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Previously, we have demonstrated that bridge proteins comprised of avian leukosis virus (ALV) receptors
fused to epidermal growth factor (EGF) can be used to selectively target retroviral vectors with ALV envelope
proteins to cells expressing EGF receptors. To determine whether another type of ligand incorporated into an
ALV receptor-containing bridge protein can also function to target retroviral infection, the TVA-VEGF110
bridge protein was generated. TVA-VEGF110 consists of the extracellular domain of the TVA receptor for ALV
subgroup A (ALV-A), fused via a proline-rich linker peptide to a 110-amino-acid form of vascular endothelial
growth factor (VEGF). This bridge protein bound specifically to its cell surface receptor, VEGFR-2, and
efficiently mediated the entry of an ALV-A vector into cells. These studies indicate that ALV receptor-ligand
bridge proteins may be generally useful tools for retroviral targeting approaches.

The ability to target viral infection only to specific cell types
remains one of the formidable challenges to the use of retro-
viral vectors for gene therapy. We are developing avian leuko-
sis virus (ALV) receptor-ligand bridge proteins as tools to
deliver retroviral vectors to specific cell types. The feasibility of
this approach was demonstrated using bridge proteins contain-
ing the mature form of human epidermal growth factor (EGF)
fused to the extracellular domains of either the TVA receptor
or the TVBS3 receptor for subgroups B and D of ALV. These
bridge proteins mediated the highly selective infection of cells
that express EGF receptors (3, 23). Recent work by another
group has demonstrated adenovirus targeting by using a simi-
lar type of bridge protein consisting of the extracellular domain
of the coxsackievirus and adenovirus receptor fused to EGF
(8).

In the present study, we have tested whether vascular endo-
thelial growth factor (VEGF) can also function as a retroviral
targeting ligand when it is introduced into the context of a
TVA-containing bridge protein. VEGF is a member of the
cysteine-knot growth factor superfamily and is produced as an
antiparallel disulfide-linked homodimer with symmetrical re-
ceptor-binding sites located at opposite ends of the molecule
(27). Alternative splicing of a common primary mRNA tran-
script generates differently sized ligand isoforms: VEGF121,
VEGF145, VEGF165, VEGF189, and VEGF206 (27). The
murine VEGF110 form that was used in this study consists of
the N-terminal 110 amino acids of VEGF165, with the C-
terminal heparin-binding domain (7) removed to reduce non-
specific binding of the bridge protein to cell surfaces.

Three different types of VEGF receptors have been identi-

fied: VEGFR-1, VEGFR-2, and VEGFR-3 (27). VEGF recep-
tors are selectively expressed on the surfaces of endothelial
cells (27). In addition to these three receptors, the NRP-1
protein that is a receptor for collapsins and semaphorins is also
a receptor for VEGF165 (27). Compared to VEGF165,
VEGF110 has the same binding affinity for VEGFR-2, a lower
affinity for VEGFR-1, and does not bind to NRP-1 (15, 25).

VEGF is important to test as a potential ligand for retroviral
targeting because it binds to receptors that are expressed on
tumor vasculature. Solid tumors require the presence of a
network of blood vessels to obtain oxygen and nutrients for
their growth (10). To induce formation of new blood vessels, a
process termed angiogenesis, tumors express a variety of
growth factors, one of which is VEGF (5, 9, 12, 13, 14, 18, 22,
26). VEGF is known to specifically induce growth and migra-
tion of endothelial cells as well as to cause permeability of
blood vessels, and inhibitors of VEGF signaling retard tumor
growth in mice (11, 16, 19–21).

The TVA-VEGF110 protein consists of the extracellular
domain of TVA fused via a proline-rich hinge region to murine
VEGF110 (Fig. 1A). Additional bridge proteins were also gen-
erated, consisting of the extracellular domain of TVBS3 fused
via the same hinge region to either VEGF110 or the EGF-like
region of human heregulin-b1 (herb1), respectively (Fig. 1A).
Production of each bridge protein in the extracellular super-
natant of transiently transfected human 293 cells was con-
firmed after sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis and immunoblotting with a subgroup A- or a
subgroup B-specific surface (SU)-immunoglobulin fusion pro-
tein (SU-rIg) to detect TVA- and TVB-containing bridge pro-
teins, respectively, as described previously (3, 23). Under non-
reducing conditions, TVA-VEGF110 migrated as an 84- to
115-kDa protein species (Fig. 1B), consistent with it being a
disulfide-linked dimer like VEGF (see Fig. 1A legend for a
description of the expected molecular mass of this protein).
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Under reducing conditions, the TVBS3-containing bridge pro-
teins migrated at positions that were consistent with their ex-
pected monomeric molecular masses (Fig. 1C).

Flow cytometry was performed to analyze the binding of
TVA-VEGF110 to porcine aortic endothelial (PAE) cells that
express few or no VEGF receptors (17, 25, 28) or to transduced

PAE cells expressing mouse VEGFR-2 (PAE-VEGFR-2 cells).
PAE-VEGFR-2 cells were generated by transduction of PAE
cells with a VSV-G pseudotyped murine leukemia virus
(MLV) vector encoding VEGFR-2 [MLV(VSV-G)-VEGFR-
2]. The pseudotyped virus was produced from human 293T
cells plated at 60% confluence on 100-mm tissue culture plates.

FIG. 1. Construction and expression of retroviral receptor-ligand bridge proteins. (A) Recombinant genes encoding each bridge protein were
generated by PCR-based methods and introduced into the pCI-plasmid expression vector (Promega) as shown. The numbering schemes for the
amino acid residues of TVA, TVBS3, and heregulinb1 were taken from references 2 and 6 and GenBank accession number B43273, respectively.
The VEGF110 residues are described under GenBank accession number A44881. The positions of a proline-rich hinge region (PPPELLGGP) and
of a 2-amino-acid insertion (His-Gly) that resulted during the construction of the TVBS3-containing bridge proteins are indicated. The TVA-
VEGF110 monomer was expected to have a molecular mass ranging from 33 to 52 kDa because the primary amino acid sequence predicts a
22.4-kDa protein but the extracellular domain of TVA is subjected to extensive posttranslational modifications which add an additional 21 to 30
kDa to its apparent molecular mass (1, 2). Monomeric forms of TVBS3-VEGF110 and TVBS3-herb1 were expected to have molecular masses of
37 and 33 kDa, respectively, based on their primary amino acid sequences (28 and 24 kDa, respectively) and the presence of three putative N-linked
glycosylation sites in each protein. (B and C) Production of bridge proteins. Forty-five-microliter aliquots of extracellular supernatant taken from
transfected human 293 cells that expressed the bridge proteins, or from nontransfected cells (negative controls), were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis under either nonreducing (B) or reducing (C) conditions. The proteins were then transferred to a
nitrocellulose membrane and were probed with subgroup A-specific (panel B) or subgroup B-specific (panel C) SU-rIg fusion proteins and then
with a horseradish peroxidase-conjugated secondary antibody, as described previously (3, 23). The bridge proteins were then detected by enhanced
chemiluminescence.
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These cells were transiently transfected with 5 mg of pMD.G
plasmid encoding the VSV-G protein, 15 mg of pMMD.gagpol
plasmid encoding MLV Gag and Gag-Pol structural proteins
(24), and 15 mg of pSFG.Flk1 plasmid encoding VEGFR-2
(unpublished data). A 30%-confluent well of a six-well plate of
PAE cells was then incubated with 1 ml of MLV(VSV-G)-
VEGFR-2 in the presence of 8 mg of Polybrene per ml. The
resultant VEGFR-2-expressing cells were then isolated by flow
cytometric sorting after incubation with supernatants contain-
ing TVA-VEGF110 and SUA-rIgG, and then with a fluores-
cein isothiocyanate (FITC)-conjugated secondary antibody
(data not shown).

To assay for specific binding of TVA-VEGF110 to VEGF
receptor-expressing cells, 3.5 3 105 PAE-VEGFR-2 cells and
the same number of control PAE cells were incubated for 1 h
at 4°C with different amounts of a TVA-VEGF110-containing
supernatant that was supplemented with a control 293 cell-
conditioned medium to a total volume of 500 ml. The cells were
then washed with ice-cold phosphate-buffered saline (PBS)
(containing 2% fetal bovine serum) and then incubated with
SUA-rIgG and an FITC-conjugated secondary antibody and
subjected to flow cytometric analysis as described before (23).
Because the bound TVA-VEGF110 protein was detected with
a soluble SU reagent, these studies also established whether
the bridge protein can bind simultaneously to cell surface
VEGF receptors and to ALV subgroup A (ALV-A) SU. In-
deed, TVA-VEGF110 bound in a dose-dependent manner to
PAE-VEGFR-2 cells (Fig. 2A) but reproducibly bound only
weakly to PAE cells (Fig. 2B), perhaps indicating that these
cells do in fact express a small number of VEGF receptor(s).
These binding studies supported the idea that TVA-VEGF110
can serve as a bridge between cell surface VEGFR-2 and
ALV-A SU.

To formally show that TVA-VEGF110 binds to VEGFR-2,
competition binding experiments were performed in the pres-
ence of heterologous bridge proteins that either contained the
same (TVBS3-VEGF110) or different (TVBS3-herb1) ligand
moieties (Fig. 1). The competition binding experiments were

performed by incubating 3.5 3 105 PAE-VEGFR-2 cells at 4°C
for 1 h with 490 ml of extracellular supernatants that contained
equivalent amounts (as judged by quantitative chemilumines-
cence using a Bio-Rad FluorS instrument) of either TVBS3-
herb1 or TVBS3-VEGF110. A 10-ml aliquot of a TVA-
VEGF110-containing supernatant was then added and the
cells were incubated at 4°C for an additional hour. The cells
were then washed in PBS and analyzed by flow cytometry using
SUA-rIgG and the FITC-conjugated antibody as before. TVA-
VEGF110 binding was blocked by preincubation with TVBS3-
VEGF110 but not with TVBS3-herb1 (Fig. 2C). These data
confirm that TVA-VEGF110 binds specifically to VEGFR-2
expressed at the surface of PAE-VEGFR-2 cells.

To determine whether TVA-VEGF110 can mediate ALV-A
entry when bound to VEGFR-2, approximately 105 PAE-
VEGFR-2 cells were incubated for 1 h at 4°C with increasing
amounts of a TVA-VEGF110-containing supernatant that was
made up to a total volume of 500 ml with control supernatant
taken from nontransfected human 293 cells. The cells were
then washed with ice-cold medium and incubated with 500 ml
of ice-cold medium containing 5 ml of a 100-fold concentrated
stock of an ALV-A vector RCASBP(A)-EGFP encoding the
enhanced green fluorescent protein, which was prepared as
described elsewhere (24).

Approximately 72 h after viral challenge, the cells were
washed with PBS and removed from plates with Ca21- and
Mg21-free PBS containing 1 mM EDTA and 7 mM propidium
iodide. The infected cells were then identified by flow cytom-
etry and dead cells that had taken up propidium iodide were
excluded from the analysis by electronic gating. These studies
showed that TVA-VEGF110 rendered PAE-VEGFR-2 cells
susceptible to ALV-A infection in a dose-dependent manner
(Fig. 3A).

To determine the efficiency and specificity of TVA-
VEGF110-dependent infection, parental PAE cells and
PAE-TVAsyn cells which express a transmembrane form of
TVA were also challenged with the ALV-A vector. PAE-TVAsyn

cells were generated by transducing PAE cells with an MLV

FIG. 2. TVA-VEGF110 binds specifically to cells that express VEGFR-2. PAE-VEGFR-2 cells (A) and PAE cells (B) were incubated with
increasing amounts of a TVA-VEGF110-containing extracellular supernatant. (C) Prior to incubation with TVA-VEGF110, PAE-VEGFR-2 cells
were incubated with extracellular supernatant that contained either TVBS3-VEGF110, TVBS3-herb1, or no TVB-ligand bridge protein. Following
these treatments the TVA-VEGF110 protein that was bound to the cells was detected by flow cytometric analysis using a subgroup A-specific
SU-rIg fusion protein and an FITC-conjugated secondary antibody as described previously (23). These experiments were performed three times
with similar results, and results of a representative example are shown.
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vector encoding a synthetic transmembrane form of the TVA
receptor (2). The RCASBP(A)-EGFP titer that was obtained
with these cells was approximately 7.5 3 107 infectious units/ml
of 100-fold-concentrated virus (defined as 100%, Table 1).
Strikingly, TVA-VEGF110-mediated infection of PAE-
VEGFR-2 cells was only 11.3-fold less than the level seen with
the control TVA-expressing cells (Table 1). Furthermore, in
the absence of TVA-VEGF110, only low levels of ALV infec-
tion were observed (Table 1), consistent with the previously
published “background” levels of ALV infection seen in vari-
ous mammalian cell types (4). The addition of TVA-VEGF110
to the control PAE cells did lead to a slight enhancement of
viral entry (Table 1), a result which again indicates that these
cells may express a low number of VEGF receptors (Fig. 2B).

To confirm that the TVA-VEGF110–VEGFR-2 interaction
is necessary for the enhanced viral entry seen with PAE-

VEGFR-2 cells, we attempted to block this infection by incu-
bating these cells at 4°C for 30 min with equivalent amounts of
TVBS3-VEGF110 or TVBS3-herb1 prior to adding the TVA-
containing bridge protein as before (Fig. 2C). The cells were
then challenged with RCASBP(A)-EGFP and analyzed by flow
cytometry as described above. TVA-VEGF110-dependent in-
fection of PAE-VEGFR-2 cells was inhibited by TVBS3-
VEGF110 but not by TVBS3-herb1, thereby confirming that
the VEGF110-VEGFR-2 interaction is essential for bridge
protein-enhanced viral entry (Fig. 3B).

Taken together, the studies presented in this report clearly
demonstrate that targeted ALV-A vector entry can be
achieved through the TVA-VEGF110–VEGFR-2 interaction.
TVA-VEGF110 bound specifically to cells that express
VEGFR-2 and mediated efficient infection of these cells by an
ALV-A vector. This system for viral targeting represents an
attractive model for the development of retroviral vectors that
can be targeted to tumor vasculature. Furthermore, these find-
ings, coupled with the demonstration of retroviral targeting via
bridge proteins containing the EGF ligand (3, 23) or a single-
chain antibody raised against a tumor-specific form of the EGF
receptor (24), indicate that ALV receptor-containing bridge
proteins may be generally useful reagents for cell-type-specific
retroviral targeting.
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