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and removal. O-GlcNAc transferase (OGT) attaches 
O-GlcNAc to Ser/Thr residues of substrate proteins, 
while O-GlcNAcase (OGA) is responsible for its cleavage 
[10].

The gene responsible for encoding OGT resides on 
the X chromosome [11]. The OGT protein consists of 
an N-terminal tetratricopeptide-repeats (TPRs) domain, 
which binds substrate proteins, and a C-terminal cata-
lytic domain that catalyzes substrate O-GlcNAcylation 
[12, 13]. Moreover, OGT participates in diverse physi-
ological processes, including fostering nervous system 
development, regulating mammalian cell physiology, 
and preserving hematopoietic stem cells. Its expression 
is elevated in various tumors, suggesting a role in tumor 
promotion. This review outlines the biochemical func-
tions of OGT and summarizes its role and specific mech-
anisms in tumors, aiming to provide new insights and 
approaches for treating malignant tumors.

Structure and basic function of OGT
OGT, a member of the GT-B glycosyltransferase family, is 
responsible for attaching O-GlcNAc to substrate proteins 
[14, 15]. OGT is highly conserved across various organ-
isms, from Caenorhabditis elegans to mammals [16]. In 

Introduction
O-linked-N-acetylglucosaminylation (O-GlcNAcylation), 
an important protein glycosylation modification, has its 
origins in the earliest report by Hart’s team [1, 2]. Sub-
sequently, researchers defined O-GlcNAcylation as 
the process of adding O-linked β-N-acetylglucosamine 
(O-GlcNAc) to serine or threonine residues in proteins 
[3]. This modification is implicated in various cellular 
processes, such as signal transduction, cell cycle regula-
tion, transcriptional control, and metabolism [4–7].

Roughly 2–5% of glucose feeds into the hexosamine 
biosynthetic pathway (HBP) to generate UDP-GlcNAc, 
the sugar donor for O-GlcNAcylation [8]. The key 
rate-limiting enzyme in the HBP pathway is gluta-
mine–fructose-6-phosphate amido transferase (GFAT), 
which converts fructose-6-phosphate into glucosamine-
6-phosphate [9]. O-GlcNAcylation undergoes dynamic 
and reversible regulation through O-GlcNAc addition 
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humans, alternative splicing produces three OGT iso-
forms: nucleocytoplasmic OGT (ncOGT), mitochondrial 
OGT (mOGT), and short OGT (sOGT), each differing 
in location and length [17]. These isoforms are encoded 
by the same gene on the X chromosome and feature 
N-terminal TPRs and a multi-domain catalytic C-termi-
nal [18]. The primary structural difference between the 
three OGT isoforms is the number of N-terminal TPRs. 
The longest isoform, ncOGT, contains 13.5 TPRs, while 
mOGT and sOGT contain 9.5 and 2.5 TPRs, respectively 
[19, 20]. TPR sequences are primarily involved in the rec-
ognition and binding of substrate proteins by OGT [21, 
22]. These sequences fold into an antiparallel α-helical 
structure, with adjacent repeats forming a superhelical 
structure that binds specific substrates [23, 24]. The enzy-
matic domain of OGT is located at the C-terminus and 
catalyzes the O-GlcNAcylation of substrate proteins [12]. 
This modification affects protein stability, conformation, 
localization, and activity [25–29]. To date, thousands of 
proteins have been identified as O-GlcNAcylation tar-
gets, including transcription factors, membrane proteins, 
and cytoskeletal proteins. These modifications regulate 
gene transcription, cellular responses, protein transla-
tion, protein degradation, and other critical biological 
processes. O-GlcNAcylation impacts cell signal trans-
duction and plays a crucial regulatory role in normal 
growth and development, as well as in the pathogenesis 
of various diseases [30–33].

OGT in cancer progression
Roles of OGT in cancer proliferation
Abnormal proliferation is a hallmark of cancer. The car-
cinogenic effect of OGT is closely associated with its 
role in driving cell growth in various malignancies, such 
as liver cancer, gastric cancer (GC), and colorectal can-
cer (CRC). [34–36]. OGT promotes tumor proliferation 
primarily through its involvement in regulating protein 
post-translational modifications (PTMs).

In non-small cell lung cancer cells, OGT overexpres-
sion following glutamine deprivation abolishes fruc-
tose-1,6-bisphosphatase 1 (FBP1) phosphorylation 
and enhances β-oxidation gene transcription via FBP1 
O-GlcNAcylation, thus promoting cell proliferation 
[37]. Similar findings have been observed in hepatocel-
lular carcinoma (HCC), highlighting OGT’s crucial role 
in tumor growth by regulating FBP1 [38]. Additionally, 
Y box binding protein 1 (YB-1), a well-known oncopro-
tein, is associated with tumor immune evasion and drug 
resistance [39, 40]. Liu et al. demonstrated that OGT 
increases O-GlcNAcylation of YB-1 at Thr126, thereby 
promoting cell proliferation in HCC [41]. Targeting OGT 
significantly impedes the progression of high-fructose-
induced HCC, with the O-GlcNAcylation of eukaryotic 
elongation factor 1A1 (EEF1A1) playing a pivotal role 

in this process [42]. Mitogen-activated protein kinase 
kinase 2 (MEK2), an important molecule in the MAPK 
signaling pathway, is related to cell proliferation, differ-
entiation, and stress response [43]. OGT promotes the 
stability of MEK2 through O-GlcNAcylation at Thr13, 
thereby enhancing the proliferation and migration of 
breast cancer cells [44]. Furthermore, microRNA-485-5p 
modulates CRC proliferation by regulating the stability of 
B-cell-specific Moloney murine leukemia virus integra-
tion region 1 (Bmi-1) via OGT [45]. In xenograft mod-
els, mutating the O-GlcNAcylation site of YTH domain 
family 1 (YTHDF1) reduced tumor growth [46]. DNA 
polymerase iota (Pol ι) activates glucose-6-phosphate 
dehydrogenase (G6PD) through Erk-OGT-induced 
O-GlcNAcylation, promoting the proliferation of esoph-
ageal squamous cell carcinoma [47]. Yu et al. found that 
miR-483 targets OGT to inhibit the proliferation of GC 
cells [48]. Moreover, the X-inactive-specific transcript 
(XIST)/miR-424-5p/OGT axis regulates RAF1 glycosyl-
ation, impacting liver cancer growth [49]. Long non-cod-
ing RNA RHPN1-AS1 is significantly upregulated in CRC 
cell lines, facilitating CRC progression by modulating the 
miR-7-5p/OGT axis [50]. These findings indicate that 
OGT is a key regulator of tumor proliferation (Fig. 1).

Roles of OGT in cancer invasion and metastasis
Metastasis, the spread and growth of tumor cells from 
their original site to new locations in the body, is the lead-
ing cause of cancer-related deaths [51]. Despite extensive 
research on invasion and metastasis mechanisms, this 
regulatory process remains poorly understood. Recent 
studies have identified OGT as a key regulator of tumor 
invasion and metastasis.

Epithelial-mesenchymal transition (EMT) is the phe-
notypic change of cells from an epithelial to a mesenchy-
mal state, resulting in increased motility and invasiveness 
of tumor cells [52]. EMT is characterized by the loss of 
epithelial cell-cell connections, cytoskeletal reorganiza-
tion, decreased expression of E-cadherin, and increased 
N-cadherin [53]. Numerous studies have explored 
EMT’s role in promoting tumor cell invasion and malig-
nancy. Jiang et al. found that knocking down enhancer 
of zeste homolog 2 (EZH2) in colorectal cancer partially 
reverses the EMT changes induced by OGT-mediated 
O-GlcNAcylation [54]. Additionally, OGT knockdown 
has been shown to inhibit the expression of EMT mark-
ers (N-cadherin and Slug), migration, and invasion in 
lung cancer cells, with the interaction between OGT and 
STAT3 playing a crucial role in this process [55]. More-
over, OGT knockdown in HO-8910PM cells resulted in 
decreased O-GlcNAcylation and increased expression of 
E-cadherin [56].

Matrix metalloproteinases (MMPs), members of the 
metzincin protease superfamily, degrade the extracellular 
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matrix (ECM) [57]. MMPs participate in physiological 
processes such as embryonic development and wound 
healing and play a vital role in enhancing tumor cell 
migration and invasion [58, 59]. OGT regulates matrix 
metalloproteinase levels, thereby affecting tumor metas-
tasis. Qiao et al. found that suppressing OGT weakened 
the migration ability of esophageal cancer cells by signifi-
cantly reducing the expression of matrix metalloprotein-
ase 9 (MMP9) in Eca-109 cells [60]. Furthermore, OGT 
knockdown in prostate cancer cell lines was associated 
with reduced expression of MMP-2, MMP-9, and vascu-
lar endothelial growth factor (VEGF), thereby inhibiting 
invasion and angiogenesis through the regulation of the 
oncogenic transcription factor forkhead box M1 (FoxM1) 
[61].

OGT orchestrates O-GlcNAcylation to drive the migra-
tion and invasion of papillary thyroid cancer by activating 
Yes-associated protein (YAP) at the Ser109 modification 
site [62]. Lv et al. identified upregulated OGT expres-
sion in HCC, demonstrating its role in promoting tumor 
aggressiveness through OGT-mediated O-GlcNAcyla-
tion, which stabilizes ras-related protein Rab-10 (RAB10) 
[63]. CD36, a cell membrane protein, mediates fatty acid 
uptake and is associated with fatty acid absorption in the 
heart, skeletal muscle, and adipose tissue [64, 65]. Jiang 
et al. confirmed that fatty acids promote gastric cancer 
metastasis by inducing CD36 expression via OGT-medi-
ated O-GlcNAcylation [66]. YTH N6-methyladenosine 
RNA binding protein 2 (YTHDF2) plays a crucial role 
in N6-methyladenosine (m6A) modification, regulating 
mRNA degradation [67, 68]. OGT promotes hepatitis 
B virus-related HCC migration and invasion by mediat-
ing O-GlcNAcylation of YTHDF2 at Ser263 [69]. Wang 

et al. found that reticulon 2 (RTN2) interacts with OGT 
and is modified by O-GlcNAc; inhibiting OGT abol-
ishes the stimulatory effects of RTN2 on cell migration 
[70]. SRC-associated in mitosis of 68  kDa (SAM68) is 
O-GlcNAcylated and predominantly interacts with OGT 
in the nucleus, promoting lung cancer cell migration and 
invasion [71]. Multiple studies have linked MORC family 
CW-type zinc finger 2 (MORC2) with DNA damage and 
resistance to radiotherapy and chemotherapy in breast 
cancer [72, 73]. Liu et al. found that OGT O-GlcNAcyl-
ates MORC2 at Thr556, thereby promoting breast cancer 
migration, invasion, and metastasis [74]. Reginato’s team 
demonstrated that reducing OGT expression signifi-
cantly decreases FoxM1 protein levels, inhibiting breast 
cancer cell growth and invasion [75]. Non-coding RNAs 
also regulate breast cancer progression by altering OGT 
expression. Inhibition of OGT by miR-24 reduces the 
stability of forkhead box protein A1 (FOXA1), thereby 
inhibiting breast cancer cell invasion [76]. Overexpres-
sion of OGT significantly enhances O-GlcNAcylation in 
TAK1 binding protein 3 (TAB3), promoting migration 
and invasion of triple-negative breast cancer (TNBC) 
cells in vivo and in vitro [77]. Dysregulation of the NF-κB 
pathway is increasingly recognized as a key regulator of 
tumor progression and drug resistance [78, 79]. Ali et 
al. confirmed that OGT knockdown reduced CXCR4 
expression by decreasing O-GlcNAcylation of NF-κB p65 
(p65), inhibiting cervical cancer metastasis [80]. Niu et al. 
showed that OGT-mediated O-GlcNAcylation regulates 
ras homolog family member A (RhoA) activity in ovarian 
cancer cells, affecting their migration and invasion [81]. 
These studies indicate that OGT overexpression signifi-
cantly promotes tumor cell invasion into other tissues, 

Fig. 1  OGT and proliferation regulation in cancer
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facilitating their survival and cancer spread. Therefore, 
targeting OGT may help inhibit tumor metastasis (Fig. 2) 
[82–86].

Roles of OGT in cancer metabolism
Abnormal cancer metabolism plays a crucial role in 
tumorigenesis, metastasis, and drug resistance [87]. 
Glucose, lipid, and amino acid metabolism in tumor tis-
sue undergo significant changes compared to normal 
tissue [88]. Studies have shown that OGT is directly or 
indirectly involved in the regulation of tumor metabolic 
processes.

Most tumor cells produce adenosine triphosphate 
(ATP) primarily through glycolysis, even under adequate 
oxygen levels. This phenomenon, known as the Warburg 
effect, supports tumor cell growth [89]. Phosphoglycer-
ate kinase 1 (PGK1) is the first ATP-generating enzyme 
in glycolysis, and its expression is linked to tumor pro-
gression [90–92]. Research has shown that OGT over-
expression enhances PGK1 activity by increasing its 
O-GlcNAcylation. Blocking T255 O-GlcNAcylation of 
PGK1 inhibits glycolysis, enhances the mitochondrial tri-
carboxylic acid (TCA) cycle, and suppresses colon cancer 
growth [93]. Additionally, transient expression of wild-
type OGT increases PKM2 O-GlcNAcylation, suppresses 
pyruvate kinase activity in HeLa cells, stimulates aero-
bic glycolysis, and promotes tumor growth [94]. OGT-
mediated O-GlcNAcylation also enhances the stability of 

isocitrate dehydrogenase 2 (IDH2) protein, thereby acti-
vating the NF-κB signaling pathway, reprogramming glu-
cose metabolism, and promoting CRC progression [95].

Reprogramming lipid metabolism is a hallmark of 
many malignancies. Increased fat uptake and lipogenesis 
occur in various cancers, leading to rapid tumor growth. 
Lipids form the basic structure of membranes and also 
serve as signaling molecules and energy sources [96, 97]. 
Sterol regulatory element-binding protein 1 (SREBP-1) 
is a major transcription factor controlling lipid metabo-
lism and a key link between oncogenic signaling and 
tumor metabolism [98]. OGT regulates the expression 
of SREBP-1 in a proteasomal and AMP-activated protein 
kinase (AMPK)-dependent manner, thereby altering lipid 
metabolism and impacting breast cancer cell survival 
[99].

Acetyl-CoA, produced by acetyl-CoA synthetase 2 
(ACSS2) through the catalysis of acetate, is crucial for 
tumor growth and survival [100, 101]. OGT has been 
shown to regulate glioblastoma acetate metabolism by 
influencing cyclin-dependent kinase 5 (CDK5)-depen-
dent ACSS2 phosphorylation. Moreover, drugs targeting 
OGT and CDK5 have demonstrated efficacy in reduc-
ing glioblastoma tumors in vitro [102]. Therefore, OGT 
plays a significant role in the metabolic reprogramming 
of tumors and represents a promising therapeutic target 
(Table 1).

Fig. 2  OGT in cancer invasion and metastasis regulation
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Roles of OGT in drug resistance
Due to the high morbidity and mortality associated with 
tumors, significant efforts have been made to develop 
anticancer drugs. These drugs play a crucial role in inhib-
iting tumor cell metastasis and reducing tumor cell sur-
vival. However, tumor cells can alter multiple molecular 
pathways to develop drug resistance [103, 104].

Platinum-based drugs are commonly used in the treat-
ment of ovarian cancer (OC), but the development of 
drug resistance remains a significant challenge [105]. 
Reducing OGT-mediated O-GlcNAcylation of synap-
tosome-associated protein-23 (SNAP-23) promotes 
cisplatin resistance by inducing exosome secretion in 
OC [106]. Additionally, the downregulation of OGT, 
leading to reduced O-GlcNAcylation of synaptosome-
associated protein-29 (SNAP-29), enhances cisplatin-
induced autophagy, making OC cells less responsive to 
cisplatin treatment [107]. Huang et al. demonstrated that 
OGT interacts with kelch-like ECH-associated protein 
1 (KEAP1) and promotes its glycosylation in A2780 and 
A2780/DDP cell lines. Furthermore, miR-181d enhances 
OC resistance to cisplatin by regulating the OGT/
KEAP1/Nrf2 axis both in vitro and in vivo [108].

5-fluorouracil (5-FU) is a crucial drug for treating 
colorectal cancer, targeting thymidylate synthase (TS) 
and its metabolites [109, 110]. Very et al. showed that 
TS undergoes O-GlcNAcylation through its interaction 
with OGT, which impedes proteasomal degradation and 
enhances its stability. Knockdown of OGT reduced can-
cer cell sensitivity to 5-FU by lowering both TS protein 
levels and activity [111].

Proteasome inhibitors are used to treat multiple 
myeloma and mantle cell lymphoma [112]. Inhibition 
of OGT in NCI-H460 cells and their xenograft model 
increases cancer cell sensitivity to proteasome inhibitors. 
This effect is due to the stabilization of nuclear factor 
erythroid 2-related factor 1 (NRF1) via OGT-catalyzed 
O-GlcNAcylation, leading to the upregulation of protea-
some subunit genes [113].

Osteosarcoma, a common primary bone tumor, 
shows a reduced survival rate post-metastasis [114]. 

Methotrexate is an approved therapeutic drug for osteo-
sarcoma [115]. Sun et al. identified that lncRNA EBLN3P 
increases the resistance of osteosarcoma cells to metho-
trexate by enhancing the miR-200a-3p/OGT axis [116]. 
Additionally, docetaxel is a chemotherapy drug approved 
for prostate cancer treatment [117]. Xia et al. confirmed 
that miR-140 induces prostate cancer cell sensitivity to 
docetaxel in an OGT-dependent manner. Knockdown of 
OGT sensitizes prostate cancer cells to docetaxel [118]. 
Cisplatin-based systemic chemotherapy is the standard 
treatment for advanced bladder cancer [119]. Wang et 
al. observed that reducing OGT expression increased 
bladder cancer cell sensitivity to cisplatin [120]. Further-
more, gemcitabine and paclitaxel are also used in bladder 
cancer treatment [121]. OGT knockdown significantly 
enhanced the sensitivity of drug-resistant bladder cancer 
cells to these chemotherapy drugs [122].

Based on these studies, OGT-mediated O-GlcNAcyla-
tion is associated with tumor treatment resistance. How-
ever, current research on targeting OGT for overcoming 
drug resistance is still limited. This aspect should be fur-
ther explored in future studies.

Roles of OGT in apoptosis
Apoptosis, first defined as a programmed cell death mode 
in 1972, is characterized by nuclear and chromatin con-
densation, as well as the formation of apoptotic bodies, 
which can be observed through light microscopy [123–
125]. This process is crucial for maintaining homeostasis 
in normal tissues, including the gastrointestinal tract, 
immune system, and skin [126, 127]. However, abnormal 
apoptosis occurs during tumor progression, leading to 
reduced apoptosis in tumor cells and enhanced survival 
[128]. Given OGT’s role in promoting tumor progression, 
studies have shown that it inhibits tumor cell apopto-
sis. For instance, in HCC, OGT highly O-GlcNAcylates 
speckle-type POZ protein (SPOP) at Ser96, facilitating 
its nuclear entry and inhibiting apoptosis of liver can-
cer cells [129]. Yu et al. discovered that OGT-mediated 
O-GlcNAcylation influences integrin α5 (ITGA5) protein 
stability, promoting tumor cell growth and tumorigen-
esis while reducing apoptosis [130]. Additionally, OGT 
O-GlcNAcylates Bmi-1 at Ser255, thus inhibiting apop-
tosis in prostate cancer cells [131]. Nuclear and spin-
dle-associated protein 1 (NUSAP1) has been shown to 
promote bladder cancer progression through the TGF-β 
signaling pathway, and its expression is also associated 
with lymph node metastasis and survival prognosis [132, 
133]. The protein stability of NUSAP1 decreases after 
knocking down OGT expression in HT-1376 and T24 
cells to reduce O-GlcNAcylation, thus promoting blad-
der cancer cell apoptosis [134]. Therefore, targeting OGT 
may be advantageous in inducing tumor cell apoptosis 
(Fig. 3).

Table 1  Roles of OGT in cancer metabolism
Molecular pathway Function Refer-

ences
OGT/PGK1 Promotes the glycolysis and growth; 

Inhibit mitochondrial TCA cycle
[93]

OGT/PKM2 Promotes the aerobic glycolysis and 
growth

[94]

OGT/IDH2 Promotes the proliferation and 
lactic acid production; Reduces ROS 
production

[95]

OGT/SREBP-1 Promotes the cell survival and lipid 
synthesis

[99]

OGT/CDK5 Regulates acetate metabolism [102]
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Roles of OGT in cancer stem-like cells properties
Tumor initiation and progression are regulated by cancer 
stem cells (CSCs), which possess self-renewal, plasticity, 
and differentiation capabilities that promote metastasis, 
drug resistance, and recurrence [135, 136]. Eukaryotic 
initiation factor 4E (eIF4E) and RAF proto-oncogene 
serine/threonine-protein kinase (RAF1) are key targets 
of sorafenib [137, 138]. Research has shown that OGT 
enhances the stem cell-like potential of HCC cells by 
upregulating eIF4E [139]. Additionally, OGT establishes 
a feedback loop with Krüppel-like factor 8 (KLF8), mod-
ulating CSC phenotypes and increasing paclitaxel resis-
tance [140]. Therefore, identifying the signaling networks 
that regulate CSC properties via OGT could contribute 
to more effective tumor treatments (Fig. 3).

Roles of OGT in ferroptosis
Ferroptosis is a recently identified mode of cell death 
with unique properties and functions, implicated in vari-
ous diseases, including tumors, renal disease, and cardio-
vascular disease [141–143]. It is primarily characterized 
by cytological changes such as the reduction or disap-
pearance of mitochondrial cristae and the condensation 
of mitochondrial membranes [144, 145]. Recent studies 

have shown that OGT is associated with ferroptosis in 
tumors.

Solute carrier family 7, member 11 (SLC7A11), a cys-
tine/glutamate antiporter, promotes cystine import into 
cells, thereby inhibiting lipid peroxidation and ferroptosis 
[146, 147]. It has been reported that OGT promotes cys-
tine uptake by HCC cells through O-GlcNAcylation of 
SLC7A11 at the Ser26 site, leading to ferroptosis inhibi-
tion in HCC [148]. Hypoxia-inducible factor 2α (HIF-2α), 
a hypoxia-related transcription factor, promotes renal 
cancer progression [149]. OGT was found to increase 
HIF-2α protein levels in clear cell renal cell carcinoma by 
inhibiting ubiquitin-proteasome-mediated degradation. 
Moreover, the OGT/HIF-2α axis modulates the sensitiv-
ity of clear cell renal cell carcinoma to ferroptosis [150]. 
These findings indicate that OGT plays a crucial role in 
the ferroptosis process, although the regulatory mecha-
nism requires further investigation (Fig. 3).

Roles of OGT in autophagy
Autophagy is a self-degradative process essential for 
maintaining cellular homeostasis under stress con-
ditions [151, 152]. Well-known regulatory pathways 
of autophagy include AMPK, PI3K/Akt/mTOR, and 

Fig. 3  Roles of OGT in the regulation of apoptosis, cancer stem-like cells properties, ferroptosis and immune escape in cancer
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Beclin-1 [153]. Recent studies have highlighted the 
role of OGT in autophagy. Jin et al. demonstrated 
that overexpression of OGT in bladder cancer cells 
increases the O-GlcNAcylation level of AMPKα, 
resulting in altered autophagy flux [154]. Further 
research is required to elucidate the interaction 
between OGT and autophagy-related molecules and to 
characterize its role in tumor progression.

Roles of OGT in immune escape
Since the early 20th century, researchers have explored 
the role of the immune system in tumor development. 
Tumor immunosurveillance is a critical process where 
the immune system monitors, identifies, and eliminates 
tumor cells [155, 156]. Immune checkpoint proteins, 
such as Programmed Death-Ligand 1 (PD-L1) and its 
receptor PD-1, are closely related to tumor immune eva-
sion. PD-L1 interacts with PD-1 on cytotoxic T lympho-
cytes, transmitting inhibitory signals that weaken the 
tumor-killing function of these cells [157, 158]. Recent 
studies have reported that OGT is involved in regulating 
the expression of immune checkpoint proteins. OGT has 
been implicated in promoting tumor immune evasion 
by inhibiting the lysosomal degradation of PD-L1 [159]. 
Yuan et al. demonstrated that exosomal OGT enhances 
immune evasion of esophageal cancer stem cells by 
upregulating PD-1 expression in CD8+ T cells [160]. 
These findings indicate that OGT plays a role in tumor 
immune evasion. Further research is needed to deter-
mine whether OGT can regulate other immune check-
point molecules (Fig. 3).

Targeting OGT and O-GlcNAcylation
In most human tumors, OGT functions as an oncop-
rotein, promoting tumor growth, metastasis, and drug 
resistance by activating signaling pathways such as pro-
liferation, EMT, and anti-apoptosis. Therefore, target-
ing OGT is a promising strategy for cancer treatment. 
For instance, quercetin has been reported to induce cell 
death in cervical cancer by reducing the expression of 
OGT, overall O-GlcNAc, and O-GlcNAcylated AMPK 
[161]. Similarly, corosolic acid inhibits liver cancer pro-
gression by decreasing OGT expression and O-GlcNAc-
ylation levels in cancer cells [162]. A number of small 
molecule compounds targeting OGT activity or OGT-
mediated O-GlcNAcylation have been produced, such 
as OSMI-1 and OSMI-4, and have been widely used in 
tumor research [163, 164]. OSMI-1 significantly inhibits 
the proliferation and migration of thyroid cancer cells 
and slows the occurrence of liver tumors [62, 69].

Moreover, combination therapies have proven more 
effective than monotherapies in treating tumors. For 
example, astragalus polysaccharide reduces OGT 
levels and increases OGA levels in liver cancer cells, 

thereby downregulating O-GlcNAcylation and pro-
moting doxorubicin-induced apoptosis [165]. A nota-
ble increase in cell death has been observed with the 
coadministration of OSMI-1 and temozolomide. These 
findings highlight OGT as a promising drug target. 
However, many phytochemicals and small molecule 
inhibitors face challenges such as low bioavailability 
and solubility in human applications. Future applica-
tions could overcome these limitations through the use 
of nanomaterials [166].

Conclusion and perspectives
This review provides an overview of the biological func-
tions of OGT, with a particular focus on its impact on 
tumors. Elevated levels of OGT expression are commonly 
observed in tumors. OGT-mediated O-GlcNAcylation 
promotes tumor cell proliferation and induces EMT, 
facilitating MMP expression, which is associated with 
tumor invasion and metastasis. Tumor metabolic repro-
gramming is also linked to OGT, thereby influencing 
tumor progression. Furthermore, the OGT/O-GlcNAc-
ylation pathway inhibits apoptosis and ferroptosis, pro-
motes tumor immune escape, and ultimately enhances 
tumor growth. Notably, OGT mediates drug resistance, 
making it a critical target for altering tumor cell sensitiv-
ity to anticancer treatments. Consequently, small mol-
ecule compounds have been developed to inhibit the 
OGT/O-GlcNAcylation pathway. Knockdown of OGT 
has been shown to reduce malignant tumor behavior 
both in vitro and in vivo. Future efforts should focus on 
translating these research findings into clinical applica-
tions to improve cancer patient outcomes.
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