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Abstract

Background: In spinal revision surgery, previous pedicle screws (PS) may need to be

replaced with new implants. Failure to accurately identify the brand of PS-based

instrumentation preoperatively may increase the risk of perioperative complications.

This study aimed to develop and validate an optimal deep learning (DL) model to

identify the brand of PS-based instrumentation on plain radiographs of spine (PRS)

using anteroposterior (AP) and lateral images.

Methods: A total of 529 patients who received PS-based instrumentation from seven

manufacturers were enrolled in this retrospective study. The postoperative PRS were

gathered as ground truths. The training, validation, and testing datasets contained

338, 85, and 106 patients, respectively. YOLOv5 was used to crop out the screws'

trajectory, and the EfficientNet-b0 model was used to develop single models (AP, Lat-

eral, Merge, and Concatenated) based on the different PRS images. The ensemble

models were different combinations of the single models. Primary outcomes were

the models' performance in accuracy, sensitivity, precision, F1-score, kappa value,

and area under the curve (AUC). Secondary outcomes were the relative performance

of models versus human readers and external validation of the DL models.

Results: The Lateral model had the most stable performance among single models.

The discriminative performance was improved by the ensemble method. The AP

+ Lateral ensemble model had the most stable performance, with an accuracy of
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0.9434, F1 score of 0.9388, and AUC of 0.9834. The performance of the ensemble

models was comparable to that of experienced orthopedic surgeons and superior to

that of inexperienced orthopedic surgeons. External validation revealed that the Lat

+ Concat ensemble model had the best accuracy (0.9412).

Conclusion: The DL models demonstrated stable performance in identifying the

brand of PS-based instrumentation based on AP and/or lateral images of PRS, which

may assist orthopedic spine surgeons in preoperative revision planning in clinical

practice.
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1 | INTRODUCTION

Pedicle screw (PS)-based instrumentation is the commonly used inter-

nal fixation device for the treatment of spinal degenerative disease,

deformities, tumors, and fractures.1 However, symptomatic adjacent

segment degeneration2 and failed back surgery syndrome3 are com-

mon reasons for revision surgery. In spinal revision surgery, previous

implants may need to be removed and replaced with new implants.

Hence, orthopedic surgeons must accurately identify the brand of the

existing implants and gather the appropriate surgical equipment for

implant removal, since the universal removal set is expensive and may

not be available in all hospitals. Failure to accurately identify PS-based

instrumentations preoperatively may increase the surgical time and

the risk of perioperative complications.

In clinical practice, implants are typically identified using plain

radiographs of the spine (PRS). Deep learning (DL) models have been

applied to identify fractures on plain radiographs with expert-level

accuracy.4–7 Additionally, numerous studies suggested the potential

of DL models to recognize knee and hip arthroplasties,8–10 and cervi-

cal plating systems.11,12 Yang et al.13 reported that a variety of DL

models are effective for one-segment spinal implant identification,

yielding 76.0%–98.7% precision and 72.0%–98.4% recall; however,

the performance of DL models in identifying spinal implants in multi-

segment fixation has not been investigated yet. While DL models

have been used to identify the shaft of PS in the PRS14 and the sur-

rounding pedicle anatomy in CT scans,15 these studies did not address

the ability of DL models to identify the device manufacturer. More-

over, the generalizability of the ground truth plays an important role

in the performance of DL models.7

We hypothesized that the DL model may have stable perfor-

mance in identifying PS-based instrumentation in the PRS and that

the ground truth of different images on the PRS may affect the DL

model performance. The objectives of this study were as follows:

(1) to develop various DL models based on the different ground truths

of PRS on anteroposterior (AP) and lateral images and to evaluate

their performance in identifying different brands of PS-based instru-

mentation; (2) to investigate the effect of PRS at AP or lateral images

on the performance of the DL models; (3) to determine whether

ensemble methods improve the model's performance and validate the

optimal model; and (4) to compare the performance of our models

with human readers and assess the performance of the DL models via

external validation.

2 | MATERIALS AND METHODS

2.1 | Enrolled dataset

This study protocol was approved by the Institutional Review

Board of our institution (2022-05-007AC). The medical records of

patients receiving PS-based instrumentation surgery from January

1, 2018, to June 30, 2020, at our institution were retrospectively

reviewed. The exclusion criteria included mismatched brands

between instrumentation and crosslinks (n = 25) and the presence

of two brands of instrumentation in one PRS (n = 13). The corre-

sponding postoperative PRS on AP and lateral images and the dif-

ferent brands of inserted implants were gathered as our ground

truths. A total of 529 patients were included for the development

of our DL models.

Seven types of PS-based instrumentation commonly used in our

clinical institution were considered as ground truths, including (1) A-

spine SmartLoc Evolution (EVO) (Smartlock Omega; A-Spine Inc., New

Taipei City, Taiwan), (2) Armstrong (Paonan Biotech [BIOMECH],

Taipei City, Taiwan), (3) Gezen (BioLife Medical Device Inc, Hsinchu

City, Taiwan), (4) CDH (CDM8; Medtronic, Minneapolis, MN, USA),

(5) Expedium (DePuy Synthes Inc., West Chester, PA, USA), (6) NOVA

(BAUI Biotech Co., Ltd., New Taipei City, Taiwan), and (7) Xia 3 (Stry-

ker Spine, Allendale, NJ, USA) (Figure 1).

2.2 | Plain radiography technique

The radiography machine used a high-voltage generator (UD150B-40;

Shimadzu Corp., Kyoto, Japan) with a voltage of 94 kVp and an aver-

age current of 56 mAs for 360 ms. Computer software was used to

investigate instrumentation on PRS in the AP and lateral projections
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(Smart Viewer 3.2; Taiwan Electronic Data Processing Corp., Taipei

City, Taiwan).

2.3 | Development of deep learning models

The pre-trained You Only Look Once version 5 (YOLOv5, arXiv) was

used to identify and crop out the trajectory of PS in PRS to enhance

the performance of models. Medical Artificial Intelligence Aggregator

(MAIA) software (Muen Biomedical and Optoelectronic Technologist,

Inc., Taipei City, Taiwan) was used for automated analysis of the medi-

cal images based on the structure of the built-in, pre-trained

EfficientNet-b0 model on ImageNet (Figure 2).16,17 The graphic proces-

sing unit was NVIDIA GeForce RTX 2070. Image file formats in Digital

Imaging and Communications in Medicine (DICOM) were imported into

MAIA, which automatically adjusted the model structure to adapt to

F IGURE 1 Illustration of the
seven enrolled pedicle screw-
based instrumentations on plain
radiographs of the spine in
anteroposterior (AP) (left) and
lateral images (middle), and the
whole construct of the screw
with head, neck, and body (right).
(A) A-spine (EVO), (B) Armstrong,

(C) CDH, (D) Expedium, (E) Gezen,
(F) NOVA, (G) Xia 3.
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F IGURE 2 Framework of Medical Artificial Intelligence Aggregator (MAIA) software and the structure of the built-in EfficientNet-b0 model.
(A) Framework for MAIA software. (B) Structure of the built-in EfficientNet-b0 model.
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the analysis type (i.e., classification, regression, or grading). The images

were then resized to 256 � 256 with 3 color channels, and Horizontal

Flip and Rotate methods were used for data augmentation to prevent

over-fitting.18 The batch size was decided according to the memory

consumption. The loss function was calculated by cross-entropy loss or

mean square error, depending on the type of analysis conducted. An

Adam optimizer was used to minimize the loss.19 The learning rate was

tuned using the one-cycle of cosine annealing strategy.20,21

Under the framework of MAIA, the AP model, Lateral (Lat) model,

Concatenated (Concat) model, and Merge model were developed

based on different ground truths of AP and/or lateral images. In other

words, all four models employed the same EfficientNet-B0 architec-

ture (pre-trained on ImageNet) but were fine-tuned on different image

datasets. The AP model was fine-tuned on the AP images of PRS, and

the Lat model was fine-tuned on the lateral images of PRS. In addition,

the AP and lateral images of the PRS were first combined to form a

single concatenated image (shape: 256 � 256 � 3); the Concat model

was fine-tuned on concatenated images of PRS. Finally, both AP and

lateral images without concatenation were simultaneously used to

fine-tune the Merge model. Therefore, the Merge model produced

three predications based on AP images, lateral images, and dual

images (both AP and lateral images). The ensemble models were con-

structed using logistic regression, assembling the predicted probabili-

ties from different combinations of single models.

2.4 | Datasets for training, validating, and testing

The images of the 529 patients were divided into three groups:

training dataset (n = 338), testing dataset (n = 106), and validation

dataset (n = 85). The patient groups were stratified by brand and

presence of crosslink, which ensured similarity in the ratios of differ-

ent brands and in the presence of a crosslink in the training, valida-

tion, and testing datasets (Table 1). Only the training dataset was

used to calculate the gradients and update the model parameters.

The validation dataset was used to evaluate the model during each

phase of the training process, and the model with the lowest valida-

tion loss was selected. Finally, the selected model was evaluated

using the testing dataset, which was kept completely independent

from the training process.

2.5 | DL model evaluation and statistical analysis

The AP, Lat, and Concat models each provided only one prediction

per patient. To evaluate the performance of the Merge model, we cal-

culated the performance metrics based on three image datasets of

PRS: The Merge model trained on AP images, Merge model trained on

lateral images, and Merge model trained on dual images. Accuracy,

precision, sensitivity, F1-score, interobserver reliability (kappa value),

and area under the receiver operating characteristic curve (AUC) were

calculated to evaluate the performance of the single and ensemble

models. These metrics were calculated as either brand-based or over-

all evaluation.

In a brand-based evaluation, all metrics except accuracy were

calculated based on each device type, with one type considered

positive and all the others considered negative. In an overall man-

ner, the macro-average and micro-average were each calculated.

The macro-average was computed by averaging the values of the

brand-based evaluation. The micro-average was computed by

TABLE 1 Number of enrolled
patients in training, validation, and test
sets according to brand and the presence
of cross-links.

Spinal pedicle
Enrolled patients

Screw systems Number of patients Training Validation Test

A-Spine (EVO) 87 With CL 44 28 6 10

Without CL 43 27 8 8

Armstrong 85 With CL 48 32 7 9

Without CL 37 22 7 8

CDH 84 With CL 63 38 12 13

Without CL 21 17 1 3

Expedium 43 With CL 5 4 0 1

Without CL 38 23 7 8

Gezen 85 With CL 30 20 4 6

Without CL 55 34 10 11

NOVA 63 With CL 0 0 0 0

Without CL 63 41 10 12

Xia 3 82 With CL 14 10 1 3

Without CL 68 42 12 14

Total 529 With CL 204 132 30 42

Without CL 325 206 55 64

Abbreviation: CL, crosslink.
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TABLE 2 Brand-based evaluation of MAIA models, regardless of the presence of cross-links.

Metrics AP model Lat model Concat model

Merge model

AverageDual images AP images Lat images

Accuracy 0.8113 0.9057 0.8585 0.7972 0.7075 0.8868 0.8278

Kappa value 0.7791 0.8894 0.8343 0.7623 0.6580 0.8671 0.7984

Precision

A-Spine (EVO) 0.8667 0.9444 1.0000 0.8333 0.8000 0.8571 0.8836

Armstrong 0.8235 1.0000 0.8667 0.7429 0.6111 0.8824 0.8211

CDH 1.0000 0.9333 1.0000 1.0000 1.0000 1.0000 0.9889

Expedium 0.4615 0.6667 0.5385 0.4583 0.3077 0.6364 0.5115

Gezen 0.7692 0.8750 0.6667 0.8095 0.5556 1.0000 0.7793

NOVA 0.9167 1.0000 1.0000 0.8800 0.7857 1.0000 0.9304

Xia 3 0.8095 0.8947 0.8947 0.8049 0.7619 0.8500 0.8360

Macro-average 0.8067 0.9020 0.8524 0.7898 0.6889 0.8894 0.8215

Micro-average 0.8113 0.9057 0.8585 0.7972 0.7075 0.8868 0.8278

Sensitivity

A-Spine (EVO) 0.7222 0.9444 0.9444 0.8333 0.6667 1.0000 0.8518

Armstrong 0.8235 0.8235 0.7647 0.7647 0.6471 0.8824 0.7843

CDH 0.9375 0.8750 0.9375 0.9375 1.0000 0.8750 0.9271

Expedium 0.6667 0.8889 0.7778 0.6111 0.4444 0.7778 0.6945

Gezen 0.5882 0.8235 0.5882 0.5000 0.2941 0.7059 0.5833

NOVA 0.9167 1.0000 1.0000 0.9167 0.9167 0.9167 0.9445

Xia 3 1.0000 1.0000 1.0000 0.9706 0.9412 1.0000 0.9853

Macro-average 0.8078 0.9079 0.8590 0.7906 0.7014 0.8797 0.8244

Micro-average 0.8113 0.9057 0.8585 0.7972 0.7075 0.8868 0.8278

F1 score

A-Spine (EVO) 0.7879 0.9444 0.9714 0.8333 0.7273 0.9231 0.8646

Armstrong 0.8235 0.9032 0.8125 0.7536 0.6286 0.8824 0.8006

CDH 0.9677 0.9032 0.9677 0.9677 1.0000 0.9333 0.9566

Expedium 0.5455 0.7619 0.6364 0.5238 0.3636 0.7000 0.5885

Gezen 0.6667 0.8485 0.6250 0.6182 0.3846 0.8276 0.6618

NOVA 0.9167 1.0000 1.0000 0.8980 0.8462 0.9565 0.9362

Xia 3 0.8947 0.9444 0.9444 0.8800 0.8421 0.9189 0.9041

Macro-average 0.8004 0.9008 0.8511 0.7821 0.6846 0.8774 0.8161

Micro-average 0.8113 0.9057 0.8585 0.7972 0.7075 0.8868 0.8278

AUC

A-Spine (EVO) 0.9609 0.9968 0.9994 0.9634 0.9356 0.9968 0.9755

Armstrong 0.9445 0.9947 0.9689 0.9552 0.9359 0.9670 0.9610

CDH 0.9993 0.9972 0.9944 0.9995 1.0000 0.9979 0.9981

Expedium 0.9278 0.9851 0.9393 0.9439 0.8866 0.9805 0.9439

Gezen 0.8612 0.9451 0.9233 0.8946 0.8334 0.9299 0.8979

NOVA 0.9938 1.0000 1.0000 0.9949 0.9911 1.0000 0.9966

Xia 3 0.9782 0.9914 0.9934 0.9835 0.9828 0.9775 0.9845

Macro-average 0.9560 0.9902 0.9772 0.9643 0.9420 0.9821 0.9686

Micro-average 0.9542 0.9869 0.9809 0.9644 0.9463 0.9771 0.9683

Abbreviation: Concat, concatenated.
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aggregating the results of all brands to define true positive, false

positive, true negative, and false negative, which were used to cal-

culate metrics.

In addition to the numeric metrics mentioned above, MAIA also

reported graphic illustration of a confusion matrix, receiver operating

characteristic (ROC) curve, and a gradient-weighted class activation

TABLE 3 Brand-based evaluation of ensemble models, regardless of the presence of crosslinks.

Metrics All AP + LP AP + Lat + Concat AP + Lat + Merge Lat + Concat Average

Accuracy 0.9245 0.9434 0.9340 0.9340 0.9340 0.9340

Kappa score 0.9115 0.9335 0.9225 0.9224 0.9225 0.9225

Precision

A-Spine (EVO) 0.9474 0.9474 0.9474 0.9000 0.9474 0.9379

Armstrong 0.8889 0.9412 0.9375 0.9412 1.0000 0.9418

CDH 1.0000 1.0000 1.0000 1.0000 0.9375 0.9875

Expedium 0.7273 0.8000 0.8000 0.8000 0.8000 0.7855

Gezen 1.0000 1.0000 0.9333 1.0000 0.9333 0.9733

NOVA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Xia 3 0.8947 0.8947 0.8947 0.8947 0.8947 0.8947

Macro-average 0.9226 0.9405 0.9304 0.9337 0.9304 0.9315

Micro-average 0.9245 0.9434 0.9340 0.9340 0.9340 0.9340

Sensitivity

A-Spine (EVO) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Armstrong 0.9412 0.9412 0.8824 0.9412 0.8824 0.9177

CDH 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375

Expedium 0.8889 0.8889 0.8889 0.8889 0.8889 0.8889

Gezen 0.7059 0.8235 0.8235 0.8235 0.8235 0.8000

NOVA 1.0000 1.0000 1.0000 0.9167 1.0000 0.9833

Xia 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Macro-average 0.9248 0.9416 0.9332 0.9297 0.9332 0.9325

Micro-average 0.9245 0.9434 0.9340 0.9340 0.9340 0.9340

F1 score

A-Spine (EVO) 0.9730 0.9730 0.9730 0.9474 0.9730 0.9679

Armstrong 0.9143 0.9412 0.9091 0.9412 0.9375 0.9287

CDH 0.9677 0.9677 0.9677 0.9677 0.9375 0.9617

Expedium 0.8000 0.8421 0.8421 0.8421 0.8421 0.8337

Gezen 0.8276 0.9032 0.8750 0.9032 0.8750 0.8768

NOVA 1.0000 1.0000 1.0000 0.9565 1.0000 0.9913

Xia 3 0.9444 0.9444 0.9444 0.9444 0.9444 0.9444

Macro-average 0.9181 0.9388 0.9302 0.9289 0.9299 0.9292

Micro-average 0.9245 0.9434 0.9340 0.9340 0.9340 0.9340

AUC

A-Spine (EVO) 0.9981 0.9956 0.9987 0.9949 0.9994 0.9973

Armstrong 0.9828 0.9868 0.9874 0.9822 0.9881 0.9855

CDH 0.9993 0.9993 0.9986 1.0000 0.9965 0.9987

Expedium 0.9828 0.9828 0.9794 0.9874 0.9794 0.9824

Gezen 0.8876 0.9048 0.9035 0.8916 0.9161 0.9007

NOVA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Xia 3 0.9848 0.9861 0.9881 0.9835 0.9907 0.9866

Macro-average 0.9811 0.9834 0.9842 0.9842 0.9854 0.9837

Micro-average 0.9746 0.9830 0.9821 0.9748 0.9842 0.9797

Abbreviation: Concat, concatenated.
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map (Grad-CAM).22 Grad-CAM was used to evaluate the heatmap for

evidence that the model recognized the discriminative features of

instrumentations, as indicated by a color transition from blue to red.

To evaluate the effect of crosslinks on model performance, numeric

metrics based on PRS were calculated separately with or without

crosslinks.

2.6 | Comparison of the performance between
human readers and DL models

To compare the performance between our DL models and human

readers, the AP and Lat images of PRS of 27 patients not included

in our dataset were randomly selected from the included

529 patients using the randomization program.23 An accurate illus-

tration of each implant was provided for readers beforehand

(Figure 1). The six human readers included one medical student,

one orthopedic resident, one spine fellow, one general orthopedic

surgeon, and two orthopedic spine surgeons. Moreover, five addi-

tional orthopedic surgeons (Readers 7–11) from another medical

center were invited to participate in the test using the same

datasets.

2.7 | Evaluation of DL models by external
validation

For external validation, we obtained a dataset from another medical

institution that used a different plain radiographic technique for exter-

nal validation; these images were from patients in a population bear-

ing the same seven brands of screws (n = 31).

3 | RESULTS

Of the MAIA models, the Lat model had the most stable performance

(Table 2). Of the ensemble models, the AP + Lat ensemble model

exhibited the most stable performance (Table 3). The performance of

the Ensemble models was superior to that of the MAIA models

(Table 4).

To investigate whether the presence of a crosslink influenced the

performance of the DL models, we analyzed the performance of

the model based on the PRS, with or without the crosslink. Both

MAIA (Table S1) and ensemble models (Table S2) performed better

when a crosslink was included.

Results of the analysis of the confusion matrix and ROC curve in

the MAIA models, regardless of crosslink, are shown in Figure 3 and

Figures S1 and S2. Results of the analysis of the confusion matrix

and ROC curve in the ensemble models, regardless of crosslink, are

shown in Figure 4 and Figures S3 and S4. To confirm the ability of the

models to identify the features of the screws, we manually reviewed

the Grad-CAMs as evaluated by all models and reported by MAIA.

The DL models focused on the discriminative regions of either screw

pitch or crosslink to correctly classify PS-based instruments (Figure 5,

Figure S5).

In the performance comparison between human readers and the

DL models, the accuracy among human readers ranged from 0.37 to

0.89 (Table 5). The least accurate performance (0.37) was that of a

medical student. In contrast, the average accuracy of four attending

orthopedic spine surgeons was 0.823 ± 0.047. Test completion

required an average of 752 ± 263 s (range: 587–1250 s) for human

readers and 3 s for all models. The ensemble models achieved an

accuracy of 0.89–1.00. The performance of these ensemble models

was not inferior to those of experienced orthopedic spine surgeons.

TABLE 4 Comparison between single
and ensemble models, regardless of the
presence of crosslinks.

Metrics Accuracy Precision-macro Sensitivity-macro F1 score-macro

MAIA models

AP model 0.8113 0.8067 0.8078 0.8004

Lat model 0.9057 0.902 0.9079 0.9008

Concat model 0.8585 0.8524 0.8590 0.8511

Merge model

Dual images 0.7972 0.7898 0.7906 0.7821

AP images 0.7075 0.6889 0.7014 0.6846

Lat images 0.8868 0.8894 0.8797 0.8774

Average 0.8278 0.8215 0.8244 0.8161

Ensemble models

All 0.9245 0.9226 0.9248 0.9181

AP + LP 0.9434 0.9405 0.9416 0.9388

AP + Lat + Concat 0.9340 0.9304 0.9332 0.9302

AP + Lat + Merge 0.9340 0.9337 0.9297 0.9289

Lat + Concat 0.9340 0.9304 0.9332 0.9299

Average 0.9340 0.9315 0.9325 0.9292

Abbreviations: Concat, concatenated; MAIA, Medical Artificial Intelligence Aggregator.
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Regarding external validation (n = 31), the accuracy of the Lat

model was 0.8824 (Table S3), and the accuracy of the Lat + Concat

ensemble model was 0.9412 (Table S4). The testing model for auto-

mated identification of PSs is available at https://140.136.158.62/

web_VF/x-ray-ps.html.

4 | DISCUSSION

In this study, we developed and validated DL models to identify PS-

based instrumentation. Our results revealed that using the lateral

image as the ground truth resulted in a more stable performance by

our DL models; using the ensemble method also improved results.

The performance of the ensemble models was not inferior to that of

experienced orthopedic spine surgeons. Taken together, these results

suggest that these improved DL models can be an alternative means

to identify PS-based instrumentation on PRS in clinical practice.

A DL model has been used to identify 15 types of cervical plating

systems with 85.8% accuracy in the top-1 model based on 402 smart-

phone images.11 Another DL model is able to identify 9 types of cervi-

cal plating systems with an accuracy of 91.5% in the top-1 model

based on 321 PRS.12 The above-mentioned studies used the same

three brands of cervical plating systems (Medtronic Atlantis Vision,

Depuy Synthes CSLP, and Depuy Synthes Skyline).11,12 However, dif-

ferent ground truths were used; one was based on smartphone

images,11 and the other was based on PRS.12 Consistently, the use of

the top-1 statistical method achieved good discriminative perfor-

mance in this study. We believe that our use of YOLOv5 to crop out

F IGURE 3 Confusion matrices (left) and receiver operating characteristic (ROC) curves (right) of MAIA models regardless of the presence of
crosslinks. Range of the area under the ROC curve (AUC): (A) AP model, 0.93–1; (B) Lat model, 0.95–1; (C) Concat model, 0.92–1; (D) Merge
model trained on dual images, 0.89–1; (E) Merge model trained on AP images, 0.83–1; and (F) Merge model trained on lateral images, 0.93–1. The
x- and y-axis in the confusion matrices represent the true labels and the predicted labels, respectively. Darker blue in the confusion matrices
represents higher values. Lines are colored to indicate the following: blue, ROC curve of A-Spine; red, ROC curve of Armstrong; green, ROC curve
of CDH; light blue, ROC curve of Expedium; lavender, ROC curve of Gezen; yellow-green, ROC curve of NOVA; dark blue, ROC curve of Xia 3;
shocking pink dotted line, micro-average ROC curve; oriental blue dotted line, macro-average ROC curve.
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the screw trajectory before brand identification and conducting

ensemble analysis underlies these results.

AP images of PRS were often used as ground truths in DL models

for identifying the implant design in different anatomic locations such

as the cervical spine, knee, and hips.8,11 However, in the present

study, we found that the ground truth of the lateral image provided a

more stable result in single models. This phenomenon may in part

result from the fact that different implants are designed for different

types of anatomic fixation. For example, cervical plating is fixed at the

anterior vertebrae, and the whole construct can be easily visualized

on an AP image, as with knee and hip arthroplasties.11,12 In PS-based

instrumentation, the trajectory is placed along the pedicle, and screw

constructs at the neck and body may not be as clearly visible on AP

images due to interference from the screw head and connecting rod.

Different PS systems may have distinct constructs

(e.g., cylindrical vs. conical cores)24 or differences in pitch, tip, and

crosslink. Theoretically, the entire PS construct can be easily visual-

ized from the head to the distal tip on a lateral image. The crosslink

could be clearly visualized on an AP image, as evidenced by the Grad-

CAMs heatmaps. The use of crosslinks also improved their perfor-

mance. Several factors may be responsible for this observation. First,

the crosslink was still partly visible on the lateral image because of the

non-parallel relationship between the beam of the X-ray projector and

the PS. Second, a crosslink is used to connect both sides of the PS-

based constructs, especially in two-level and multi-level fixations, in

order to increase pullout strength. Thus, the performance of the lat-

eral image-based DL model increases with the number of screws that

can be seen on the lateral image of the PRS.

F IGURE 4 Confusion matrixes (left) and receiver operating characteristic (ROC) curves (right) of ensemble models regardless of the presence
of crosslinks. (A) T Range of the area under the ROC curve (AUC): (A) All ensemble models, 0.89–1; (B) AP + Lat ensemble model, 0.9–1; (C) AP
+ Lat + Concat ensemble model, 0.9–1; (D) AP + Lat + Merge ensemble model, 0.97–1; (E) Lat + Concat ensemble model, 0.92–1. The x- and y-
axis in the confusion matrixes represent the true labels and the predicted labels, respectively. Darker blue in the confusion matrixes represents
higher values. Lines are colored to indicate the following: blue, ROC curve of A-Spine; red, ROC curve of Armstrong; green, ROC curve of CDH;
light blue, ROC curve of Expedium; lavender, ROC curve of Gezen; yellow green, ROC curve of NOVA; dark blue, ROC curve of Xia 3; shocking
pink dotted line, micro-average ROC curve; oriental blue dotted line, macro-average ROC curve.
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In the present study, the screw body was red (very important) in

all A-Spine and Expedium heatmaps, while the screw head was red

(very important) in all CDH and NOVA heatmaps. Pedicle screws from

different manufacturers have their own characteristics and unique

constructs, which may help to partially explain why the DL models

judged different locations of PS from different manufacturers based

on our ground truths. However, the mechanisms underlying the above

phenomenon remain to be investigated. The pronounced red intensity

in Expedium's heatmap may be in part because PS manufactured by

Armstrong, CDH, and Gezen were frequently misjudged as Expedium

by MAIA models and ensemble models due to similar constructs.

Clinical investigations have reported excellent accuracy of DL

models in discriminating hip arthroplasties using different models,

achieving 99.6%–100% accuracy.8,10,25 One study11 reported an

accuracy of 94.4% in identifying 15 different cervical plating implants.

Studies using DL models to identify hip arthroplasties achieved a ROC

of 0.989 to 0.998,25 discrimination, and accuracy reached 100%.10

One open-access website, Implant Identifier,26 automatically identifies

several arthroplasties of the hip, knee, elbow, shoulder, ankle, and

wrist.8 However, this web application has not been used to identify

spine implants such as cervical plating and PS-based systems, despite

the recent increase in the number of spine fusion surgeries

performed.27,28

The present study found comparable predictive performance

between ensemble models and experienced orthopedic surgeons,

which is in agreement with the result of a meta-analysis.29 The poten-

tial of DL models as supplementary diagnostic tools to improve the

diagnostic accuracy of clinicians has been demonstrated.6,30,31 With

the assistance of a DL model, the incidence of misinterpretation of

radiologic images reduces by 47.0%.6 DL models not only help to

improve diagnostic accuracy but also speed up diagnosis, which is

extremely important for emergency medicine clinicians.6,31 Moreover,

DL models as supplementary diagnostic tools may help clinicians with

limited training in musculoskeletal imaging to enhance fracture detec-

tion accuracy.30 The current findings also suggest that the ensemble

models may help inexperienced orthopedic surgeons to identify the

brands of the existing implants.

While the performance of our models in identifying PS-based

instrumentations is encouraging, these results are limited to the

identification of only seven implant types. Brand or manufacturer

preferences vary in different countries and hospitals. An expansion

of the models to identify other brands of PS-based instrumentation

is required to make them clinically useful.28 Accordingly, we expect

to collect and externally validate data from a multi-center study that

expands the number of samples for each implant design analyzed to

reach peak generalizability of the ground truth.32 Using MAIA soft-

ware for model training and testing allows us to efficiently include

new datasets and re-train the models in an automated fashion.

Moreover, we plan to make the models available on the smart-

phone, the method commonly used clinically to communicate medi-

cal images.33 Of the different methods used to identify the

instrumentation brand preoperatively, the most reliable and efficient

is to require preoperative registration via government or insurance

policy.

F IGURE 5 Illustration of gradient-weighted class activation mapping (Grad-CAM) on plain radiographs of spines of anteroposterior or lateral
images to identify brands. (A) Heatmap on plain radiographs of spines on the anteroposterior image for seven brands of screws. No crosslink was
used in the NOVA group because the screw was designed for the minimally invasive approach. (B) Heatmap on plain radiographs of spines in the
lateral image for seven brands of screws.
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5 | CONCLUSION

The ensemble model achieved a more stable performance in identify-

ing seven PS-based screws commonly used in our clinics compared

with any single model. The proposed ensemble models may serve as a

supplementary diagnostic tool to help inexperienced orthopedic sur-

geons to correctly identify the brand of PS-based instrumentation.

Optimizing the generalizability of the ground truth by including more

brands of implants from other healthcare systems will increase the

clinical usefulness of the algorithm. The current results will facilitate a

better preoperative planning for patients who need implant removal

for revision surgery.
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