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A B S T R A C T

The molecular energy, which is the sum of all eigenvalues, is crucial in determining the total 
π-electron energy of conjugated hydrocarbon molecules. We used machine learning techniques to 
calculate the energy, inertia, nullity, signature, and Estrada index of molecular graphs for bismuth 
tri-iodide and benzene rings embedded in P-type surfaces within 2D networks. We applied 
MATLAB to extract the actual eigenvalues from the data and developed general equations for 
these molecular properties. We then used these equations to estimate the values and compared 
them to the actual values through graphical analysis. Our results demonstrate the potential of 
data-driven techniques in predicting molecular properties and enhancing our understanding of 
spectral theory.

1. Introduction

In the continuously developing discipline of chemistry, a comprehensive understanding of molecular energy and spectral char
acteristics is imperative for predicting the behavior and interactions of various molecules, such as conjugated hydrocarbon molecules. 
These molecules exhibit unique chemical properties, like increased stability and reactivity, due to the delocalization of π electrons 
throughout their structure [1–3]. The concept of molecular energy, which is the total sum of all eigenvalues, is central to studying these 
molecules. This concept is closely linked to spectral theory, a branch of mathematics that examines the relationship between eigen
values and eigenvectors of linear operators. Spectral theory provides valuable insights into molecular properties and interactions by 
analyzing and classifying molecular structures based on their energy and spectral characteristics [4–6].

Researchers increasingly adopt interdisciplinary approaches to tackle complex scientific questions as chemistry advances [7]. Data 
science and machine learning have emerged as powerful tools to revolutionize the study of molecular properties [8]. These techniques 
provide a robust framework for analyzing extensive and complex datasets, identifying patterns, and building predictive models that 
significantly improve our understanding of molecular behavior [9,10]. Machine learning, a subset of artificial intelligence, can train 
algorithms to recognize patterns and relationships within data, leading to predictions or conclusions regarding molecular behavior. 
These algorithms can be applied to various tasks, such as predicting molecular energy, determining chemical reactivity, and 
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identifying potential drug candidates [11–13].
In spectral theory and molecular energy, data science and machine learning can be used to develop efficient computational 

methods for estimating molecular properties. By harnessing these tools, researchers can overcome the limitations of traditional ap
proaches, which often depend on time-consuming and labor-intensive experiments. Additionally, these techniques enable the dis
covery of new relationships and patterns within data, potentially leading to groundbreaking findings and advancements in the field of 
chemistry [14–16].

The structure of a chemical compound can be represented by a molecular graph, which can be transformed into various matrices by 
utilizing several graph properties. The atoms of a structure are connected via a bond, which is directed to the adjacency and distance 
matrices. The polynomial obtained from the adjacency or distance matrix can be considered a structure’s signature. The eigenvalue 
obtained from the polynomial considered the molecular descriptor and was used in the quantitative structure-property/activity 
relationship.

Graph of a molecule is a mathematical entity defined as G = (V,E), where V is the set of vertices, also called atoms and E is the set of 
all the edges of the molecule, also called bonds. Usually, in molecular structure, hydrogen atoms are not contemplated. Adjacency 
matrices A =

[
aij
]

of molecules are square matrices of order n, and eigenvalues λ1, λ2, λ3,…, λq− 1, λq of A are called the eigenvalues of 
the molecular structure. The absolute sum of all the eigenvalues is known as the energy of a molecular structure G. Mathematically, it is 
denoted as E =

∑q
i=1|λi|. The set consisting of eigenvalues is also named as the spectrum of the graph G. The spectral characteristics of 

the graph have been expansively investigated. There are many applications of graph theory in the field of chemical graph theory 
[17–19]. Among the many applications of spectral theory in chemistry, one of them is based on the adjacent equivalence between the 
eigenvalues of the structure and the molecular orbital energy level of electrons in conjugated hydrocarbons [20,21].

Rank and nullity play a vital role in graph theory and are associated with the area of linear algebra. Rank represents the sum of 
molecular structures’ positive and negative inertia index. The nullity of a structure η(G) is the number of roots having zero value in the 
characteristic polynomial of A(G) and represents the stability of the molecular structure. If the molecule is stable, closed-shell means its 
nullity is zero, whereas if it is unstable, it is highly reactive, and open-shell means its nullity is more significant than zero. Every 
molecule structure can be expressed as square matrices with only 1’s and 0’s entries p(G), the positive eigenvalues correspond to the 
positive inertia index, while n(G), the negative eigenvalues correspond to the negative inertia index.

In recent decades, another important concept known as the Estrada index was introduced by Ernesto Estrada and defined as 
EE(G) =

∑n
i=1eλi . Initially, it was applied to quantify the degrees of folding of long-chain molecular structures, particularly proteins. In 

a continuation of Estrada index’s applications, many studies have been done [22–27].
By the motivation of the above mathematical concepts, the structure of the molecule and its optimal properties are measured 

through these concepts in the current study. For the investigation, two famous molecules, Bismuth tri-iodide, and benzene, are 
considered due to their huge applications in chemistry, chemical engineering, and other fields of science. We measure the energy and 
Estrada index of these structures. In addition, we have also calculated the inertia, nullity, and signature of the molecules. This study 
aims to minimize the error between molecular graphs’ exact and estimated values through polynomial curve fitting. We focus on two 
specific structures: Bismuth Tri-iodide (BiI3) and a benzene ring embedded in a p-type surface. By comparing the exact and estimated 
energy and Estrada index for each structure, we aim to demonstrate the effectiveness of our methodology. To achieve this, we employ a 
multi-step computational process using various software tools.

2. Brief description of Bismuth Tri-iodide (BiI3)

Bismuth tri-iodide (BiI3) is an inorganic structure that is produced by the chemical reactions of iodine and bismuth; this motivated 
the interest of qualitative studies [28]. BiI3 is extremely helpful in subjective inorganic investigations. It was experimentally shown 
that Bi-doped glass optical strands are among the most capable energetic laser media. Various types of Bi-doped fiber strands are 
formed and depleted to make Bi-doped fiber lasers and optical loudspeakers [29]. BiI3 is a structure consisting of three layers, such that 
a bismuth atom is packed in between iodide particles to form a repeated I − Bi − I plane [30]. Each monolayer unit of BiI3 is stacked 
with each other via Vander Walls forces [31]. This structure provides ideal 2D material for photovoltaic cells, optoelectronics, and 
ambient temperature X-rays/gamma rays detectors [32]. These stacking patterns and interlayer distance affect the electronic structure 
and stability [33]. These electronic properties are modified by intercalation, chemical doping, and mechanical strength [34,35]. 
Particularly, the optical properties are significantly affected by the interlayer distance. The BiI3 forms the material for photodetectors 
with excellent durability and stability with different bending strains, making them suitable for flexible devices such as for optoelec
tronics with advanced technologies like optical fiber communication, flexible imaging technologies, complex environmental moni
toring, and wearable light sensors [36]. In addition, BiI3 also gains attention in gamma-ray detectors or radiographic imaging owing to 
its strong photon inhibition power due to its high density (5.78 g/cm3), large band gap, and greater effective atomic number. These 
important characteristics are essential for huge resolutions of room-temperature gamma-ray spectroscopies [37,38]. The tremendous 
properties of BiI3 also lead to the tactile applications of smart sensors, photovoltaic cells, human-machine interfacing and photonics. 
Through the modification of the morphologies the BiI3 can convert into single and twin plates [39].

2.1. Computational methodology for molecular graph analysis

To measure the energy and Estrada index, different types of computation work are done by different software as shown in Fig. 1.
Following the procedure outlined in Fig. 1, we first used HyperChem to draw the molecular structure of BiI3, as depicted in Fig. 2.
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Secondly, an adjacency matrix of the molecular graph is constructed by using TopoCluj. Third, the matrix’s eigenvalues are 
calculated with Matlab’s help. Finally, a polynomial curve of degree two is built through the eigenvalues attained from the adjacency 
matrix of the molecular structure using cf Toolbox in Matlab.

2.2. Energy and Estrada index of BiI3

The 2 s-order polynomials which display the energy and Estrada index of the Bismuth Tri-iodide molecule are given by Eqs. (1) and 
(2) respectively. 

E(B)=7×10− 9m2n2 − 9× 10− 5n2m+0.0003n2 − 0.0003nm2

+13.794nm+9.5506n − 0.0014m2 +5.1553m − 0.3239
(1) 

EE(B)= 3.167m2n2 − 15.839n2m+19.009n2 − 12.67nm2

+110.86nm − 44.392n+9.49m2 − 32.462m+ 57.857
(2) 

Where m is horizontal and n is vertical unit cells of BiI3.
Eqs. (1) and (2) can further be written in the form of coefficients as shown in Eqs. (3) and (4): 

E(B)=

⎧
⎨

⎩

n2 : 7 × 10− 9m2 − 9 × 10− 5m + 0.0003
n : − 0.0003m2 + 13.794m + 9.5506
1 : − 0.0014m2 + 5.1553m − 0.3239

(3) 

EE(B)=

⎧
⎨

⎩

n2 : 3.167m2 − 15.839m + 19.009
n : − 12.67m2 + 110.86m − 44.392
1 : 9.49m2 − 32.462m + 57.857

(4) 

The numerical results for the energy of and Estrada index of BiI3 through Eqs (1) and (2) are calculated at different values of m in 
Table 1.

Further, estimated values of energy and Estrada are computed at different numbers of unit cells by using Eqs. (1) and (2) and 
compared with exact values of energy and Estrada index obtained through constructing the adjacency matrix, as shown in Figs. 3 and 4.

Here, exact values are denoted by a blue dotted line and estimated values by an orange line. These figures show a good agreement 
between exact and estimated values. For the close view, we also calculate the Mean Absolute percentage error between these values in 
Tables 2 and 3. The relative error is important because it gives us a valuation of the accuracy of calculations or projections. This allows 
us to analyze the method we use to identify areas for potential improvements.

Another way to support this study is to use another statistical method in which we first find the mean absolute error and the 
standard deviation of the errors across all data points to understand the overall accuracy of the estimation method. The average 
absolute error for the above data is 0.0763, and the standard deviation is 0.02423519. The normal distribution curve of the data given 
in Table 2 is shown in Fig. 5.

The average absolute error for the above data is 0.0855 and the standard deviation is 0.09604087671403254. The normal dis
tribution curve of the data given in Table 3 is shown in Fig. 6.

In Tables 2 and it is noticed that the exact/actual values of the energy of BiI3 are smaller than the value of energy of BiI3 obtained 
from the quadratic equations, i.e. Eext(B) < Eest(B), where, we denote Eext exact and Eest the estimated values of energy. Moreover, 
errors are positive among these values of energy, i.e. Error > 0. Similarly, in Table 3, we have noted that actual values of Estrada index 
of BiI3 are always more than the estimated values, i.e. EEext(B) > EEest(B), where, EEext and EEest represents the exact and estimated 
value of Estrada index, respectively. We find that the mean absolute percentage error of energy of BiI3 is 0.035 and mean absolute 
percentage error of Estrada index of BiI3 is 0.00515. This error analysis shows that the relative errors are generally very small, 
indicating that the estimated values EEest(B) are quite close to the exact values EEext(B). This suggests that the estimation method is 
accurate for this dataset, with errors typically less than 0.1 % relative to the exact values.

Fig. 1. Procedure to calculate the energy and Estrada index of molecular structures.
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2.3. The inertia, nullity and signature of BiI3

This section analyzes the molecular structure of BiI3 and its stability through optimal properties. For this, we calculate the nu
merical results of inertia, nullity and signature of BiI3 in Table 4. In Table 4, p(B) shows the positive inertia index whereas n(B)
represents the negative inertia index. When the vertical unit cells n are increased at constant m horizontal unit cells, it is found the 
balance between positive and negative inertia indexes. The difference between positive and negative eigenvalues is called the 
signature s(B) and found no difference due to balanced behavior of inertia indexes. The results for nullity η(B) are obtained by ac
counting the eigenvalues having zero value in the characteristic polynomial. The nullity of BiI3 is increased with increasing of vertical 
unit cells of structure as shown in Table 4.

Fig. 2. Bismuth tri-iodide.

Table 1 
The quadratic equations of the energy and Estrada index of BiI3.

(m,n) Energy(E(B)) Estrada Index(EE(B))

(1,n ) 2.10× 10− 4n2 + 23.34n+ 4.83 6.342n2 − 176.20n+ 34.88
(2,n) 1.28× 10− 4n2 + 19.86n+ 9.98 0.009n2 − 103.35n+ 30.91
(3,n) 3.00× 10− 5n2 + 50.92n+ 15.12 − 99.98n2 + 244.16n − 154.05
(4,n) − 5.00× 10− 5n2 + 64.72n+ 20.27 − 293.64n2 + 866.33n − 520.03
(5,n) − 1.49× 10− 4n2 + 78.51n+ 25.44 − 580.96n2 + 1763.16n − 1067.02
(6,n) − 2.39× 10− 4n2 + 92.30n+ 30.55 − 961.94n2 + 2934.65n − 1795.01
(7,n) − 3.29× 10− 4n2 + 106.12n+ 35.69 − 1436.58n2 + 4380.80n − 2704.01
(8,n) − 4.19× 10− 4n2 + 119.92n+ 40.82 − 2004.89n2 + 6101.61n − 3794.02
(9,n) − 5.09× 10− 4n2 + 133.72n+ 45.96 − 2666.85n2 + 8097.08n − 5065.03
(10,n) − 5.99× 10− 4n2 + 147.52n+ 51.08 − 3422.48n2 + 10367.21n − 6517.05

Fig. 3. Comparison of exact and estimated values of energy of BiI3.
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Fig. 4. Exact and estimated comparison of Estrada index of BiI3.

Table 2 
The exact values Eext(B) and estimated values Eest(B) of the energy of BiI3.

(m,n) Eext(B) Eest(B) Error Absolute Error Absolute Percentage Error Relative Error (%)

(3,1) 66.950 66.966 0.016 0.016 0.023 0.016
66.966

× 100% = 0.02 %

(3,2) 116.924 116.989 0.065 0.065 0.056 0.065
116.989

× 100% = 0.05 %

(3,3) 167.849 167.919 0.070 0.070 0.041 0.070
167.919

× 100% = 0.04 %

(3,4) 218.775 218.849 0.074 0.074 0.033 0.074
218.849

× 100% = 0.03 %

(3,5) 269.701 269.779 0.078 0.078 0.029 0.078
269.779

× 100% = 0.03 %

(3,6) 320.626 320.709 0.082 0.082 0.026 0.082
320.709

× 100% = 0.03 %

(3,7) 371.552 371.640 0.088 0.088 0.024 0.088
371.640

× 100% = 0.02 %

(3,8) 422.478 422.570 0.091 0.091 0.022 0.091
422.570

× 100% = 0.02 %

(3,9) 473.403 473.500 0.097 0.097 0.020 0.097
473.500

× 100% = 0.02 %

(3,10) 524.328 524.431 0.102 0.102 0.019 0.102
524.431

× 100% = 0.02 %

Mean Absolute Percentage Error (MAPE) 0.029.

Table 3 
Exact values EEext(B) and estimated values EEest (B) of the Estrada index of BiI3.

(m,n) Eext(B) Eest(B) Error Absolute Error Absolute Percentage Error Relative Error (%)

(3,1) 215.519 215.515 − 0.004 0.004 0.0018 − 0.004
215.519

× 100% = - 0.002 %

(3,2) 427.787 427.780 − 0.007 0.007 0.0016 − 0.007
427.787

× 100% = - 0.002 %

(3,3) 640.066 640.054 − 0.012 0.012 0.0018 − 0.012
640.066

× 100% = - 0.002 %

(3,4) 852.338 852.341 − 0.002 0.002 0.0002 − 0.002
852.338

× 100% = - 0.0002 %

(3,5) 1064.611 1064.634 − 0.023 0.023 0.0021 − 0.023
1064.611

× 100% = - 0.002 %

(3,6) 1276.885 1276.940 − 0.055 0.055 0.0043 − 0.055
1276.885

× 100% = - 0.004 %

(3,7) 1489.158 1489.256 0.098 0.098 0.0066 0.098
1489.158

× 100% = 0.007 %

(3,8) 1701.432 1701.583 0.151 0.151 0.0089 0.151
1701.432

× 100% = 0.009 %

(3,9) 1919.705 1913.920 0.215 0.215 0.0112 0.215
1919.705

× 100% = 0.01 %

(3,10) 2125.979 2126.267 0.288 0.288 0.013 0.288
2125.979

× 100% = 0.01 %

Mean Absolute Percentage Error (MAPE) 0.0343.
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3. Benzene Ring Embedded (BRE) in P-type-surface

P-type networks are embeddings of sp2 carbons in triply periodic surfaces with the same regularity of single-node simple cubic 
Bravis tilings. It linked among the 230 symmetry classes of Euclidean space. In these embeddings, the edges of the structure are without 
crossings, and it splits the space into two disjoint regions. A molecular structure consists of entirely sp2 atoms, is embeddable in a triply 
periodic surface, with nonpositive Gaussian arc. These types of carbon structures are called Schwarzites. Schwarzites have exceptional 
electronic, magnetic, and optical characteristics. The Shwarzites, which are embedded in P-type surfaces, decorate the Bravais lattice 
in three-dimensional Euclidean space. P-type surfaces can be filled with various coverings of polygons having more sides than 
hexagons, which are required to create the negative Gaussian curvature.

Fig. 5. Normal distribution curve for the absolute errors in energy estimation of BiI3.

Fig. 6. Normal distribution curve for the absolute errors in Estrada index estimation of BiI3.

Table 4 
The inertia, nullity and signature of BiI3.

(m,n) p(B) n(B) η(B) s(B)

(3,1) 16 16 40 0
(3,2) 26 26 60 0
(3,3) 36 36 80 0
(3,4) 46 46 100 0
(3,5) 56 56 120 0
(3,6) 66 66 140 0
(3,7) 76 76 160 0
(3,8) 86 86 180 0
(3,9) 96 96 200 0
(3,10) 106 106 220 0
(3,11) 116 116 240 0
(3,12) 126 126 260 0
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3.1. Energy and Estrada index of BRE

The same procedure is followed to measure the energy and Estrada index of BRE as for BiI3. The structure of BRE is constructed 
through HyperChem, as shown in Fig. 7.

The results of energy and Estrada index in the form of 2 s-order polynomials are shown in Eqs. (5) and (6) respectively. 

E(BRE)=2×10− 7m2n2 − 2×10− 5n2m+2×10− 5n2 − 0.01nm2

+35.2nm+0.98n − 0.0085m2 +0.9773m − 0.1176
(5) 

EE(BRE)=0.0542m2n2 − 0.1387n2m − 0.0665n2 − 0.0145nm2

+70.062nm+2.193n − 0.1985m2 +2.3475m − 1.994
(6) 

Eqs. (5) and (6) can further be written in the form of coefficients as shown in Eqs. (7) and (8): 

E(BRE)=

⎧
⎨

⎩

n2 : 2 × 10− 7m2 − 2 × 10− 5m + 2 × 10− 5

n : − 0.01m2 + 35.2m + 0.98
1 : − 0.0085m2 + 0.9773m − 0.1176

(7) 

EE(BRE)=

⎧
⎨

⎩

n2 : 0.0542m2 − 0.1387m − 0.0665
n : − 0.0145m2 + 70.062m + 2.193
1 : − 0.1985m2 + 2.3475m − 1.994

(8) 

The numerical set of results for the energy and Estrada index at different values of m by using Eqs. (5) and (6) are shown in 
following Table 5.

To check the accuracy of the result, we have compared the estimated values of energy and Estrada index which are obtained from 
Eqs. (5) and (6) with the exact values of energy and Estrada index in Figs. 8 and 9 and found a good agreement between the results.

Here, exact values are denoted by a blue dotted line and estimated values by an orange line. In addition, we calculate the mean 
absolute percentage error between these values in Tables 6 and 7.

The average absolute error for the above data is 0.3761 and the standard deviation is 0.42581697. The normal distribution curve of 
the data given above is shown in Fig. 10.

The average absolute error for the above data is 0.0855 and the standard deviation is 0.09604087671403254. The normal dis
tribution curve of the data is shown in Fig. 11.

We have observed that the exact value of the energy of BRE is less than first two terms, the gradual increase from the estimated 
values of energy of BRE is seen. Similarly, exact value of Estrada index of BRE is less than the estimated values of Estrada index of BRE, 
for few terms, which later have a sudden change in behavior for the remaining five values. We find that the mean absolute percentage 
error of energy of BRE is 0.04283 and mean absolute percentage error of Estrada index of BRE is 0.00523.

3.2. The inertia, nullity and signature of BRE

The molecular structure of BRE and its stability are analysis through the numerical results of inertia, nullity and signature in 
Table 8. In Table 8, p(BRE) and n(BRE) shows the positive and the negative inertia indexes and found a balance between results. The 
signature of molecular structure is displayed by s(BRE) and found the zero values because of the balance behavior of inertia indexes. In 
the results of nullity denoted by η(BRE), found a constant behavior at all unit cells of the structure as shown in Table 8.

4. Conclusion

We studied the energy, Estrada index, inertia, nullity, signature for BiI3 and BRE in current investigation. The following inequalities 

Fig. 7. Benzene ring embedded in P-type surface.
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Eext(B) > Eest(B), EEext(B) > EEest(B), Eext(BRE) > Eest(BRE) and EEext(BRE) > EEest(BRE) have been observed between exact and 
estimated values of energy of BiI3 and BRE. In addition, since the nullity of BiI3 and BRE is zero so the molecule of these structures is 
stable and closed shell.

The numerical values of the energy told us about the correlation between the bond energy of π-electrons and every orbital in 

Table 5 
The quadratic curves for the Energy and Estrada index of BRE.

(m,n) Energy(E(BRE)) Estrada index(EE(BRE))

(1,n ) 1
5000000

n2 + 36.17 n+ 0.8682 − 0.1510 n2 + 72.2405 n+ 0.1550

(2,n)
−

3
156250

n2 + 71.34 n+ 1.8710 − 0.1271 n2 + 142.2590 n+ 1.9070

(3,n)
−

191
5000000

n2 + 106.49 n+ 2.8908 0.0052 n2 + 212.2485 n+ 3.2620

(4,n)
−

71
1250000

n2 + 141.62 n+ 3.9276 0.2459 n2 + 282.2090 n+ 4.2200

(5,n)
−

3
40000

n2 + 176.73 n+ 4.9814 0.5950 n2 + 352.1405 n+ 4.7810

(6,n)
−

29
312500

n2 + 211.82 n+ 6.0522 1.0525 n2 + 422.0430 n+ 4.9450

(7,n)
−

551
5000000

n2 + 246.89 n+ 7.1400 1.6184 n2 + 491.9165 n+ 4.7120

(8,n)
−

159
1250000

n2 + 281.94 n+ 8.2448 2.2927 n2 + 561.7610 n+ 4.0820

(9,n)
−

719
5000000

n2 + 316.97 n+ 9.3666 3.0754 n2 + 631.5765 n+ 3.0550

(10,n)
−

1
6250

n2 + 351.98 n+ 10.5054 3.9665 n2 + 701.3630 n+ 1.6310

Fig. 8. Exact and estimated comparison of energy of BRE.

Fig. 9. Exact and estimated comparison of Estrada index of BRE.
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Table 6 
The exact values Eext(BRE) and estimated values Eest(BRE) of the energy for BRE.

(m,n) Eext (B) Eest (B) Error Absolute Error Absolute Percentage Error Relative Error (%)

(3,1) 109.376 109.378 0.0014 0.0014 0.0013 0.0014
109.376

× 100% = 0.001 %

(3,2) 215.887 215.890 0.0036 0.0036 0.0017 0.0036
215.887

× 100% = 0.002 %

(3,3) 322.361 322.360 − 0.0010 0.0010 0.0003 − 0.010
322.361

× 100% = - 0.003 %

(3,4) 428.834 428.825 − 0.0087 0.0087 0.0020 − 0.0087
428.834

× 100% = - 0.002 %

(3,5) 535.305 535.170 − 0.1347 0.1347 0.0252 − 0.1347
535.305

× 100% = - 0.025 %

(3,6) 641.779 641.651 − 0.2677 0.2677 0.0417 − 0.2677
641.779

× 100% = - 0.04 %

(3,7) 748.264 748.809 − 0.4554 0.4554 0.0609 − 0.4554
748.264

× 100% = 0.06 %

(3,8) 854.742 854.063 − 0.6790 0.6790 0.0794 − 0.6790
854.742

× 100% = - 0.08 %

(3,9) 961.220 961.275 − 0.9456 0.9456 0.0983 − 0.9456
961.220

× 100% = - 0.09 %

(3,10) 1067.699 1067.444 1.2551 1.2551 0.1175 1.2551
1067.699

× 100% = 0.01 %

Mean Absolute Percentage Error (MAPE) 0.0232.

Table 7 
The exact values EEext(BRE) and estimated values EEest(BRE) of the Estrada Index for BRE.

(m,n) Eext (B) Eest (B) Error Absolute Error Absolute Percentage Error Relative Error (%)

(3,1) 215.519 215.515 − 0.004 0.004 0.0019 − 0.004
215.519

× 100% = - 0.002 %

(3,2) 427.787 427.780 − 0.007 0.007 0.0016 − 0.007
427.787

× 100% = - 0.002 %

(3,3) 640.066 640.054 − 0.012 0.012 0.0019 − 0.012
640.066

× 100% = - 0.002 %

(3,4) 852.338 852.341 − 0.002 0.002 0.0002 − 0.002
852.338

× 100% = - 0.0002 %

(3,5) 1064.611 1064.634 0.023 0.023 0.0022 0.023
1064.611

× 100% = 0.002 %

(3,6) 1276.885 1276.940 − 0.055 0.055 0.0043 − 0.055
1276.885

× 100% = - 0.004 %

(3,7) 1489.158 1489.256 0.098 0.098 0.0066 0.098
1489.158

× 100% = 0.007 %

(3,8) 1701.432 1701.583 0.151 0.151 0.0089 − 0.6790
854.742

× 100% = - 0.08 %

(3,9) 1913.705 1913.920 0.215 0.215 0.0112 0.215
1913.705

× 100% = 0.01 %

(3,10) 2125.979 2125.267 0.288 0.288 0.0135 0.288
2125.979

× 100% = 0.01 %

Mean Absolute Percentage Error (MAPE) 0.00723.

Fig. 10. Normal distribution curve for the absolute errors in energy estimation of BRE.
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π-electrons correspond to the each eigen value of the graph under consideration. If we calculate the energy for a single unit, such as 
(1,1), we obtain a positive integer. As we increase the order horizontally, for example, moving from (1,1) to (1,2), (1,3), (1,4) and so 
on, the energy of each subsequent unit will also be increased. This is because the number of vertices grows, and consequently, the order 
of the adjacency matrix also increases. Similarly, we proceeded vertically, for example, from (1,1) to (2,1), (3,1), and so on. As the 
order increased, handling the calculations became increasingly difficult. Therefore, we generalized our graph and applied statistical 
methods to analyze the general behavior of the data. To determine the energy of a particular unit, we generated a polynomial of a 
certain order to estimate the energy of the desired unit. The positive eigenvalues were linked with the antibonding level, negative 
eigenvalues were linked with bonding levels, and zero eigenvalues were associated with the nonbonding level.

By employing MATLAB to extract actual eigenvalues from the data and generate general equations, we aimed to bridge the gap 
between the actual and estimated values of these molecular properties. We used the Mean Absolute Percentage Error (MAPE) as the 
standard metric for error in Table 2, Table 3, Tables 6, and Table 7. When the MAPE between actual and expected values was close to 
zero, it generally indicated that the model’s predictions were accurate on average. Additionally, we observed that the energy of BiI3 
and BRE was 0.035 and 0.04, respectively, from units (3,1) to (3,10). Similarly, we observed that the Estrada index of BiI3 and BRE was 
0.00515 and 0.0523, respectively, from units (3,1) to (3,10). We have used two other methods to support our results. In the first 
method, we have found the relative error percentage (%) and in the second method, we have found the average absolute error and the 
standard deviation along with their normal curve. In the first method, the relative error percentage (%) was less than 0.1 %, which 
suggested that this method was accurate for this dataset, with errors typically less than 0.1 % relative to the exact values. In the second 
method, a small value of standard deviation indicated that the data points were very close to the mean, reflecting low variability, high 
consistency, tight distribution, and predictability.

For future research, we propose to conduct comparative studies with other data-driven and other machine learning approaches, 
such as neural networks, SVM, and decision trees, to evaluate the relative performance and applicability of different methods. Apply 
the polynomial curve fitting method to a wider range of molecular structures and chemical systems to test its generalizability and 
robustness. Explore the integration of more advanced machine learning techniques to improve prediction accuracy and computational 
efficiency. Investigate the use of our methodology in real-world applications, such as drug discovery, materials science, and chemical 
engineering, to assess its practical utility and impact. Develop a more comprehensive framework that combines various data-driven 
approaches for a holistic understanding and prediction of molecular properties. The error analysis method we used can be applied 
to any model. Relative error percentage is scale-independent, making it useful for comparing errors across different datasets or models. 
It provides a direct interpretation of how large the errors are relative to the actual values, making it easier to understand the model’s 
performance in practical terms. Standard deviation offers a well-rounded understanding of the model’s performance, highlighting 

Fig. 11. Normal distribution curve for the absolute errors in Estrada index estimation of BRE.

Table 8 
The inertia, nullity and signature of BRE.

(m,n) p(BRE) n(BRE) η(BRE) s(BRE)

(3,1) 39 39 2 0
(3,2) 76 76 2 0
(3,3) 113 113 2 0
(3,4) 150 150 2 0
(3,5) 187 187 2 0
(3,6) 224 224 2 0
(3,7) 261 261 2 0
(3,8) 298 298 2 0
(3,9) 335 335 2 0
(3,10) 372 372 2 0
(3,11) 409 409 2 0
(3,12) 446 446 2 0
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different aspects of accuracy and consistency, which can be crucial for model evaluation and improvement.
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