads.html

edgeR Robinson et al.53 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

harmony Korsunsky et al.54 https://github.com/immunogenomics/harmony

harmonypy Korsunsky et al.54 https://github.com/slowkow/harmonypy

Michigan Imputation Server Das et al.55 https://imputationserver.sph.umich.edu

Minimac4 Fuchsberger et al.56 https://github.com/statgen/Minimac4

pbmm2 PacificBioScience https://github.com/PacificBiosciences/pbmm2

Picard Broad Institute https://github.com/broadinstitute/

picard?tab=readme-ov-file

PLINK Purcell et al.57 https://www.cog-genomics.org/plink/1.9

PLINK2 Chang et al.35 https://www.cog-genomics.org/plink/2.0

Python Python Software Foundation https://www.python.org/downloads/

release/python-376/

R The R Foundation for

Statistical Computing

https://www.r-project.org

RCAv2 Schmidt et al.58 https://github.com/prabhakarlab/RCAv2

Scds Bais et al.59 https://github.com/kostkalab/scds

scLinaX This study https://github.com/ytomofuji/scLinaX

Scrublet Wolock et al.60 https://github.com/swolock/scrublet

Seurat Hao et al.46 https://satijalab.org/seurat/

SHAPEIT4 Delaneau et al.61 https://github.com/odelaneau/shapeit4

Signac Stuart et al.62 https://stuartlab.org/signac/

tensorQTL Broad Institute https://github.com/broadinstitute/tensorqtl

whatshap Martin et al.63 https://github.com/whatshap/whatshap
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yukinori

Okada (yokada@sg.med.osaka-u.ac.jp).

Materials availability
The materials that support the findings of this study are available from the corresponding authors upon reasonable request. Please

contact the lead contact, Yukinori Okada (yuki-okada@m.u-tokyo.ac.jp) for additional information.

Data and code availability
The AIDA Data Freeze v1 gene-cell matrix (1,058,909 cells from 503 Japan, Singaporean Chinese, Singaporean Malay, Singaporean

Indian, and South Korea Asian donors and 5 distinct Lonza commercial controls), with BCR-seq and TCR-seq metadata, and donor

age, sex, and self-reported ethnicity metadata, is available via the Chan Zuckerberg CELLxGENE data portal at https://cellxgene.

cziscience.com/collections/ced320a1-29f3-47c1-a735-513c7084d508. The open-access AIDA datasets are available via the Human

Cell Atlas Data Coordination Platform at https://data.humancellatlas.org/explore/projects/f0f89c14-7460-4bab-9d42-22228a91f185.

Raw scRNA-seq sequencing data for the Japanese dataset are available at the Japanese Genotype-phenotype Archive (JGA) with

accession codes JGAS000593/JGAD000722/JGAS000543/JGAD000662.22,23 All the raw sequencing data of Japanese scRNA-seq
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dataset canalsobeaccessed throughapplicationat theNBDCwith theaccessioncodehum0197 (https://humandbs.biosciencedbc.jp/

en/hum0197-latest). Genotype data for the Japanese dataset are available at European Genome-Phenome Archive (EGA) with the

accession code EGAS00001006950 (https://ega-archive.org/studies/EGAS00001006950). scLinaX and scLinaX-multi is available as

an R package from https://github.com/ytomofuji/scLinaX. Original version of scLinaX and scLinaX-multi used in this study are available

from Zenodo (https://doi.org/10.5281/zenodo.11023040).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject participation
The Asian Immune Diversity Atlas dataset (v1) was composed of 503 donors of East Asian (Chinese, N = 75; Japanese, N = 149;

Korean, N = 165), Southeast Asian (Malay, N = 54), and South Asian (Indian, N = 60) self-reported ethnicities from Japan, Singapore,

and South Korea, and five commercially available European ancestry control samples (LONZA 4W-270). A detailed description of the

dataset was included in the flagship manuscript of the Asian Immune Diversity Atlas Network.21

The PBMC scRNA-seq data of the Japanese was derived from the previously published study.22 Briefly, peripheral blood samples

were obtained from patients with COVID-19 (N = 73) and healthy controls (N = 75) at Osaka University Hospital. Almost all cases were

patients who were transferred from nearby general hospitals because of severe or potentially severe illness during treatment and

already initiated with systemic corticosteroid therapy at other hospitals. We also used a male sample with a karyotype of XXY

whowas also in the remission phase ofmultiple sclerosis. The sample was collected at Osaka University Hospital in the samemanner

as the Japanese dataset.

METHOD DETAILS

Generation and pre-processing of the AIDA PBMC scRNA-seq data
The methods for generation and pre-processing of the AIDA PBMC scRNA-seq dataset (v1) are described in the flagship manuscript

of the Asian Immune Diversity Atlas Network.21 Briefly, single-cell RNA-seq for PBMCwas performed with 10x Genomics Chromium

Controller and 10x Genomics Single Cell 50 v2 chemistry. We used the DRAGEN Single-Cell RNA pipeline in the Illumina DRAGEN

v3.8.4 software (version 07.021.602.3.8.4–20-g74395e76) for pre-processing and genetic demultiplexing. We performed quality con-

trol of our dataset in two stages.

We first performed library-level quality control. We started by filtering out cells for which fewer than 300 genes were detected. We

then identified the top 2,000 highly variable features using the variance-stabilizing transformation option in Seurat,46 scaled the data

using all genes, and then performed principal component analysis on these highly variable features. We performed nearest-neighbor

analyses based on the resulting principal components, and ran Louvain clustering in Seurat at a resolution of 1.0. We annotated the

resulting clusters based on a majority vote of the major cell type annotation labels assigned by RCAv2 software58 to cells within each

cluster. We used the genetic doublet proportion for a library (proportions of mixed genetic identity + ambiguous identity droplets) to

estimate the likely total doublet rate for that library.64 We used this estimate of total doublets in a library, as well as the RCAv2

reference projection-based annotation of clusters (for estimation of homotypic doublet proportion) as part of our input into

DoubletFinder,52 which we used for identifying heterotypic doublets. We then removed cells that had more than 10 (HBA1 UMIs +

HBB UMIs), since these cells could be red blood cells, or cells contaminated with red blood cell RNA transcripts.

Then, we performed cell type-specific quality control on our dataset. We removed doublets detected by the DRAGEN genetic de-

multiplexing workflow and/or DoubletFinder. We then combined single cells frommultiple libraries across countries, performed refer-

ence projection of such combinations of cells to a reference panel of immune cell transcriptomes using the RCAv2 software,58 and

performed nearest-neighbor analyses based on the principal components of the reference projection coefficients. We performed

Louvain clustering and cluster annotation as done in the per-library quality control step. We performed cell type-specific quality con-

trol on all single cells across all libraries by applying number of detected genes (including <300 for platelets, <500 for myeloid cells,

and <1,000 for other cell types) and percentage mitochondrial reads (>12.5% for plasma cells and platelets and >8% for other cell

types) filters.

In this study, we removed samples with (i) mismatches between the scRNA-seq inferred sex and reported sex, (ii) < 500 cells per

donor, (iii) European genetic ancestry, or (iv) missing/low-quality genotype data. We also removed platelets from the analysis. Finally,

we used 896,511 cells from 489 individuals.

Generation and pre-processing of the PBMC scRNA-seq data of the Japanese healthy and COVID-19 subjects
Single-cell suspensions were processed through the 10x Genomics Chromium Controller following the protocol outlined in the

Chromium Single Cell V(D)J Reagent Kits (v1.1 Chemistry) User Guide. Chromium Next GEM Single Cell 50 Library & Gel Bead Kit

v1.1 (PN-1000167), Chromium Next GEM Chip G Single Cell Kit (PN-1000127), and Single Index Kit T Set A (PN-1000213) were

applied during the process. Samples were then sequenced on an Illumina NovaSeq 6000 in a paired-end mode.

Droplet libraries were processed using Cell Ranger 5.0.0 (10x Genomics). Filtered expression matrices generated using Cell

Ranger count were used to perform the analysis. Cells that had fewer than the first percentile of UMIs or greater than the 99th percen-

tile of UMIs in each sample were excluded. Cells with <200 genes expressed or >10% of reads from mitochondrial genes or
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hemoglobin genes were also excluded. Additionally, putative doublets were removed using Scrublet (v0.2.1)60 and scds (v1.10.0)59

for each sample.

The R package Seurat (v4.1.0)46 was used for data scaling, transformation, clustering, and dimensionality reduction. Data were

scaled and transformed using the SCTransform() function, and linear regression was performed to remove unwanted variation

due to cell quality (% mitochondrial reads). For integration, 3,000 shared highly variable genes (HVGs) were identified using Selec-

tIntegrationFeatures() function. Principal component analysis (PCA) was run on gene expression, followed by batch correction using

harmony (v0.1).54 UMAP dimension reduction was generated based on the first 30 harmony-adjusted principal components. A near-

est-neighbor graph using the first 30 harmony-adjusted principal components was calculated using FindNeighbors() function, fol-

lowed by clustering using FindClusters() function.

Cellular identity was determined by finding DEGs for each cluster using the FindMarkers() function with parameter ‘test.use = wil-

cox’, and comparing those markers to known cell type-specific genes. Two rounds of clustering were performed (1st, all cells; 2nd,

separately for monocytes/DC, T/NK cells, and B cells) and cell type annotation was assigned at the three layers of the granularity

based on the marker gene expression. In this study, we mainly used the coarsest annotation (L1) to maintain the number of cells

per cluster. In this study, a male subject with COVID-19 was removed because of the aneuploidy of the X chromosome as done

in the original study.

Generation and pre-processing of the AIDA genotype data
A genotyping of AIDA samples was performed using Infinium Global Screening Array (Illumina). SNPs on the nonPAR X chromosome

were treated as diploid in males and heterozygous genotypes of such SNPs were converted into ’missing’ with PLINK (v1.90b4.4).57

Then, we performed quality control of the genotype data with PLINK2 (v2.00a3 9 Apr 2020).35 We filtered out samples with a call rate

of <0.98. Note that no samples deviated from the Asian sample clusters in a PCA analysis with the 1,000 Genomes (1KG) Project

Phase3v5 samples (N = 2,504). We removed variants with a variant call rate of <0.99, deviation from Hardy–Weinberg equilibrium

with p < 1.03 10�6 in each population, or significant allele frequency differences between sexes (p < 5.03 10�8). We also removed

the variants whose MAF deviated from the reference panels (|MAF in the AIDA Japanese/Korean/Chinese - MAF in the 1KG EAS

| > 0.15, |MAF in the AIDA Indian - MAF in the 1KG SAS | > 0.175, or |MAF in the AIDA Japanese - MAF in the 1KG Japanese

| > 0.15). The genotype data after the QC was subjected to the genotype imputation in the Michigan Imputation Server.55 EAGLE

(v2.4)65 was used for the haplotype phasing of genotype data and Minimac456 was used for genome-wide genotype imputation.

We used the reference panels generated from 1KG Project Phase3v5 samples (N = 2,504) with high coverage (303) sequencing.

We set an imputation quality (R2) of 0.3 and 0.7, respectively for the scLinaX analysis and eQTL analysis. We used a relaxed threshold

in the scLinaX analysis because the genotype could be also confirmed by the allele information of the scRNA-seq reads. In the eQTL

analysis, we removed related samples with PI_HAT >0.17.

Generation and pre-processing of the Japanese genotype data
Imputed genotype data for the Japanese dataset was derived from the previously published study.22 A genotyping of COVID-19 and

healthy samples was performed using Infinium Asian Screening Array (Illumina) through collaboration with Japan COVID-19 Task

Force (https://www.covid19-taskforce.jp/en/home/). SNPs on the nonPAR X chromosome were treated as diploid in males and het-

erozygous genotypes of such SNPs were converted into ’missing’. We applied stringent quality control filters to the samples (sample

call rate <0.98, related samples with PI_HAT >0.175 or outlier samples from East Asian clusters in PCA with HapMap project sam-

ples), and variants (variant call rate <0.99, deviation from Hardy–Weinberg equilibrium with p < 1.03 10�6, or minor allele count <5).

We also excluded SNPs with >7.5% allele frequency difference with the representative reference datasets of Japanese ancestry,

namely the used the population-specific imputation reference panel of Japanese (N = 1,037) combined with 1KG Project Phase3v5

samples (N = 2,504)43,44 and the allele frequency panel of Tohoku Medical Megabank Project.45 We used SHAPEIT4 software

(v4.2.1)61 for the haplotype phasing of genotype data. After phasing, we used Minimac4 software for genome-wide genotype impu-

tation. We used the aforementioned population-specific imputation reference panel of Japanese (N = 1,037) combined with 1KG

Project Phase3v5 samples (N = 2,504). We set an imputation quality (R2) of 0.3 and 0.7, respectively for the scLinaX analysis and

eQTL analysis. We used a relaxed threshold in the scLinaX analysis because the genotype can be also confirmed by the allele infor-

mation of the scRNA-seq reads. Since scRNA-seq data was generated in the genome build of GRCh38, we performed a liftover with

Picard software.

Pre-processing of the PBMC 10x multiome data
PBMC 10x multiome data was downloaded from the web repository of the 10x Genomics (https://www.10xgenomics.com/

resources/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-2-0-0). The count

matrix for the RNA data and fragment data for the ATAC data were jointly processed with the Signac software (v1.9.0).62 First, cells

satisfying all of the following criteria were kept for the analysis; ATAC tag count <100,000, ATAC tag count >25,000, RNA count

<25,000, RNA count >1,000, nucleosome signal <2, TSS enrichment >1, percent mitochondrial genes ["̂ MT-"] < 25, percent hemo-

globin genes ["̂ HB[̂ (P)]"] < 0.1, and percent platelet genes (PECAM1 and PF4) < 0.25. Then, ATAC peaks were called with macs2

through the CallPeaks() function of the Signac and converted into a count matrix. Putative doublets were removed using

DoubletFinder (v2.3.0) and scds (v1.14.0) based on the RNA information. RNA data were scaled and transformed using the
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SCTransform() function and subjected to a PCA analysis with the top 2,000 highly variable genes. ATAC data was subjected to

normalization and dimension reduction based on the latent semantic indexing as implemented in the Signac. Cell type annotation

was assigned to each cell by multimodal reference mapping with a Multimodal PBMC reference dataset (https://atlas.fredhutch.

org/data/nygc/multimodal/pbmc_multimodal.h5seurat) using the FindTransferAnchors() and TransferData() functions. Cells pre-

dicted as platelets or erythrocytes were removed from the analysis. Finally, joint UMAP visualization from RNA (top 50 PCs) and

ATAC (top 2–40 LSI components) data was generated by the FindMultimodalNeighbors() function followed by the RunUMAP() func-

tion. Peak information was visualized with the CoveragePlot() function in Signac.

Pre-processing of the scRNA-seq data for a sample with a karyotype of XXY
Library preparation, sequencing, and generation of the count matrix were performed as done for the Japanese dataset. Then a count

matrix generated by Cell Ranger 6.0.0 was subjected to a QC with the Seurat R package (v4.3.0). First, cells satisfying all of the

following criteria were kept for the analysis; RNA count <25,000, RNA count >1,000, RNA features >200, nucleosome percent mito-

chondrial genes ["̂ MT-"] < 12, percent hemoglobin genes ["̂ HB[̂ (P)]"] < 0.1, and percent platelet genes (PECAM1 and PF4) < 0.25.

Putative doublets were removed using DoubletFinder (2.3.0) and scds (v1.14.0) based on the RNA information. RNA data were scaled

and transformed using the SCTransform() function and subjected to a PCA analysis with the top 2,000 highly variable genes. Cell type

annotation was assigned to each cell by multimodal reference mapping with the Multimodal PBMC reference dataset using the Find-

TransferAnchors() and TransferData() functions. Cells predicted as platelets or erythrocytes were removed from the analysis.

Pseudobulk DEG analysis
First, pseudobulk raw UMI count data was generated by aggregating the raw UMI counts from all of the cells for each cell type. Sam-

ples with at least five cells were used for the analysis. Then, pseudobulk raw UMI count data was subjected to DESeq2 (v1.38.0)51 for

the DEG analysis. The formulas for the DEG analysis were the following; gene expression � sex + age + cell count + library (+ cell

proportion of the CD4+ T, CD8+ T, gdT, MAIT, NK, B, Plasma B, Monocyte, cDC, and pDC in the cell proportion adjusted analysis;

AIDA dataset), gene expression� sex + disease (COVID-19 or healthy control) + age + cell count (Japanese dataset). DEGs were the

genes satisfying FDR <0.05 calculated by the DESeq2. Throughout this paper, annotation from a previous study2 was used for the

comparative analysis across the XCI statuses.

Single-cell level DEG analysis
We performed single-cell level regression analysis based on the linear mixed model by modifying the method implemented in a pre-

vious study.66 To represent the continuous state of each cell, we used batch-corrected PCs calculated by harmony (v0.1 for the Jap-

anese dataset) or harmonypy (v 0.0.6 for the AIDA dataset) from the top 30 original PCs. The negative binomial model was fitted with

the following formula using glmer.nb() function in the lme4 R library (1.1_31); gene expression (raw UMI count) � sex + age +%mito-

chondrial gene + log10(total UMI count of the cell) + PC1-10 of the raw data + (1 | library) + (1 | individual) (for the evaluation of themain

effect with the AIDA dataset), gene expression (raw UMI count) � sex + age + %mitochondrial gene + log10(total UMI count of the

cell) + PC1-10 of the raw data + batch corrected PC 1–10 + sex 3 batch corrected PC 1–10 + (1 | library) + (1 | individual) (for the

evaluation of the interaction effect with the AIDA dataset), gene expression (raw UMI count)� sex + age + disease +%mitochondrial

gene + log10(total UMI count of the cell) + PC1-10 of the raw data + (1 | individual) (for the evaluation of the main effect with the Jap-

anese dataset), gene expression (raw UMI count)� sex + age + disease +%mitochondrial gene + log10(total UMI count of the cell) +

PC1-10 of the raw data + batch corrected PC 1–10 + sex3 batch corrected PC 1–10 + (1 | individual) (for the evaluation of the inter-

action effect with the Japanese dataset). In the evaluation for the main effect, the contribution of the sex to the model was evaluated

by the likelihood ratio test. In the evaluation of the interaction effect, the contribution of the sex 3 batch corrected PC 1–10 to the

model was evaluated by the likelihood ratio test. For the calculation of the single-cell level effect sizes of the sex, we summed up

the effect sizes of the sex and sex 3 batch corrected PC 1–10 in the interaction effect analysis as done in the previous study.

Implementation of scLinaX and scLinaX-multi
Generation and QC of the single-cell level ASE profile

First, single-cell level ASE profiles were generated by cellsnp-lite software49 (v 1.2.3) for each sample.While cellsnp-lite takes genotype

data as input, it can also call genotype data from scRNA-seq data. Therefore, we used imputed genotype data based on the SNP array

when available, and used genotype data internally called from scRNA-seq data in other cases. Then, allele frequency and gene infor-

mation were assigned to the SNPs included in the single-cell level ASE profiles by Annovar (Mon, 8 Jun 2020),47 and only the common

SNPs (MAF >0.01 in thematched population of the 1KG dataset; AIDA dataset, EAS and SAS; Japanese dataset, EAS; Tabula Sapiens

dataset, ALL; 10xmultiomedataset,ALL;Asian sample in theSLEdataset,EAS;Europeansample in theSLEdataset, EUR;XXYsample,

EAS) on the gene (intronic, UTR5, UTR3, exonic, ncRNA_exonic, ncRNA_intronic, and splicing) was retained for the analysis.

QC of the candidate reference genes used in scLinaX

In scLinaX, we used SNPs on the genes previously annotated as completely subjected to XCI (nonPAR inactive) as candidates for the

reference SNPs.23 We also set QC criteria for these genes to exclude potentially escaping genes. First, SNPs on nonPAR inactive

genes (candidate reference genes) expressed in more than 50 cells were extracted and designated as reference SNP candidates.

For each SNP, pseudobulk ASE profiles across all the expressing SNPs were calculated separately for cells expressing the ref allele
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and alt allele, and these were added together after flipping the ref and alt allele counts for the cells expressing the alt allele. In other

words, we made a completely skewed XCI in silico. For each sample-reference gene pair, the one with the highest number of cells

was retained to remove the redundancy. For the pseudobulk ASE profiles, the SNPs with a total allele count of R10 were retained,

and the minor allele count ratio was calculated as a ratio of the expression from Xi. The SNPs on the reference gene of each pseu-

dobulk profile were excluded from the pseudobulk profiles to prevent the underestimation of the ratio of the expression from Xi. The

following two metrics were then calculated for each candidate reference gene. (1) The average ratio of the expression from Xi for the

gene when SNPs on the other candidate reference genes were used as references (2) The average of the ratio of the expression from

Xi across the other candidate reference genes when the SNPs on the genewas used as reference. Note that when there weremultiple

SNPs on the same genes derived from the same sample and reference gene, only one with the highest total allele count was used for

the calculation of themetrics. Since there could be a potential escape for genes with highmetrics values, we used a threshold of 0.05,

0.075, and 0.1 respectively for the AIDA dataset, Japanese dataset, and SLE dataset, and filtered out the potential escapee genes

from the candidate reference SNP list. For the Tabula Sapiens, 10x Multiome, and XXY karyotype data, we used the QC results from

the AIDA dataset because there were a relatively small number of samples.

Grouping cells based on which X chromosome is inactivated

After defining the candidate reference gene set, we performed the scLinaX analysis. First, SNPs on the candidate reference genes

expressed in more than 50 (PBMC scRNA-seq dataset), 30 (10x multiome dataset), or 100 (Tabula Sapiens dataset) cells were ex-

tracted for each sample. For each SNP, pseudobulk ASE profiles were calculated separately for cells expressing the ref alleles and alt

alleles, and these were added together after flipping the ref and alt allele counts for the cells expressing alt alleles. Note that scLinaX

had the option to remove known escapee genes from the pseudobulk ASE profiles (throughout this paper, this option was set as

active). Then, pseudobulk ASE profiles generated from the same samples were subjected to the pairwise Spearman correlation

calculation. We set a threshold for the P-values (<0.05 for all of the datasets) and correlation coefficients (absolute values >0.5 for

the PBMC datasets and >0.3 for the Tabula Sapiens dataset) for defining the significant correlations. We generated a group of

SNPs that had connected by at least one significant correlation. Then we defined a group of reference SNP alleles on the same X

chromosome based on the significant correlations within the group. When assuming the XCI, a significant positive correlation meant

that the reference alleles of the two reference SNPs were on the same X chromosomes and a significant negative correlation meant

that the reference alleles of the two reference SNPs were on the different X chromosomes. If the contradiction happened during the

processing of the correlation information within a group of SNPs (e.g., alternative alleles of the three reference SNPs are predicted to

be on the different X chromosomes), such a group of SNPs was removed from the analysis. After defining the group of alleles on the

same X chromosome, we divided the cells into three groups; (i) cells expressing only alleles of a group, (ii) cells expressing only alleles

of another group, (iii) cells expressing no reference alleles or both groups of the reference alleles.

Calculation of the ratio of the expression from Xi

We calculated the pseudobulk ASE profiles across cell groups (i) and (ii) separately and combined them after flipping the ref and alt

allele counts for the pseudobulk profiles from group (ii) cells. Then, we calculated the ratio of the expression from Xi as a ratio of the

minor allele count under the assumption that the expression from Xi was lower than that from Xa.1 Only the positions withR10 total

allele counts were considered. When multiple transcribed SNPs were detected for a gene in a sample, one with the deepest allele

counts was selected to evaluate the ratio of the expression from Xi for the gene. When calculating the ratio of the expression

from Xi per cell cluster, pseudobulk ASE profiles were generated from cells within the cell cluster while the definition of the Xi/Xa al-

leles was based on the pseudobulk ASE profiles from all cells.

Summarization of the scLinaX results for the AIDA and Japanese dataset

To obtain the ratio of the expression from Xi for each gene, we calculated the average across the samples that had the transcribed

SNPs with R10 total allele counts on that gene. Only the genes for which R3 samples were used for calculating the average were

considered.

Evaluation of the performance of scLinaX with the down-sampled Japanese dataset

To evaluate the performance of scLinaX with different cell numbers and UMI per cell, we performed scLinaX analysis with down-

sampled Japanese dataset. We chose 22 samples which had R2,000 cells with at least 4,000 UMI counts. Bam files were down-

sampled to the cell numbers of 100, 200, 300, 400, 500, 750, 1000, 1250, 1500, 1750, 2000, and UMI count per cell of 500, 1000,

1500, 2000, 2500, 3000, 3500, 4000. In the actual implementation, the number of extracted UMI for each cell were determined as

original UMI count from the X chromosome3 target UMI count/original all UMI count, which enabled us to perform analysis compu-

tationally efficiently with bam files only for X chromosome. Then, scLinaX was applied to the down-sampled data with the reference

gene sets same to the original scLinaX analysis.

Implementation of scLinaX-multi and application to the PBMC 10x multiome data

scLinaX-multi is an extension of scLinaX to the multi-modal dataset. In this study, we estimated which X chromosome was inacti-

vated from the RNA-level information and evaluated escape at the chromatin accessibility level by using the 10x multiome dataset.

First, cells were grouped into the following three groups; (i) cells expressing only alleles of a group, (ii) cells expressing only alleles of

another group, (iii) cells expressing no reference SNPs or both groups of the alleles, same as the scLinaX procedure. Then, single-cell

level allele-specific chromatin accessibility profiles were generated by cellsnp-lite software. In this study, we used genotype data

called from the single-cell ATAC data, while it can also take other types of genotype data. Allele frequency and gene information

were assigned to the SNPs included in the single-cell level allele-specific chromatin accessibility profiles and only the common
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SNPs (MAF >0.01 in the 1KG ALL dataset) on the ATAC peaks were retained for the analysis. We calculated the pseudobulk allele-

specific chromatin accessibility profiles across cell groups (i) and (ii) separately and combined them after flipping the ref and alt allele

counts for the pseudobulk profiles from group (ii) cells. Finally, we calculated the ratio of the Xi-derived accessible chromatin as a ratio

of theminor allele count. Only the positions withR10 total allele counts were considered. When calculating the ratio of the Xi-derived

accessible chromatin per cell cluster, pseudobulk allele-specific chromatin accessibility profiles were generated from cells within the

cell cluster while the definition of the Xi/Xa allele was based on the pseudobulk allele-specific chromatin accessibility profiles from all

cells. Whenmultiple transcribed SNPswere detected for a peak, one with the deepest allele counts was selected to evaluate the ratio

of the Xi-derived accessible chromatin. Exceptionally, when visualizing escape at the chromatin accessibility level (Figure 4F), we

retained both of the SNPs on the peaks at the TSS of the USP9X gene.

Summarization of the scLinaX results for the Tabula Sapiens dataset

We used the processed Tabula Sapiens dataset contributed by the Tabula Sapiens Consortium (https://tabula-sapiens-portal.ds.

czbiohub.org).20 For the calculation of the ratio of the expression from Xi, we aggregated the allele counts from Xi and Xa across sam-

ples for summarization. The annotation of the organs and cell type was derived from the previous study, while the cell type of ’im-

mune’ was divided into the ’Lymphoid’, ’Myeloid’, and ’Other blood cell’ considering the difference of escape across immune cells

identified in this study. In the pairwise comparisons of escape across organs and cell types, genes detected in both organs/cell types

1 and 2 were extracted, and the ratio of the genes with a higher ratio of the expression from Xi in the organ/cell type 1 was used as an

indicator of the difference of escape between the organs/cell types. In addition, comparisons of the ratio of the expression from Xi

were performed at the individual level. We used only the TSP2 sample for the evaluation of the difference in escape across organs

because major lymphoid tissues were derived solely from the TSP2.

Case-control comparisons of the ratio of the expression from Xi

For the generation of the scRNA-seq bam files of the SLE dataset,26 we downloaded the fastq files and processed them with Cell

Ranger 6.1.2. For the case–control comparisons of escape from XCI with the COVID-19 and SLE datasets, we considered the tran-

scribed SNPs withR5 total allele counts to increase the sample size. We evaluated the genes (i) considered inR5 case samples, (ii)

considered inR5 control samples, and (iii) the ratio of the expression from Xi calculated from the aggregated allele count data across

all samples wasR0.1. We used a negative binomial model (glm.nb() function in the MASS R library [v7.3_58.1]) to evaluate the case–

control differences of escape using the following formula; allele counts from Xi� disease status + log(total allele count) (offset term).

scLinaX analysis with a male sample with a karyotype of XXY

As input genotype data for scLinaX, we used imputed genotype data of the X chromosome (non-PAR region) which were generated

and processed in the same manner as the genotype data of the Japanese dataset. Since a single sample was available for this anal-

ysis, the ratio of the expression from Xi in the sample was presented as it was.

PacBio HiFi sequencing for phasing
To evaluate the accuracy of phase information inferred from scLinaX, PacBio HiFi long-read whole-genome-sequencing was

performed for the four samples from the Japanese dataset at Takara Bio Corporation. DNA samples were sheared targeting the

size of 20kb using Megaruptor 3 (Diagenode). SMRTbell libraries were prepared with the SMRTbell Express Template Prep Kit 2.0

according to the manufacturer’s protocols. Fragments were size-selected using SageELF (Sage Science). Libraries were sequenced

on the Sequel II (Pacific Bioscience) system using the Sequel II Binding Kit 2.0 and Sequel II Sequencing Kit 2.0 (mean coverage =

16.03). Based on the sequenced subreads, circular consensus sequence (CCS) reads were generated using SMRT Link (v9.0.0,

Pacific Bioscience). CCS reads were aligned against GRCh38 reference genome using pbmm2 (v1.7.0) (https://github.com/

PacificBiosciences/pbmm2). Then, generated bam files were utilized for physical phasing with whatshap63 (v1.4).

Pseudobulk eQTL analysis with the AIDA and Japanese dataset
Raw pseudobulk gene expression data was TMM-normalized and log2-transformed with the edgeR R library (v3.40.0).53 The genes

with (i) raw UMI count R5 in more than 20% of the samples and (ii) count per million (CPM)R 0.2 in more than 20% of the samples

were filtered out as done in a previous study.67 Then cis-eQTL was identified by tensorQTL (v1.0.8)68 with the ’–mode cis’ option to

obtain the list of the significant eQTL signals andwith the ’–mode cis_nomial’ option to obtain the nominal P-values for all of the gene–

cis-variant pairs. tensorQTL was applied for (i) all sample data, (ii) only female data, and (iii) only male data with the ’–maf_threshold

0.05’ option. Sex (only for all sample data analysis), age, cell count, library, genotype PCs 1–10, and gene expression PCs 1–10 were

included as covariates for the AIDA dataset analysis. Sex (only for all sample data analysis), age, disease, cell count, genotype PCs

1–10, and gene expression PCs 1–10 were included as covariates for the Japanese dataset analysis. Genotype PCs were calculated

from the SNP array data before imputation by using PLINK2. Gene expression PCs were calculated from the TMM-normalized gene

expression data using the prcomp() function in the R. Genotypes of the variants on the X chromosomewere coded as 0/1/2 in females

and 0/2 in males. We defined eQTL signals satisfying p < 5 3 10�8 in the AIDA all sample analysis as significant eQTL signals.

Escape QTL analysis with the AIDA dataset
Escape QTL analysis was performed for the known escapee genes and the SEPTIN6 gene which were evaluated inR50 individuals.

Then cis-escape QTL was identified by tensorQTL (v1.0.8)68 with the ’–mode cis_nomial’ and ’–maf_threshold 0.05’ options to obtain

the nominal P-values for all of the gene–cis-variant pairs. Age, genotype PCs 1–10, SNPs represent the escapee genes, and total
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allele count of the SNPs were included as covariates. Genotype PCs were calculated from the SNP array data before imputation by

using PLINK2 as described above. We defined the significance threshold as p < 5.1 3 10�7 (0.05/97,120).

Single-cell level dynamic eQTL analysis
We performed a single-cell level dynamic eQTL analysis based on the linear mixed model by modifying the method implemented in

the previous study66 to evaluate the heterogeneity of the effects of the eQTL variants (rs6641874 and rs6641601) on the PRKX gene

expression. As done in the single-cell level DEG analysis, we used batch-corrected PCs calculated by harmonypy from the top

30 original PCs to represent the continuous state of each cell. The negative binomial model was fitted with the following formula

using glmer.nb() function in the lme4 R library; gene expression (raw UMI count) � genotype + sex + age + %mitochondrial

gene + log10(total UMI count) + original PC1-10 of the scRNA-seq data + genotype PC 1–10 + batch corrected PC 1–10 of the

scRNA-seq data + genotype3 batch corrected PC 1–10 of the scRNA-seq data + (1 | library) + (1 | individual). Genotypes of the var-

iants on the X chromosome were coded as 0/1/2 in females and 0/2 in males. In the evaluation of the interaction effect, the contri-

bution of the genotype 3 batch corrected PC 1–10 to the model was evaluated by the likelihood ratio test. For the calculation of

the single-cell level effect sizes of the eQTL effect, we summed up the effect sizes of the genotype and genotype3 batch corrected

PC 1–10 of the scRNA-seq data in the interaction effect analysis as done in the previous study.

GWAS for the blood-related traits with the BBJ cohort
BBJ is a prospective biobank that collaboratively recruited approximately 200,000 patients withR1 of 47 diseases and collected DNA,

serum samples, and clinical information from12medical institutions in Japan between 2003 and 2007.42 The Japanese samples in BBJ

were genotyped with the Illumina HumanOmniExpressExome BeadChip or a combination of the Illumina HumanOmniExpress and

HumanExomeBeadChips. Quality control of samples and genotypes was conducted as described elsewhere.43We analyzed subjects

of Japanese ancestry identified by a PCA analysis. Genotype data were imputed with the aforementioned 1KG Project phase3v5 ge-

notype data and Japanese whole-genome sequencing data using Minimac3. As for the blood-related trait data (white blood cell num-

ber [WBC], lymphocyte number [LYM], monocyte number [Mono], eosinophils number [EOS], basophils number [BAS], neutrophils

number [NEU], hemoglobin [Hb], hematocrit [Ht], mean corpuscular volume [MCV], red blood cell number [RBC], and platelet number

[PLT]), we generally used the valuesmeasured at the participants’ first visit to the hospitals, and excluded values outside three times the

interquartile range (IQR) of the upper or lower quartile across participants as previously described (Table S14).31 Then, blood-related

trait data were subjected to the rank-based inverse normal transformation separately for males and females. We conducted X chro-

mosome GWAS for each blood-related trait using REGENIE (v3.2.7).37 We included age, sex, and the top 20 principal components

as covariates. Genotypes of the variants on the X chromosome were coded as 0/1/2 in females and 0/2 in males.

Comparisons of the GWAS effect sizes between sexes with the BBJ and UKB cohort
GWAS summary statistics for theUKB cohort were downloaded from theweb repository (Nealelab/UK_Biobank_GWAS: v2; Zenodo,

https://doi.org/10.5281/zenodo.8011558). Fixed-effect meta-analysis across sexes or cohorts was performed with the metafor

R package (v4.2_0). The standard error of the ratio between the female effect sizes (bfemale) and male effect sizes (bmale) was calcu-

lated based on the law of error propagation as previously done.7

SE2 =

�bbfemalebbmale

�2
 
SE2ðbbmaleÞbbmale

2
+
SE2ðbbfemaleÞbbfemale

2

!

The significance of the difference between the female effect sizes (bfemale) andmale effect sizes (bmale) was evaluated by calculating

the following statistics which follow a c2-distribution.

ðbbfemale � bbmaleÞ2
SE2ðbbmaleÞ+SE2ðbbfemaleÞ
Evaluation of the colocalization between the GWAS and eQTL signals
To evaluate the colocalization between the lymphocyte count GWAS signals and PRKX gene eQTL signals, we used the coloc

R package (v5.2.2).50 Since the reference human genome was different between the GWAS (GRCh37) and eQTL (GRCh38) analysis,

we performed a liftover with the bcftools48 (v.1.16). Variants within 1,000,000 bp from rs6641874 were used as inputs and

PP.H4 > 0.80 was considered as a colocalization of the signals.

QUANTIFICATION AND STATISTICAL ANALYSIS

Please refer to figure legends and method details for details of statistical analysis. Unless specified, statistical tests were conducted

as two-sided. Number of the samples used in the analyses are described in Tables S1, S2, S7, and S14. Throughout this study, the

boxplot indicates the median values (center lines) and IQRs (box edges), with the whiskers extending to the most extreme points

within the range between (lower quantile � [1.5 3 IQR]) and (upper quantile + [1.5 3 IQR]).
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