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Abstract 
Set-based association analysis is a valuable tool in studying the etiology of complex diseases in genome-wide association studies, as 
it allows for the joint testing of variants in a region or group. Two common types of single nucleotide polymorphism (SNP)–disease 
functional models are recognized when evaluating the joint function of a set of SNP: the cumulative weak signal model, in which 
multiple functional variants with small effects contribute to disease risk, and the dominating strong signal model, in which a few 
functional variants with large effects contribute to disease risk. However, existing methods have two main limitations that reduce their 
power. Firstly, they typically only consider one disease–SNP association model, which can result in significant power loss if the model 
is misspecified. Secondly, they do not account for the high-dimensional nature of SNPs, leading to low power or high false positives. 
In this study, we propose a solution to these challenges by using a high-dimensional inference procedure that involves simultaneously 
fitting many SNPs in a regression model. We also propose an omnibus testing procedure that employs a robust and powerful P-value 
combination method to enhance the power of SNP-set association. Our results from extensive simulation studies and a real data analysis 
demonstrate that our set-based high-dimensional inference strategy is both flexible and computationally efficient and can substantially 
improve the power of SNP-set association analysis. Application to a real dataset further demonstrates the utility of the testing strategy. 
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Introduction 
Genome-wide association studies (GWASs) have made signifi-
cant progress in identifying genetic risk factors associated with 
complex disease traits. However, the variants identified so far 
can only account for a small proportion of heritability for many 
complex traits [1–3]. Several factors could contribute to the miss-
ing heritability, including rare variants, structural variants, and 
gene–gene interactions [4]. Furthermore, the missing heritability 
could be attributed to the inability to capture SNPs with weak 
effects [1]. In traditional GWAS analysis, SNP effects are usually 
analyzed and tested individually [4, 5]. Therefore, weak signals 
are less likely to be detected, leading to a failure to explain 
the heritability of complex traits, even for highly heritable traits 
such as body height [5]. This suggests that a single SNP-based 
analysis can be underpowered in GWAS studies [1]. To overcome 
the limitations of single SNP analysis, efforts have been made to 
infer the combined effects of SNPs. Set-based methods, including 
gene-, network-, or pathway-based association tests, have been 
shown to be powerful and promising alternatives to traditional 
single SNP-based marginal tests [6–8]. The set-based methods 
take the joint function of multiple variants in a set into account 
and have the potential to improve association power [9]. They 

serve as complementary approaches to single SNP-based analysis 
[10, 11]. While numerous gene-set analysis methods have been 
developed, the majority of these approaches primarily concen-
trate on GWAS summary statistics. These statistics, derived from 
marginal regressions, may produce biased parameter estimates 
when not considering linkage disequilibrium (LD) at the GWAS 
scale. For methods with individual-level data, SNP-Set Sequence 
Kernel Association Test (SKAT) has been one of the most popular 
approaches [12, 13]. For an in-depth exploration of gene-set analy-
sis, readers are encouraged to consult the review papers authored 
by Wang et al. [14] and  Das et al.  [15]. 

When multiple SNPs in a set are jointly analyzed to assess the 
group effect, one popular and computationally efficient strategy 
is to combine individual SNP P-values to assess the SNP-set asso-
ciation, using a method like Fisher’s P-value combination. Since 
SNPs are marginally analyzed and then combined, this makes 
the P-value combination method computationally efficient. This 
method has been widely used, even for a large number of SNPs. 
However, when assessing a group effect, two types of genetic 
manifestation mechanisms could be observed: (i) only a small 
number of SNPs in a set but each with a large effect contributes 
to disease risk, as seen in age-related macular degeneration [16],
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and (ii) a large number of SNPs, each with a small effect, together 
contribute to disease risk, as seen in Crohn’s disease [17]. Any 
misspecification of the disease model could lead to power loss 
when combining P-values to assess a group effect. 

When dealing with high-dimensional GWAS SNP data, it is 
inevitable to encounter correlations due to LD. Although vari-
ous variable selection methods have been proposed for high-
dimensional data, the presence of high correlations within regions 
or groups poses two major challenges: (i) instability in variable 
selection and (ii) low power, particularly when considering the 
multiplicity problem and working with small sample sizes [18]. To 
address these issues and increase power, an alternative approach 
is to test the effects of SNPs not at the individual SNP level, 
but rather at the level of regions or groups of highly correlated 
variables, such as an SNP set or gene [19]. Group structure arises 
naturally in many applications, and methods that can take it into 
account have been proposed from a variable selection perspective. 
Examples include group selection that produces sparse estimates 
at the group level, such as group LASSO [20], concave L2-norm 
group bridge, concave L2-norm group SCAD, and concave L2-norm 
group MCP [21]. Other methods include bi-level selection that 
produces sparse estimates at both the group and individual levels, 
such as the L1-norm group bridge [22], composite MCP [23], and 
other approaches based on additive penalties [24, 25]. 

Although the group lasso and its modified versions are effective 
for variable selection at the group level or both the group and indi-
vidual levels, they are unable to provide a measure of uncertainty 
or statistical significance for individual or group variables. This 
limitation restricts their practical utility in many applications, 
where researchers require P-values or confidence intervals to 
make inferences, particularly when experimental validation is not 
feasible. Therefore, it is essential to quantify uncertainty in high-
dimensional statistical inference procedures to ensure reliable 
scientific conclusions based on statistically sound results [26]. 
These practical concerns make it crucial to quantify uncertainty 
in real-world applications. To address these challenges, it is essen-
tial to employ high-dimensional statistical inference procedures. 

In low-dimensional settings, regular regression models can 
be applied directly to obtain P-values or confidence intervals 
for regression coefficients. However, in high-dimensional setups, 
this becomes a challenging issue. Knight and Fu demonstrated 
that the asymptotic distribution of sparse LASSO estimators is 
non-Gaussian with a point mass at zero for fixed dimension 
as n → ∞, and the situation worsens for P → ∞  as n → ∞  
[27]. This problem also applies to other sparse estimators. Due 
to the noncontinuous distribution of the estimators, regular 
bootstrap or subsampling methods cannot provide valid P-
values or confidence intervals [18]. It was not until the work 
of Wasserman and Roeder that obtaining valid P-values in 
high-dimensional regression became possible [28]. Since then, 
significant efforts have been made to develop statistical methods 
for high-dimensional inference, including multisample splitting 
[18], projection-based estimations [29–31], and the desparsifying 
LASSO estimator [32]. These methods establish the theoretical 
foundation for high-dimensional inference methods to obtain 
P-values for individual variables and address the correlation 
issue, which is inevitable in high-dimensional data. This makes 
the high-dimensional inference procedure attractive since the 
individual P-values are obtained based on partial effect estimates, 
rather than on marginal estimates obtained by single SNP 
analysis. This is generally true for any regression analysis. When 
regression variables are completely independent, there should be 
no difference in the inference of regression coefficient estimates 

regardless of fitting a multiple regression or a marginal regression. 
However, when variables are correlated, inferences based on 
marginal regressions are typically biased. Therefore, group-wise 
testing based on P-values obtained by fitting a multiple regression 
model is expected to yield more meaningful results. 

As previously mentioned, two genetic effect models can be 
assumed when evaluating an SNP-set effect: (i) multiple func-
tional variants, each with a small effect in a set, collectively 
contribute to disease risk, referred to as the cumulative weak 
signal model (CWSM), and (ii) very few variants with large dom-
inating effects in a set contribute to disease risk, referred to as 
the dominating strong signal model (DSSM). When applying the 
DSSM, the distribution of the largest statistic or smallest P-value 
is a natural choice to obtain the P-value of a group. This approach 
is also known as the minimum P-value (MinP) approach. However, 
the MinP method may not be well suited for the CWSM. In this 
case, a natural choice is to combine P-values to obtain a group 
P-value and assess group significance. 

Methods for P-value combination have been extensively stud-
ied and the most typical methods include Fisher’s product test 
[33], truncated product method (TPM) [34], rank truncated product 
(RTP) [35], augmented RTP (ART) [36], adaptive ART (ART-A) [36], 
and the Cauchy combination test [37], to name a few. These P-
value combination methods all have their own advantages and 
disadvantages; the details are given in the supplementary file. 
In view of the limitations of these methods, we proposed an 
improved version of ART-A, termed iART-A, by leveraging the 
Cauchy combination test [37]. 

As people usually have no prior knowledge about the true 
genetic effect in practice [38], it is of substantial interest to develop 
a robust and powerful test that can be adaptive to the two genetic 
models described above. The omnibus test, as the pick-the-winner 
method, is a robust and powerful strategy [9]. It borrows the 
strengths of multiple candidate methods by adaptively accom-
modating different genetic effects; thus, it is a robust choice in 
GWAS in the absence of prior knowledge [9]. A brief review of 
the omnibus test application is available in the supplemental 
file. To adaptively accommodate the two different genetic mod-
els we hypothesized earlier, we proposed a novel omnibus test 
method under the high-dimensional inference framework. We 
first obtained the P-values of individual variants using a despar-
sified (or debiased) LASSO algorithm which has nice asymptotic 
normality properties in a high-dimensional linear model. For the 
CWSM, we proposed to use the MinP to represent the set signal. 
For the DSSM, we used our proposed iART-A to get the combined 
P-value in a set. As no prior knowledge about the true disease 
model is known in practice, we proposed an omnibus testing 
strategy to integrate the two P-values obtained under the two 
disease model assumptions, using a Cauchy combination test. The 
Cauchy combination test is asymptotically optimal in a strong 
sparsity setting [37]. Furthermore, the Cauchy combination test is 
insensitive to correlations between P-values, making it a powerful 
tool to integrate the two P-values for a given gene set. We illus-
trated the idea with extensive simulation studies and application 
to a real dataset. Our method provides a unified approach for a 
set-based analysis under a high-dimensional setting. 

Statistical methods 
In a GWAS study, the number of SNPs is typically in the order of 
thousands or millions, termed ultrahigh dimensional data. A large 
proportion of SNPs have no relationship with a disease outcome. 
Such “noise” SNPs can undermine the power of any statistical
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Figure 1. The flowchart of the SNP-set association test leveraging the 
DSSM and CWSM hypothesis. 

methods in a disease–gene association study. Here, we propose 
to first reduce the data dimension from ultrahigh to high, then 
conduct the testing in a high-dimensional setup. The flowchart 
of the framework is summarized in Fig. 1. 

Variable screening via high dimensional 
ordinary least squares projection 
The high-dimensional ordinary least squares projection (HOLP) 
method is a simple and powerful method for variable screening 
in ultrahigh dimensional scenario [39]. To make this work self-
contained, a brief introduction to the HOLP procedure is available 
in the supplemental file. After we get the HOLP estimator β̂, we  
follow a very simple strategy by ranking the components of β̂ and 
select the top ones [39]. More precisely, let

∣∣d∣∣ be the number of SNP 
variables that are retained after screening. We choose a submodel 
Md as 

Md =
{
xj :

∣∣∣β̂j

∣∣∣ are among  the largest  d of all
∣∣∣β̂j

∣∣∣ s
}

, 

where one can choose d with size n, n − 1, or n/log(n) [40, 41], 
or use extended BIC [42] to determine d [39]. To avoid selection 
bias in the screening stage, we borrowed the idea from Fan and 
Lv [40]: first, split samples into two halves, with the first half for 
variable screening via HOLP and the second half for further high-
dimensional inference by desparsifying the LASSO estimator as 
described in the following. 

SNP inference with the desparsified LASSO 
estimator 
Focusing on the submodel Md, we apply the desparsified LASSO 
as the high-dimensional inference method to obtain individual P-
values for testing individual SNPs, i.e. H0j : βj = 0

(
j = 1, · · ·  , d

)
, 

while fitting all the d SNPs as predictors in a multiple linear 
regression model as follows: 

Y(n×1) = X(n×d)β(d×1) + ε(n×1). (1)  

To make the work self-contained, again, we briefly describe the 
desparsified LASSO estimator and how we can use it to do testing. 
For further details, readers are referred to Zhang and Zhang [31] 

and van de Geer [43]. To save space, we have rendered the details 
about the desparsified LASSO process in the supplemental file. 
The asymptotic normality of the estimators can be established 
[31, 43] as,  

√
n

(
β̂j − β0 

j

)
σε

√
�jj 

→ N (0, 1) as d ≥ n → ∞, (2)  

where �jj can be computed from the data. From Equation (2), we 
can easily conduct hypothesis testing by plugging in an estimator 
σε, which can be obtained based on the scaled LASSO [43]. In 
short, the aforementioned desparsified LASSO estimator is based 
on regular LASSO and yields a nonsparse estimator which follows 
a Gaussian distribution [43]. The asymptotic normality distribu-
tion allows us to assess the significance of each coefficient βj [31] 
and compute P-values for testing the null, i.e. H0 : βj = 0 in a high-
dimensional regression setup [44]. 

Remark 
Depending on how one defines a group (e.g. genes or pathways), 
our interest is to test the significance of group effect after fitting 
the d predictors simultaneously in a multiple regression model 
(the dimension d can still be large after the HOLP screening). This 
has two major advantages: (i) the coefficients of the d predictors 
are partial regression effects. When d is large or the d predictors 
are correlated, the ordinary least squares (OLS) estimates could be 
problematic, and (ii) simultaneously fitting d variables in a regres-
sion model is more advantageous than fitting them marginally 
one at a time. Imagine there are two highly correlated variables, if 
only one variable contributes to the response, a marginal regres-
sion will show the significance for both variables. On the other 
hand, fitting the two variables in one regression model will also 
lead to biased inference if the correlation is not properly taken 
care of. The issue can be worse when d is large. The desparsified 
LASSO inference procedure handles this issue well. 

Inference under the dominating strong signal 
model assumption by minimum P-value 
approach 
For the DSSM, we propose to use the minimum P-value to repre-
sent the group P-value for further inference. In general, the distri-
bution of the minimum P-value relies on a resampling approach. 
Such a method is very time-consuming. In this work, utilizing the 
nice asymptotic results of the desparsified LASSO estimates, we 
propose a fast resampling method that does not need to refit the 
model. Suppose we are interested in testing a group hypothesis, 
i.e. H0,g : βj = 0, j ∈ g by using the following maximum statistic: 

max 
j∈g 

√
n

∣∣∣b̂j

∣∣∣
σε

√
�jj 

D→ max 
j∈g

∣∣Wj
∣∣√

�jj 
(3) 

where W ∼ N|g| (0, �), where
∣∣g∣∣ is the cardinality of the group g, 

and one can obtain � by the following formula:

�jk = 
nZT 

j Zk(
XT 

j Zj

) (
XT 

kZk
) . (4)  

Since the statistic max 
j∈g 

√
n
∣∣∣b̂j

∣∣∣
σε

√
�jj 

converges in distribution to the 

maximum of a multivariate normal, i.e. max 
j∈g 

|Wj|√
�jj 

, instead of get-

ting the distribution of max 
j∈g 

√
n
∣∣∣b̂j

∣∣∣
σε

√
�jj 

by a resampling approach, we
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can get the distribution of max 
j∈g 

|Wj|√
�jj 

by simulating from a mul-

tivariate Gaussian distribution with variance–covariance matrix
�. For example, we can sample 10 000 random draws from W ∼ 
N|g| (0, Ω) and then scale the data by �1/2W. Then, we can get 

the empirical distribution of max 
j∈g 

|Wj|√
�jj 

by extracting the maximum 

element corresponding to the jth variable in the scaled data 
matrix. Next, we can take the minimum P-value (MinP) among 
the individual P-values in a group as the P-value of the group. 

Inference under the cumulative weak signal 
model assumption by iART-A 
For the CWSM, we developed an iART-A approach based on the 
ART-A method proposed by Vsevolozhskaya et al. [36]. The proce-
dure of iART-A is as follows: 

Decorrelation by orthogonal transformation 
1. The idea of decorrelation by orthogonal transformation 

(DOT) is to let all d correlated P-values (p1, p2, . . . , pL) 
originate from a standard multivariate normal distribution, 
u ∼ MVN (μ = 0, �) (u can be replaced with β in the 
desparsified LASSO), under H0. For two-sided P-values, the 
elements of u are squared. Elements of the vector of squared 
variables, u2 

j , follow a one degree of freedom chi-square 

distribution with Cor
(
u2 

i , u2 
j

)
= �2 

ij. Dependent variables 
can be transformed into independent variables by using 
eigen decomposition of �, such  that � = Q�Q−1, where  Q is 
a square matrix, with ith column containing eigenvector qi 

of �, and � is a diagonal matrix of eigenvalues λ1, λ2, . . . , λL. 
Next, define an orthogonal matrix H = Q�−1/2QT and ue = HTu. 
Then, P-values are decorrelated by 1-�−1(ue). In our high-
dimensional inference framework, P-values within a group, 
such as P-values of SNPs within a gene, can be decorrelated 
as follows [36, 45]: 

(1) We get the covariance matrix, � of all d regression coeffi-
cients derived from the desparsified LASSO model and then 
get �(j) for group j from � by locating the jth group. 

(2) We convert �(j) to its corresponding correlation matrix �(j). 
(3) We obtain the eigenvector matrix Q and eigenvalue matrix �

from the eigen-decomposition of �(j). 
(4) We define an orthogonal matrix H = Q�−1/2QT and get 

ue = HTu. 
(5) We get the decorrelated P-value vector PDOT by using 2 × (1-

	−1(|ue |)), where, 	−1 (•) is the inverse CDF of a standard 
normal distribution. 

(6) We sort PDOT in ascending order. 

Adaptative augmented rank truncation 
We use the ART-A to combine the first k smallest P-values based 
on the product of the first smallest P-values. k can be determined 
by: 

(1) Transforming PDOT to Z. The  ith element, Zi can be obtained 
as follows: 

Zi =
(

1 − PDOT(i) 

PDOT(i)

)L−i+1 (
i = 1, · · ·  , k

)

where Z1 =
(
1 − PDOT(1)

)L . 

(2) Define a partial sum as follows: 

Sk = 
k∑

i=1 

λi	
−1 (1 − Zi) . 

Under the null hypothesis, S = (S1, S2, . . .  , Sk)T follows a multi-
variate normal distribution, i.e. MVN (0, �), with � = FWFT , where  

F = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0  · · ·  0 0  
1 1  · · ·  0 0  
... 

... 
. . . 

... 
... 

1 1  · · ·  1 0  
1 1  · · ·  1 1  

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

, diag (W) = 

⎡ 

⎢⎢⎢⎢⎣ 

λ2 
1 

λ2 
2 

. . . 
λ2 

k 

⎤ 

⎥⎥⎥⎥⎦. 

(3) Evaluate the adaptive ART (ART-A) P-value (PART-A). Stan-
dardize the vector S as Ti = Si/σi, where  σi is the diagonal 
element of �. The null distribution of S is used to evaluate 
PART-A, by calculating Pr(Si/σ i > si) from a multivariate normal 
distribution as follows: 

PART−A = P (T1 ≤ max (Tk) , T2 ≤ max (Tk) , . . . , Tk ≤ max (Tk)) 

In R programming, we can use the function pmvnorm to get 
PART-A by specifying the vector of lower limits as (-Inf, k), the vector 
of upper limits as (-Inf, max (Tk)), and the covariance matrix as
� = FWFT . 

Improved adaptative augmented rank truncation 
ART-A is still a method that evaluates the adaptive RTP based 
on the number of candidate values of truncation points, k

(
k ≤ L

)
which is prespecified. As discussed in Zaykin et al., the optimal 
value of k is usually lower than the actual number of real signals. 
However, a priori knowledge about the potential number of real 
signals is not easy to get; thus, a poor choice of k value will 
possibly affect the power of the group [46]. For convenience, one 
usually sets k as L, which may suffer from power loss. To boost the 
power of ART-A, we propose to calculate the P-value of ART-A via 
a Cauchy combination test [37] over  k (ranging from 2 to L), i.e. 

T = 
L∑

i=2 

wi tan
{(

0.5 − pi
)
π

}

PiART−A ≈ 0.5 − {arctan (T/w)} /π , 

where pi = P(k) 
ART−A. We call this procedure iART-A. The type I 

error and power of iART-A are shown in the simulation study of 
the Results section. 

Omnibus test based on minimum P-value and 
iART-A 
In practice, people generally lack prior knowledge about the 
underlying disease model. Here, we suggest integrating the two 
methods proposed under two genetic models (CWSW and DSSW) 
from an omnibus testing perspective. Specifically, we aim to 
construct an omnibus test for SNP sets utilizing the strength 
of MinP and iART-A to adaptively accommodate the two genetic 
models. To leverage the strength of the two complementary tests, 
we define an omnibus test statistic as, 

Min −O = min
{
PMinP, PiART−A

}
. 

Due to the high dependence between the two P-values, we 
borrow the idea of the Cauchy combination test [37] to obtain the  
analytical distribution of Min-O. Let 

T = w1 × tan {(0.5 − PMinP) × π} + w2 × tan {(0.5 − PiART−A) × π}
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where we set  w1 = w2 = 0.5 (different weights can also be chosen 
based on prior information). Then, the P-value of the T can be 
simply approximated by pT = 0.5 − (arctan T) /π . 

Validation of the proposed method with 
simulation studies 
We conducted extensive simulations to evaluate the performance 
of our proposed framework under different scenarios. We followed 
the procedure described by Morris et al. to report the simulation 
design [47]. 

Aims 
In all the simulation scenarios, we aim to evaluate the type I 
error control under the null hypothesis that some set or group 
is not associated with the phenotype and assess the power of our 
proposed framework under different scenarios, including differ-
ent sample sizes, different types of predictor, correlation within a 
group, and different gene action modes. 

Case I: simulation for the small-scale discrete predictors 
The details about the data-generating mechanisms are given in 
the supplementary file. We evaluated the performance of statisti-
cal inference for the two groups (e.g. genes) consisting of discrete 
predictors (e.g. SNP genotypes) in different scenarios. To borrow 
the LD information from real data, real SNP genotype data from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project 
was used to assess the inference performance of the method 
at the gene level. The original genotype data can be accessed 
through their website https://adni.loni.usc.edu/. 

Case II: simulation with the genome-wide SNP data 
We evaluated the type I error control and power of the method 
under a high-dimensional setting and further compared our 
method with the SKAT method. The details about the simulation 
setting can be found in the supplemental file. 

Case III: simulation with quantitative predictors 
Our proposed framework is not limited to discrete SNP data; it 
extends to the analysis of quantitative predictors. For quantitative 
variables, this can be a pathway-based association study with 
gene expressions as predictors. Due to space limitations, we ren-
dered the simulation design and results in the supplemental file. 

Validation of the proposed method using real 
data 
The Alzheimer’s Disease Neuroimaging Initiative data 
Data used in the preparation of this article were obtained from the 
ADNI database (adni.loni.usc.edu)1. The ADNI was launched in 
2003 as a public–private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD). We conducted a comparative analysis to 
evaluate the effectiveness of our proposed omnibus test in detect-
ing genes associated with the volume of five brain regions, namely, 

1 Data used in preparation of this article were obtained from the ADNI 
database (adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data but 
did not participate in analysis or writing of this report. A complete listing 
of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/ 
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

ventricles, hippocampus, entorhinal cortex, fusiform gyrus, and 
middle temporal gyrus. 

The preprocessing of the Alzheimer’s Disease 
Neuroimaging Initiative data 
Preprocessing of the dataset involved several steps, including the 
removal of SNPs with call rate <0.95, HWE test P-value <1e-6, and 
minor allele frequency < 0.01. Individuals with missingness >0.1, 
sex discrepancy, and sex chromosome SNPs were also excluded, 
and the SNPs were mapped to genes based on GRCh37. We did not 
conduct LD pruning to remove SNPs, so the remaining SNPs can 
be correlated due to LD. After these steps, the dataset comprised 
of 299 763 SNPs. Missing genotypes were imputed using PLINK 
v1.9 software (https://www.cog-genomics.org/plink1.9/). Further 
quality control involved the removal of individuals with heterozy-
gosity exceeding 3 SD and who have parent–offspring relation-
ships. In total, 1043 samples, including cognitive normal, MCI, and 
AD patients, were included in the final analysis. The covariates 
considered in the analysis were age, gender, education, and APOE4 
(Apolipoprotein E4 copy number), as outlined in Table S7 available 
online at http://bib.oxfordjournals.org/ in the supplemental file. 

The birth weight data 
We also analyzed a human birth weight dataset in the Thai 
population from the Gene Environment Association Studies 
initiative GENEVA founded by the trans-NIH (National Institute 
of Health) Genes, Environment, and Health Initiative (GEI). The 
dataset was obtained from dbGaP with the dbGaP accession 
number phs000096.v4.p1. The details can be found in the 
supplemental file due to space limitations. 

Results 
Results of simulation studies 
We first conducted a series of simulation studies and compared 
the method’s performance with its counterparts. The simulation 
study included three cases that evaluate the performance 
of the method, considering small-scale discrete predictors, 
large-scale GWAS SNPs, and quantitative predictors (see the 
Statistical Methods section for the detailed simulation designs). 

Results of Case I: simulation for the small-scale discrete 
predictors 
Figure 2A shows the type I error comparison between MinP, iART-
A, and Min-O in Case I. The empirical type I error of Min-O can be 
effectively controlled in the two genes and across different sample 
sizes. 

Figure 2B and C depicts the results of power comparison by 
MinP, iART-A, and Min-O. In the DSSW model, the power of the 
omnibus test, Min-O, is higher than that of MinP or iART-A and is 
similar to the most powerful one, iART-A, in the CWSM. The LD 
plot of CAMTA1 (G1: group1) reveals that 9 out of 15 signals are 
located within one block where there is a high correlation between 
SNPs. Consequently, the difference in power between MinP, iART-
A, and Min-O is minimal, which aligns with the simulation results. 
However, the LD structure of the first 50 SNPs in CSMD1 (G2: 
group2) does not exhibit a strong correlation, resulting in a rela-
tively larger difference in power between MinP, iART-A, and Min-O, 
compared to CAMTA1. To summarize, our proposed omnibus test, 
Min-O, is anticipated to yield comparable or superior performance 
to MinP and iART-A, likely depending on the LD structure between 
the SNPs and their effects [48]. This suggests that Min-O has 
practical applicability in real-world data analysis.
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Figure 2. Case I: empirical type I error and power comparison between iART-A, ART-A, and Min-O (omnibus test based on ART.A and MinP). (A) The type I 
error comparison between iART-A, ART-A, and Min-O; (B) the power comparison between iART-A, ART-A, and Min-O under the DSSM; and (C) the power 
comparison between iART-A, ART-A, and Min-O under the CWSM. 

Table 1. The power comparison between our proposed methods and SKAT 

Methods c1 = 0.7  &  c2 = 0.2a c1 = 1.0  &  c2 = 0.3 c1 = 1.5  &  c2 = 0.5 Elapsed time∗ 
(minutes) 

CSMD1 SGCZ CSMD1 SGCZ CSMD1 SGCZ 

MinP 0.224 0.309 0.763 0.956 0.998 1 4.5 
iART.A 0.295 0.366 0.898 0.960 1 1 
Min-O 0.303 0.380 0.898 0.974 1 1 
SKAT (L) 0 0 0 0 0 0 2.4 
SKAT (IBS) 0 0.014 0 0.482 0.002 1 70 

L denotes the linear kernel, and IBS denotes the IBS kernel. ac1 and c2 refer to SNP effects for gene CSMD1 and SGCZ, respectively (see simulation Case II in the 
supplemental file for details). bElapsed time is the average time for a single simulation based on the genome-wide data. 

Results of Case II: simulation with the genome-wide SNP 
data 
The comparison results of power between our proposed methods 
and SKAT are shown in Table 1. Overall, our method outperformed 
the SKAT, especially for the gene CSMD1 which is high dimensional 
(P = 895 > n = 600). Interestingly, SKAT with the linear kernel 
has no power to detect the two genes, while SKAT with the IBS 
kernel has reasonable power to detect gene SGCZ (a relatively 
low-dimensional gene compared to CSMD1). In terms of computa-
tional time, our method is comparable with SKAT with the linear 
kernel but is much faster than SKAT with the IBS kernel. The 
simulation results demonstrate the benefit of our method in a 
high-dimensional setup. 

Results of Case III: simulation with quantitative predictors 
The detailed results for Case III can be found in the supplemen-
tal file. From the results, we can see that our proposed iART-
A effectively controls the type I error rate and demonstrates 
higher power than ART-A across various scenarios and disease 
model assumptions. Thus, it is safe to apply iART-A in real-world 
applications. 

In conclusion, the omnibus test simulation results indicate that 
the omnibus test consistently exhibits comparable or superior 
power compared to the best-performing individual method under 
the respective model, particularly when the within-group correla-
tion is high (e.g. ρ = 0.9). These findings from the power simulation 

suggest that the omnibus approach can be reliably applied in 
practice, regardless of the underlying disease model. 

Results from real data analyses 
We applied our proposed method to two real data; one is obtained 
from the ADNI database (adni.loni.usc.edu) and the other is a 
human birth weight dataset in the Thai population from the Gene 
Environment Association Studies initiative GENEVA founded by 
the trans-NIH GEI. A detailed analysis of the birth weight data can 
be found in the supplemental file. 

In the ADNI data, we chose the volume of ventricles as the 
response variable to demonstrate the implementation of our 
method. Initially, we selected the top 30 000 most significant 
predictors, including covariates and SNPs, using a HOLP screen-
ing procedure to address computational constraints. Next, we 
obtained the P-values of these 30 000 predictors using a despar-
sified LASSO approach. Subsequently, we identified two covari-
ates, age (P = 3.83e-13) and gender (P = 6.97e-18), that were associ-
ated with the volume of ventricles. Furthermore, we mapped the 
remaining 29 998 candidate SNPs to 7170 genes and obtained the 
P-values of these genes using MinP, iART-A, and Min-O methods. 
Finally, we corrected the P-values of the 7170 genes using FDR 
at the gene level. We identified two significant genes ABCA1 
and GRIP1 after the FDR adjustment (the Benjamini–Hochberg 
procedure). There are 18 SNPs in gene ABCA1 and two SNPs in 
GRIP1. For  ABCA1, the FDR-adjusted P-values for MinP, iART-A,

adni.loni.usc.edu
adni.loni.usc.edu
adni.loni.usc.edu
adni.loni.usc.edu


Adaptive SNP-set omnibus association test | 7

Table 2. List of genes and SNPs associated with the volume of 
ventricles 
Gene (ensemble ID) SNP ID PDS-LASSO PDOT 

ABCA1 
(ENSG00000165029) 

rs4149339 0.4012 0.3914 
rs4149338 0.7020 0.8793 
rs2066716 0.7302 0.6412 
rs2254884 0.4389 0.4708 
rs2253304 0.4337 1e-16 
rs2253182 0.8662 0.5189 
rs2253175 0.9215 1e-16 
rs2253174 0.9215 1e-16 
rs2253172 0.8365 1.95e-07 
rs2230806(R219K) 0.5263 1e-16 
rs2243313 0.9586 1e-16 
rs2482420 0.9586 1e-16 
rs2487059 0.8355 0.6218 
rs2230805 0.7343 0.6511 
rs4149281 0.2917 0.3083 
rs2575878 0.2172 0.2254 
rs3905001 0.8760 0.9112 

GRIP1 
(ENSG00000155974) 

rs7300761 0.1507 0.3179 
rs10878485 1.01e-04 1.47e-04 

PDS-LASSO: P-values of SNPs inferred via the desparsified-LASSO. PDOT: 
P-values of SNPs after decorrelation with the orthogonal transformation. 

and Min-O are 1, 1e-16, and 1e-16, respectively, while for GRIP1, 
the respective FDR adjusted P-values are 1e-16, 1, and 1e-16. 
The list of the SNP ID in each gene along with their P-values 
using the desparsified LASSO and the decorrelation method is 
shown in Table 2. Within ABCA1, there are many significant SNPs 
that meet the CWSM assumption, whereas there is only one 
significant SNP within GRIP1 that meets the DSSW assumption. 
When only focusing on one method (MinP or iART-A), one gene 
will be missed. However, the omnibus test can identify both genes 
regardless of the underlying functional mechanism, showing the 
power and robustness of the omnibus testing procedure. This is 
also consistent with the simulation results. 

The same data were analyzed with SKAT, and we did not iden-
tify any significant genes after the FDR control. Methods for gene-
level analysis with summary statistics have been proposed, e.g. 
MAGMA [49]. We also compared the performance of our omnibus 
test with these methods using summary statistics. We first did a 
marginal regression with each SNP as a regressor and recorded 
the summary statistics such as the effect size, standard error, and 
P-value. We then input these summary statistics into one of the 
popular software, MAGMA, to get the gene-level P-values. For the 
ADNI data, we analyzed the ventricle volume, resulting in P-values 
for all 299 763 SNPs. We then entered these SNP P-values into 
MAGMA and obtained the P-values for the 13 043 genes mapped 
by all 299 763 SNPs. We adjusted the P-values of the 13 043 genes 
using FDR at the gene level. We did not identify any significant 
genes using the MAGMA software as revealed by the gene-level Q-
Q plot (see Fig. S6 available online at http://bib.oxfordjournals.org/ 
in the supplemental file). 

We examined the LD structure of the SNPs in gene ABCA1 to 
gain further insights into their significance. As shown in Fig. 3, 
the LD plot of the 17 SNPs in ABCA1 revealed strong correlations 
between SNPs in different blocks. As such, none of the SNPs were 
significant with the desparsified LASSO method. However, after 
applying decorrelation by orthogonal transformation, seven SNPs 
were found to be significant. These seven SNPs were all in block 
2, which includes the R219K polymorphism (rs2230806) that has 
been reported to be associated with AD [50]. The rs2230806 (G) 

allele encodes arginine (R), while the (A) allele encodes lysine 
(K). This exonic polymorphism has been shown to influence 
cerebrospinal fluid cholesterol [51–54]. Previous studies have also 
reported a significant association with the G allele of rs2230806 in 
the absence of the ApoE4 allele [50], while the association with the 
A-allele of rs2230806 was significant in the presence of the APOE4 
allele. The strong LD between the SNPs may explain why the 
desparsified LASSO method failed to produce significant results. 

ABCA1 has been identified as a novel risk factor associated 
with AD [51–54]. Currently, ABCA1 and ApoE are the subject of 
intense research for AD treatment [55]. ABCA1 plays a role in 
cholesterol homeostasis and is involved in the pathophysiology 
of neurological diseases characterized by the accumulation of 
proteins in brain cells, such as traumatic brain injury, stroke 
sequelae, Parkinson’s disease, and AD [55]. 

The PDZ protein–protein interaction domain plays a crucial 
role in enabling efficient synaptic transmission in the brain. The 
dysfunction of synaptic transmission is believed to be the under-
lying cause of many neuropsychiatric and neurodegenerative 
disorders, including AD. Gene GRIP1 has been identified as one 
of the most important differentially expressed and topologically 
significant proteins in this protein–protein interaction network 
[56]. 

We also analyzed the volume of fusiform, entorhinal, and 
middle temporal gyrus, and the results are summarized in 
supplemental Tables S8–S10 available online at http://bib. 
oxfordjournals.org/. 

Conclusion and discussion 
Genome-wide association studies (GWASs) have become increas-
ingly important in identifying genetic variants associated with 
complex diseases. However, analyzing GWAS data poses several 
challenges due to high-dimensional data, LDs between markers, 
and nonlinearity in the relationship between genotype and phe-
notype. In this work, we proposed an omnibus approach that 
overcomes some of these challenges by leveraging two disease 
models: CWSM and DSSM. 

The proposed omnibus approach is designed to test gene set 
associations while being robust to the misspecification of analyt-
ical models. Specifically, we proposed an iART-A method, which 
is an improved version of the ART-A method and applicable to 
the CWSM model. This approach can overcome the limitations 
of the ART-A method by integrating P-values calculated under 
different threshold values based on the Cauchy transformation. 
Under the DSSM assumption, we proposed to use the minimum P-
value method (MinP) while incorporating the desparsified LASSO 
method, which works under a high-dimensional regression frame-
work. The MinP method can detect the overall association of a 
gene set by taking the minimum P-value among all the SNPs 
within the set. The desparsified LASSO can further reduce the bias 
of the estimated regression coefficients and provide better power 
in detecting the gene set association. To assess the significance 
of the minimum P-value, we leveraged the asymptotic normality 
results with the desparsified LASSO and developed a computa-
tionally efficient resampling approach. 

We integrated the two approaches, iART-A and MinP, and devel-
oped an omnibus method, Min-O, to obtain a robust P-value, 
regardless of the underlying disease model. We evaluated the pro-
posed omnibus testing framework through extensive simulation 
studies, which showed that it effectively controls the type I error 
rate and performs well in various simulation scenarios. Notably, in 
scenarios with extremely strong correlations within a group, the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae456#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae456#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae456#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 3. LD plot of SNPs in ABCA1. The rectangle-highlighted SNPs are significant ones. 

omnibus test outperformed the marginal approach, as observed 
under the DSSW model assumption. The results indicate that the 
proposed approach is robust and powerful in detecting gene set 
associations in high-dimensional data. 

The impact of misspecifying a GWAS model can be significant, 
potentially resulting in reduced statistical power, as demonstrated 
in our simulation studies. This served as the impetus for propos-
ing an omnibus test that aggregates information from different 
disease models in this work. Given the inherent uncertainty in 
identifying the true disease model during real data analysis, this 
approach offers a more robust solution. When sample popu-
lations are confounded by ancestry, the issue of related sam-
ples arises, posing a challenge to GWAS methods relying on the 
assumption of unrelated individuals. This confounding can man-
ifest in various ways, leading to elevated false positives or false 
negatives in different scenarios. While the precise consequences 
of such confounding are not explicitly elucidated without exten-
sive simulation studies, we acknowledge that this goes beyond 
the current study’s scope. To address these challenges, we sug-
gest considering models built under quasi-likelihood rather than 
maximum likelihood, as they may offer a viable solution. This 
alternative approach holds promise in mitigating issues related 
to confounding and related samples, providing a potential avenue 
for refining GWAS analyses. We intend to explore and evaluate 
these effects in future research. 

LASSO, also known as the L1-norm regularization, is a com-
monly used method for variable selection in high-dimensional 
statistics. However, LASSO generates biased estimates due to 
shrinkage and hence cannot be directly used to quantify uncer-
tainty. In contrast to LASSO, the regularized projection method, 
desparsified LASSO (or debiased LASSO), not only provides P-
values for the penalized regression coefficients but also preserves 
the covariance matrix of these coefficients. This property allows 
us to efficiently adopt a DOT strategy in a high-dimensional 
setting, further improving the power of SNP-set analyses. 

Both the HOLP screening procedure and the desparsified LASSO 
algorithm can handle a wider range of models beyond the one 
studied in this work. It is worth mentioning that the desparsified 
LASSO can be computationally expensive. Leveraging parallel 
computing with multiple cores has the potential to significantly 
enhance computational speed. In the simulation study (see the 
supplemental file) with GWAS SNP data, the run time for the 
desparsified LASSO after screening is quite scalable. The runtime 
of our proposed methods is ∼4.5 min with n = 600 and the number 
of SNPs as 196 998, which is comparable with the SKAT method 
(their runtime with linear kernel and IBS kernel is 2.4 and 70 min, 
respectively). As for biobank-scale data, we are not sure about the 
computational cost associated with large samples. However, it is 
essential to note that the number of SNPs can be substantially 
reduced after the HOLP screening step. An alternative option 
to the LASSO projection is the ridge projection, which does not 
require any assumption on the fixed design (but does not reach 
the asymptotic Cramér–Rao efficiency bound) and is computa-
tionally less demanding than the desparsified LASSO [18]. The 
R package HDI also implements the bridge projection and bias 
correction under a high-dimensional setting. 

In our proposed inference framework, the input data consists 
of individual-level genotype information, and the desired output 
is the P-value for each group (e.g. a gene or pathway). While sum-
mary statistics are commonly derived through marginal regres-
sion analysis (i.e. analyzing one SNP at a time), this approach 
may lead to biased estimations, particularly when LD is present 
between SNPs. To address this, we advocate for the use of multiple 
regression models, where the estimated SNP effect reflects the 
partial effect considering other SNPs in the model. Given the 
impracticality of fitting a multiple regression model with tens of 
thousands of SNPs, we suggest employing a screening procedure 
such as HOLP with a theoretically sure screening property to 
retain the true model. The number of SNPs can be substantially 
reduced after screening, allowing for the fitting of a multiple
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regression model with the remaining SNPs. However, due to LD 
and the dimension of the remaining SNPs, regular multiple regres-
sion may still yield inconsistent estimates. This issue can be 
addressed by fitting a desparsified LASSO regression model that 
addresses the bias issue and can obtain valid P-values and con-
fidence intervals for statistical inference. The covariance matrix 
obtained through this procedure can be used in our decorrelation 
by orthogonal transformation (DOT) step to remove the effects 
caused by high LDs. 

In practice, the relationship between a marker set and pheno-
type may not be linear. It is a challenging task to capture such 
nonlinear relationships. To address this challenge, we plan to 
incorporate kernel methods into our framework in the future. For 
instance, kernel principal component analysis can be utilized to 
extract kernel principal components for each marker set, and the 
inference of the marker set can be based on the P-values of these 
kernel principal components. 

Key Points 
• We focused on boosting the power of gene-set asso-

ciation analysis with high-dimensional SNP data and 
surveyed methods for ultrahigh dimensional feature 
screening, high-dimensional inference, P-value combi-
nation, and omnibus test. 

• Focusing on two genetic effect theories of common 
variants, DSSM and CWSM, we developed an omnibus 
test under the high-dimensional inference procedure to 
assess gene-set association. 

• The proposed improved augmented rank truncation 
(iART-A) test does not need to prespecify the threshold 
of truncation points and can automatically aggregate P-
values. 

• The proposed omnibus test approach (Min-O) further 
integrates the minimum P-value (MinP) and the iART-A 
method to achieve robust test results. 

• The proposed method can be extended to other group-
wise tests, such as pathway associations, and can incor-
porate weight information to further boost the testing 
power. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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