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Cross-sections of cell shapes in a tissue monolayer typically resemble
a tiling of convex polygons. Yet, examples exist where the polygons
are not convex with curved cell–cell interfaces, as seen in the adaxial
epidermis. To date, two-dimensional vertex models predicting the structure
and mechanics of cell monolayers have been mostly limited to convex
polygons. To overcome this limitation, we introduce a framework to study
curvy cell–cell interfaces at the subcellular scale within vertex models
by using a parametrized curve between vertices that is expanded in
a Fourier series and whose coefficients represent additional degrees of
freedom. This extension to non-convex polygons allows for cells with the
same shape index, or dimensionless perimeter, to be, for example, either
elongated or globular with lobes. In the presence of applied, anisotropic
stresses, we find that local, subcellular curvature or buckling can be
energetically more favourable than larger scale deformations involving
groups of cells. Inspired by recent experiments, we also find that local,
subcellular curvature at cell–cell interfaces emerges in a group of cells
in response to the swelling of additional cells surrounding the group.
Our framework, therefore, can account for a wider array of multicellular
responses to constraints in the tissue environment.

1. Introduction
Isolated cells take on a multitude of convex and non-convex shapes as
determined by their underlying cytoskeletal morphology and their envi-
ronment. Cells packed together to form a tissue can take on different
shapes (from isolated cells), given the additional interactions between them.
Interestingly, cells in a number of tissues take on convex polyhedral shapes,
such as truncated octahedrons [1–3]. The observation of these convex
polyhedra in cultured lung epithelial tissue and other tissues motivated a
comparison with soap bubble arrangements, which then led to the birth of
vertex models [4,5]. In vertex models, tissue cells are treated as deformable
polyhedrons forming a space-filling packing with some energetic cost to
the cellular deformation [6,7]. Indeed, vertex modelling has provided key
insights into understanding how cells interact with each other in tissues [8–
22]. For instance, a predicted rigidity transition in disordered tissues [12] was
discovered during a period of fast tail growth in zebrafish embryos [23,24].
Cells in the mesodermal progenitor zone (MPZ) act as a liquid with cells
exchanging neighbours. However, when cells become part of the presomitic
mesoderm (PSM), they act more as solids, with a decrease in cell-to-cell
contact variations. In vitro tissues have also been shown to exhibit glassy
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behaviour and superelasticity, with these properties also emerging in vertex models [25–27].
To date, vertex modelling of tissues has focused on polygons or polyhedrons with straight edges (SEs). And yet, there

are numerous examples of both plant and animal tissues containing cells with curved edges (CEs) [28–30] (see figure 1).
CEs are possible presumably owing to the underlying reorganization of the actomyosin cortex. Moreover, they allow cells to
readily increase their surface area/perimeter while maintaining their volume/area. For instance, a study focusing on the rigidity
transition in a monolayer of MCF10A cells found that in the control case, the cell–cell interfaces were curved at the subcellular
scale [28]. However, when they elevated a regulator of endocytosis, RAB5A, the cell–cell interface became less curved and the
cells could more easily pass each other to form a fluid. Intriguingly, RAB5A not only regulates endocytosis by mediating the
fusion rate of endosomes with endocytic vesicles, it also triggers lamellipodia formation in fibroblasts and so is involved with
actin cytoskeletal reorganization [32]. As lamellipodia are typically broad protrusions involving a branched dendritic network
[33,34], the curved interfaces straighten out.

More recently, experiments by Rigato et al. [30] discovered curved cell–cell interfaces in a cell monolayer of the larval
Drosophila epidermis. This epidermis is made up of larval epithelial cells and histoblasts. The histoblasts typically cluster in
groups of 5–17 cells. These groups are surrounded by larval epithelial cells. The histoblasts begin as SE polyhedrons; however,
over time their apical surface actively shrinks, causing their adherens junctions to fold and form a characteristic wavy pattern
on the apical surface. As larval epithelial cells expand, histoblasts are forced to adjust their shape to accommodate their own
growth within the shrinking space available, inducing a type of folding of the actomyosin cortex with each cell. This dynamic
change in histoblast morphology underscores the importance of cell confinement in the larval epidermis, which is presumably
at the heart of this remarkable cell shape transformation.

Based on the prevalence of cells in essentially close-packed tissues with curved cell–cell interfaces and the recent study
demonstrating a transition from SEs to CEs, we modify the classic version of the two-dimensional vertex model [35–37] to
create a version suitable for tissues with curved cell–cell interfaces at the subcellular scale. We do so by replacing a straight line
between two vertices with a parametrized curve described by several Fourier coefficients. This approach will allow us to go
beyond simple arcs between vertices [38] and does not involve increasing the number of vertices with SEs (shared or not shared
between cells) to allow for cell shapes that change convexity [39–41]. We will explore under what conditions straight cell–cell
interfaces are energetically favourable and under what conditions curved cell–cell interfaces are energetically favourable. Our
exploration will focus on a simple ordered tiling as well as the experimental situation described in the work of Rigato et al. It
will yield novel mechanical insights into the multitude of ways cells regulate their shape at the subcellular (or intra-cellular
scale) leading to new emergent phenomena at the tissue scale.

2. Model and methodology
While the mechanics of solid-like cellular tissue can be represented by continuous elastic fields at large enough wavelengths
[42], here, we consider a cellular-based approach to study the structure of cells as their cell–cell interfaces deviate from straight
geometries to curved geometries in the presence of applied stresses. Let us begin with the mechanical energy Eα for the αth cell
within a cellular packing [8,9,12] with cross-sectional area Aα and cross-sectional perimeter Pα:

(2.1)Eα = KA(Aα − A0)2 + KPPα2 + γPα .

The first term captures the cell’s bulk elasticity [43,44] with KA denoting area stiffness and A0 the target area. The second term
in the cell mechanical energy is quadratic in the cell cross-sectional perimeter Pα and models the active contractility of the
intracellular actomyosin cortex with elastic constant KP [8]. Finally, the last term represents an interfacial tension γ set by a
competition between the cortical tension and the energy of cell–cell adhesion [45,46] between two cells in contact. Note that for a
single cell, γ denotes the surface tension of a cell. For simplicity, we assume that all four parameters—KA, A0, KP and γ—are the
same for each cell.

The addition of a constant to the mechanical energy, which does not affect the forces, allows one to complete the square to
obtain

(2.2)Eα = KA(Aα − A0)2 + KP(Pα − P0)2,

with P0 = − γ/(2KP) as the effective target perimeter. This energy can be non-dimensionalized such that

(2.3)ϵ = 1KAA0
2Eα = aα − 1 2 + KPKAA0

pα − p0
2,

where aα = Aα/A0 and pα = Pα/ A0 are the rescaled shape functions for area and perimeter. Moreover, p0 = P0/ A0 is the target
shape index, a quantity that plays a crucial role in determining the mechanics of tissues in two dimensions. To be specific, a
regular hexagon corresponds to p0

ℎex = 2 2 34 ≈ 3.72 and a regular pentagon to p0
pent = 2 5(5 − 2 5)1/4 ≈ 3.81. Wavy cell shapes are

also expected to have target shape indices larger than the circle as they also deviate from the circle in a manner different from a
convex polygon.

A deformable cell is now described as a combination of a SE polygon and a CE polygon, as shown in figure 2. As the CEs
extend the cellular geometry by incorporating a continuous field, which introduces, in principle, infinite degrees of freedom
at each edge, in practice, the additional degrees of freedom to capture curvature between two vertices will be constrained
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in several ways. First, we chose the mathematical expression c(1)sinθ + c(2)sin2θ + c(3)sin3θ + c(4)sin4θ to parametrize each CE. In
addition to constraining the endpoints to match those of the SE solutions in certain cases, the sinusoidal function more readily
ensures that δa CE  in figure 2b is zero even if the edge length changes. While this choice is not necessary, it makes it easier to
calculate the c(r)’s. We will address additional constraints below. Also, we exclude overhangs in our formulation for now.

For the CE model, we connect vertex pairs using a parametrized curve within the range t ∈ [0, 1]. The number of polygon
vertices is equal to the number of edges for the single cell, so we define coefficients cα, i(j)  to describe the jth coefficient of the
cell edge i between vertices i and i + 1 and for cell α (equivalently, the kth edge of the entire cell array). We now use an indexk to represent edges explicitly. The polygon’s area (and perimeter) depends on indices α and k. Given our parametrization, the
coordinate for a vertex i associated with a CE vk(t) and its associated curve ck(t) in terms of the Cartesian coordinate vector
components (x, y):

(2.4)

ck t =cα, i t
=cα, i1 sin πt + cα, i2 sin 2πt + cα, i3 sin 3πt + cα, i4 sin 4πt ,

(2.5)vk(t) = vα, i(t) = (fα, i(t), gα, i(t)),
(2.6)fα, i t = 1 − t xα, i + txα, i + 1 +

cα, i t xα, i + xα, i + 1xα, i + xα, i + 1
2 + yα, i + yα, i + 1

2
,

(2.7)gα, i t = 1 − t yα, i + tyα, i + 1 +
cα, i t yα, i + yα, i + 1xα, i + xα, i + 1

2 + yα, i + yα, i + 1
2
,

where the bold type indicates a vector quantity. This parametrization has certain singularities for several specifically angled
edges, such as a horizontal line, in which case a different parametrization can be used (see appendix A for a few more details).
The SE equivalent for vkSE  is

(2.8)vkSE t = vα, iSE t = fα, iSE t , gα, iSE t ,

(2.9)fα, iSE t = 1 − t xα, i + txα, i + 1,

(2.10)gα, iSE t = 1 − t yα, i + tyα, i + 1 .

With this information, in addition to computing their perimeter, we can also trivially compute their area by determining the
polygon centre, given by the average of the vertex coordinates, and then dividing up the polygon into triangles each with areasAα, iSE  and whose endpoints consist of the polygon centre and the two vertices i and i + 1, or

(2.11)
Aα, iSE = 1

2!

xα, i yα, i 1xα, i + 1 yα, i + 1 1xα, c yα, c 1
,

where vertical lines indicate the determinant. The total polygon area is the sum of such triangular areas.
A similar approach to compute the cell area for the CE model can be performed using the parametrization for each CE in

a polygon. However, there are several possibilities now that the Euclidean distance between vertices and the edge length, or
contour length, between vertices can be different. In figure 3, deformation type A denotes cell side contraction where initial side
lengths are maintained but the Euclidean distance of pairs (i, i + 1) is reduced. In other words, the area of the cell decreases while
its perimeter remains the same. Deformation type B refers to the elongation of cell edges while maintaining the same Euclidean
distance between pairs (i, i + 1), or the cell area remaining fixed while its perimeter increases. Deformation type C results in the
cell perimeter increasing while the area decreases, as shown in figure 3, as the junction angle at a vertex flattens. For the time

(a) (b) (c)

Figure 1. Curvy cell–cell interfaces in plant and animal cells. (a) Cross-section of a monolayer of plant cells. This is a cropped image originally taken by Karl Az and
is licensed under CC BY 4.0 [31]. (b) Cross-section of a monolayer of MCF10A cells with cell–cell interfaces fluorescently labelled in green. (Unpublished image with
permission from G. Scita.) (c) Drawing of a cross section of a monolayer of cells in the larval Drosophila dermis during development based on images from [30].

3

royalsocietypublishing.org/journal/rsif 
J. R. Soc. Interface 0: 20240193



being, we will not explore in detail the subcellular mechanisms driving these shape changes other than to state that deformation
type B change, for example, could be induced by radially oriented microtubules or localized branched actin structures [34,47].
Moreover, the retraction of microtubules lead to an increase in acto-myosin cortex contraction, observed in individual migrating
cells, which may lead to deformation type A [48]. In any event, subcellular curvature may arise from different biophysical
mechanisms that involve both internal and external forces.

To compute the area under each parameterized curve to find the total area of the cell, we find the areas deviating from the SE
model, keeping track of signs and add them to the SE polygon area. The sign of area segments is positive when a curve segment
is located outside the SE polygon version and negative when the curve segment is located inside (see figure 2b). Specifically, the
deviation in area δaα for polygon α, for a Euclidean distance between two vertices denoted by d and index j denoting breaking
up each CE into subsections, is given by

(2.12)
δaαCE = ∑j dt ⋅ d vα, i j ⋅ dt , vα, iSE j ⋅ dt (outside)

−d vα, i j ⋅ dt , vα, iSE j ⋅ dt (inside).

For lengths of shared edges between cells α and β and corresponding (i, i + 1) and (i′, i′ + 1) vertex pairs,

(2.13)
lk(CE) =

∑jd(vα, i(j ⋅ dt), vα, i(j + 1 ⋅ dt)) (for cell α)
∑jd(vβ, i′(j ⋅ dt), vβ, i′(j + 1 ⋅ dt)) (for cell β) .

The result for vα, i = vβ, i′, vα, i + 1 = vβ, i′ + 1 is identical for either choice. Thus, we will simply note above as

(2.14)lkCE = ∑j d vk j ⋅ dt , vk j + 1 ⋅ dt .

To numerically determine dt we set substantive deviations of c(1) = c(2) = c(3) = c(4) = 0.05 and adopted dt = 1
40  to balance compu-

tational speed with precision up to two decimal places to compute cell areas and perimeters. Smaller dts will yield higher
precision results.

We also impose additional soft constraints on both the SE and CE models with the additional resistance contributions to
the energy of each cell. For instance, we impose a vertex resistance energy function in which vertex positions are quadratically
penalized to deviate from some target position as controlled by coefficient KR and summed over vertices i. Such energy
contributions model the friction of the epithelium on a substrate, which can be either organic or inorganic, and represents the
third dimension of space discarded in our two-dimensional approach. In in vitro experiments, the substrate can be rigid or
soft, while in in vivo experiments, the substrate is the extracellular matrix attached to the cell monolayer [30,49]. The quadratic
choice is inspired by the Winkler model [50], which is very popular in solid mechanics because of its simplicity (the links are
represented by a collection of springs), although more sophisticated extensions have been proposed. Therefore, the SE energy
function takes the form: E SE = A SE + P SE +R SE .

For models with continuously CEs, and as mentioned previously, there is a vertex resistance energy function enforcing fixed
positions for two endpoints of a CE by quadratically penalizing deviations from target positions and controlled by coefficientKR1. An edge curvature resistance function (R2) exists as well by quadratically penalizing too large deviations from target

coefficients in the sinusoidal harmonics defining the curves, and summed over edges k and harmonics j to assist with the
minimization process. Note that R2 can be considered as a measure of the wall stiffness since large values limit their distortion.

Formally, the CE model energy function takes the form: E CE = A CE + P CE +R CE  withR CE = R1
CE +R2

CE .

While both models share similar energy components, the resistance term (R) in the SE model addresses two potential

scenarios. The first is vertex displacement resistance, which penalizes quadratic deviations of vertex positions owing to friction

l(CE)

l(SE)

a(CE)

CE Polygons

(a) (b)

SE Polygons

SE/CE

polygons of the cell

Example for area and length

components of CE/SE

a(SE)

–δa(CE)

+δa(CE)

Figure 2. Representation of SE/CE polygons. (a) A polygon can be constructed with CEs and with SEs. (b) Area and length components can be obtained separately for
the CEs and SEs. Note that ±δa CE  represents relative area differences as compared with SE polygons. Signs indicate whether the area was subtracted from, or added
to, the area of the SE polygon.
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of the substrate. For the CE model, we represent the CEs using sinusoidal harmonics with four coefficients (c(j)). In our analysis,
we set small initial values for these coefficients (e.g. c(j) = 0.01) using the R2

CE  function with small KR2. The target Fourier

coefficients are empirically chosen to constrain the amount of curvature along the cell–cell interface to more readily find local
minima. Indeed, there are physical constraints on the curvature owing to the structure of the cytoskeleton and its ability to form
filopodia and lamellipodia. Since our model does not contain detailed information about cytoskeleton organization in terms of
lamelipodia and filopodia, we make empirical choices for the target values of the Fourier coefficients and study the sensitivity of
the results of such choices.

With fixed positions for SE cells, the CE model involves four more unknowns (harmonic coefficients) per CE or more degrees
of freedom. To ensure solution convergence with these additional degrees of freedom, we use the R function as an additional

constraint. We have also studied how strongly the energy minimized solutions depend on these additional energy contributions
(see appendix A for more discussion on the relationship between degrees of freedom and constraints). If we assume that
we have 2V  number of unknowns for position vectors and 4E unknowns for curvy edge functions for V  number of vertices

and E number of edges, by adding the resistance function R1 = 1
2KR1 ⋅∑i xi − xi 0 2 + yi − yi 0 2  and R2 = KR2 ⋅∑i ci − ct 2, we

introduce an equal number of constraints to the system, which stabilizes the simulation.
Finally, in terms of the energy minimization procedure, as elaborated on in figure 4, we illustrate our scheme for evaluating

the energy using polygons with SEs and polygons with CEs. We may first minimize the SE model and then the CE model.
Alternatively, we can also minimize the two models simultaneously.

3. Properties of the curved edge model
One measure characterizing cell shape is the cell shape index p, or its dimensionless perimeter. We now compare minimal energy
solutions for both SE solutions and CE solutions for single cells and for ordered multi-cellular tilings, focusing on regular,
hexagonal cells for simplicity.

3.1. Transition from convex to non-convex for a single cell
As the target shape index is typically a parameter of interest, we begin with a regular hexagon and then increase the target
shape index and look for minimal-energy states. For a regular hexagon, the cell shape index pα (with aα = 1) is as follows:

(3.1)pα = 6l CE

6a CE
= 6l CEa CE

= 6p CE ,

where l CE  and a CE  represent the side length and area of one of the six wedges in the CE model. We also consider the energy
function from equation (2.3) with aα = 1 (equivalently, the area term is negligible). Thus, the energy takes the form:

(3.2)

E p = KSI 6p CE − p0
2

= KSI 6 ⋅ l CE

3
4 + δa CE

− p0

2

,

where KSI = KP
(KAA0) , l CE  is the arc length of a wedge, δa CE  is the area between the CE and the SE (as shown in figure 2b), and p0

represents the target shape index.

vα,i

vα,i+1

vα,i

vα,i+2

Pα > P0

Aα = A0

Pα > P0

Aα > A0

α

Original Cell(a) (b) (c) (d)Deformation A Deformation B Deformation C

Pα = P0

Aα < A0

Pα = P0

Aα = A0

Figure 3. Potential types of deformations in the CE model. (a)  Original cell shape. (b) Deformation type A (perimeter preserved): initial side lengths are conserved
while the Euclidean distance of pairs (i, i + 1) decreases. (c) Deformation type B (area conserved): side lengths are increased while the Euclidean distance of pairs
(i, i + 1) is conserved. (d) One of the possible cases in deformation type C (vertex removed: the junction angle between a line (vi, vi + 1) and (vi + 1, vi + 2) becomes
zero while the sum of initial side length of pairs (i, i + 1) and (i + 1, i + 2) is conserved (a point vi + 1 is hidden inside of the straight line)).
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In figure 5, we show the results of minimizing min E p +R2
CE  with KSI = 10, KR2 = 0.001 and each target Fourier coefficient

ct for KR2 ⋅∑i (ci − ct)2 is given by ct = 0.01 in R2
CE . Note that we also fix the vertices in the CE minimization to preserve the

six-fold symmetry. To test the robustness of our results, we vary KR2 from 0.001 to 0.1, as well as vary ct, to show that there
are predominantly changes in the third decimal place for the cell shape index as indicated in table 1. As we increase the target
cell shape index, the cells transition from convex to non-convex shapes. Such a transition does not occur in the SE model for
a hexagon. Note that the convex–non-convex transition occurs slightly below the shape index of a regular hexagon (with unit
area). As KR2 0, this transition takes place at the regular hexagon. However, again, for some range of KR2, the solutions are
robust. Moreover, for convex, regular polygons, as the shape index increases, the number of edges decreases with the triangle
being the minimal number of edges (see table 2). With a CE model, to increase their shape index, regular shapes can either
decrease the number of edges or transition to non-convex shapes to increase their shape index. Of course, cells can also become
irregular to increase their shape index as will be discussed in the next subsection.

3.2. Expansion of the zero-energy solution space
Using the energy functional in equation (2.3) for a single cell, it has been shown that there exists a compatibility–incompatibility
transition as the target shape index increases where the shapes eventually become zero-energy solutions, i.e. their shapes are
compatible with the energy [22]. For instance, for six-sided polygons, the location of the transition occurs at the target shape
index of the regular hexagon. This analysis has been recently extended to three dimensions to also demonstrate such a transition
[51]. For the CE model, its additional degrees of freedom thus allow for greater compatibility and, therefore, an expansion of
the zero-energy solution space. To more concretely illustrate this point, we will focus on a simplified model using a single sine
curve, i.e. c2 = c3 = c4 = 0. This example, depicted in figure 6, captures the essence of CE behaviour while remaining tractable for
calculations. For the SE model, the compatibility–incompatibility transition occurs at p0 = 4.

Using a single sinusoid parametrized by the coefficient c1, we can describe points along a CE:

(3.3)(x, y) = (f(t), g(t)) for t ∈ [0, 1],

(3.4)f(t) = t,
(3.5)g(t) = c1sinπt .

We can also compute the edge length of CE component by l:

(3.6)

l = f′ t 2 + g′ t 2dt =
0

1
1 + c1

2π2cos πt2dt
= 1 + c1

2π2

0

1
1 − c1

2π2

1 + c1
2π2 sin πt2dt = 2 1 + c1

2π2

π E c1
2π2

1 + c1
2π2 .

This allows us to compute the side length of the curved segment using an integral expression equation (3.6), which involves the
complete elliptic integral of the second kind. Assuming equal side lengths for the edges and focusing solely on angle changes,
the perimeter is directly proportional to the side length. Interestingly, if we fix the area to 1, both the perimeter and the shape
index increase as we adjust the amplitude of the sine function (represented by c1).

If we consider the area of the SE polygon as a SE , then we obtain

(3.7)a SE = l1l2sin θ .

Energy A(SE) for area of polygon α, αα
(SE)

Energy P(SE) for perimeter of polygon α, Pα
(SE)

Energy R(SE) for initial positions of polygon α

SE Model

Energy A(CE) for area of polygon α, αα
(CE)

(or energy Aδ
(CE) for area change from SE model, δαα

(CE))

Energy P(CE) for perimeter of polygon α, Pα
(CE)

Energy R(CE) for initial state of CE in α

CE Model
Set the total energy to be E(SE) + E(CE)

andminimize.

Simultaneous Minimization

Set the total energy to be E(SE) or E(CE)

and minimize.

SE Model: E(SE) = A(SE) + P(SE) +···

CE Model: E(CE) = A(CE) + P(CE) +···

Independent Minimization

Minimize E(SE), then minimize

E
(CE) with the solution of E(SE) as the initial condition of E(CE),

(vertices can be fixed after SE minimization or not).

Sequential Minimization

Figure 4. Computational methods for evaluating cell shapes from given energies. Either SE model, CE model, or SE + CE model can be taken for analysis and, based on
the problem at hand, optimization can be performed once or separately.
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The fixed perimeter of 2l1 + 2l2 = 4 allows for calculation of the desired angle using the shape index. For the SE polygon case,

there are two solutions when θ ≠ π
2 , and a single solution when θ = π

2 . Varying the values of l1 and l2 can yield additional

solutions, but a single representation (up to global rotations) for θ = π
2  remains when l1 and l2 are known. The CE approach

offers a larger range of shapes when changing the shape index of a square (θ = π
2 ) as compared with the SE case, where

the shape index and angle are determined by a fixed perimeter. Figure 6b–d showcases this range, demonstrating different
CE representations for squares with the same shape index pα ≃ 4.17. Thus, the zero-energy solution space is now higher
dimensional as it now depends on c1 as well.

With the CEs, the compatible–incompatible transition for a single cell now occurs near the shape index of the circle (relaxing
the tiling condition, though one can consider cells of different concavities in a tiling), which is c1 = 0.213 with pα = 3.55562, as
shown in figure 6e. We can also consider the limit of the CE model from regular SE-based vertex coordinates for this four-sided
polygon when θ = π

4 , that is, when the edges potentially overlap with minimum area. If we use a single sine function, we havec1 = 0.32 with shape index 11.32360 as the limit, which can be seen in figure 6f. From its convex counterpart in figure 6g, i.e.
rearranging curves to be outside the polygon, we can easily see that the extremum occurs closest to the shape of the extended
square. Thus, the compatibility–incompatibility transition point no longer occurs at p0 = 4 but at a shape index much closer to
the circle.

3.3. A tiling of hexagonal shapes
Consider a tiling of ordered polygons as shown in figure 7a. Here, we have focused on a specific change for a given deforma-
tion, which is one of many possible shape changes, at least in the compatible regime. The polygons indeed remain hexagonal,
though their shape index has increased as the polygons have become irregular with the distances between some vertices

(a) (b) (c)

(d) (e) (f)

Figure 5. Different shape indices of CE cells were simulated and compared with a regular hexagon. The target shape index of each shape is (a) 3.55, (b) 3.6,

(c)  2 6

31/4 ≃ 3.72, (d) 3.8, (e) 4 and (f) 4.5.

Table 1. Measured shape index pα with different coefficients (equation (3.2) with pα = 6p CE ,  p0 = 3.55).

(KSI = 10) ct = 0.01 ct = 0.02 ct = 0.03 ct = 0.04 ct = 0.05

KR2 = 0.001 3.54995 3.55003 3.55002 3.55002 3.55002KR2 = 0.01 3.55027 3.55024 3.55022 3.55020 3.55019KR2 = 0.1 3.55216 3.55199 3.55183 3.55170 3.55158

Table 2. Shape index.

circle decagon octagon hexagon square triangle

number of edges – 12 8 6 4 3

shape index 3.54491 3.58630 3.64072 3.72242 4 4.55901
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decreasing and between other vertices increasing (and the area remaining fixed). However, suppose there is a change in shape
index resulting from the stretching of the edges while maintaining the total area without an overall anisotropy developing, as
shown in figure 7b. To do so in the SE model becomes complicated, requiring additional vertices on the edges to capture the
CEs, but not with the CE model.

We can also create an ordered array of cells with two different shape indices from a single-ordered SE cell array. Motivated
by circular cross-sectional cell shapes in the mouse ear epidermis [38], consider the case of a circular-edged tile emerging from a
regular hexagonal array, as shown in figure 7c,d. As the area of individual cells decreases owing to the CEs, their opposite edges
morph into concave shapes. Interestingly, despite these variations, the average cell area for this circular arrangement approaches
that of the original hexagon. From equation (3.2), we have

(3.8)pα = 6p CE = 6 ⋅ l CE

6 ⋅ a CE
= 6 ⋅ l CE

3
4 + δa CE

.

While each cell retains the identical perimeter of 2π (based on the initial hexagonal array with radius r = 1), their areas differ
slightly owing to the CEs. We quantify this difference with ±6δa CE , where δa CE  represents the area beneath a single-curved

segment. For a circle with a target shape index of pα = 3.54491 as in figure 5a, applying the shape index equations with l CE = 2π
6

( 1
6  times perimeter of the unit circle) yields a required δa CE  of approximately 0.09059.

While neighbouring cells in this circular pattern can adopt different shape indices based on their CE orientations, as
illustrated by comparing figure 5a,b, this freedom ultimately results in a slightly higher average shape index for the entire
circular array compared with the hexagonal tiling. This occurs even though the area remains the same, because the increased
perimeter of the circular array outweighs the unchanged area in terms of affecting the shape index calculation. However, while
the SE solution has the lower energy in this case, it may not be compatible with the symmetry and/or boundary conditions
of the system at hand. More generally, energetically preferred shapes depend on the relative weight of the area and perimeter
terms in the energy equation (2.3). To be concrete, consider a unit circle and a regular hexagon of unit edge length with the
desired shape of a circle:

(3.9)eα = aα − 1 2 + KSI pα − 2π
π

2
.

For the regular hexagon, this becomes

(3.10)ehex = 3 3
2π − 1

2
+ KSI 6

π
− 2π

π

2
.

Figure 7c has the same area term as the hexagon, but a different perimeter term:

(3.11)e8(c) = 3 3
2π − 1

2
+ KSI 2π

π
− 2π

π

2
.

Figure 7d has a slightly modified area term depending on the cell type (represented by ±):

ll1 = 1

l1

l2 = 1 l2

θ

θ π − θ

O

(a) (b) (c) (d)

(e) (f) (g)

Figure 6. A simple rectangular cell model. Different representations of cells with the same shape index pα ≃ 4.17 (a–d) as well as limits on the shape index (e–g) for
the regular case. (a) The model can be described with two different edge lengths l1, l2 and an angle θ. (b–d) Different representations of cells with the same shape

index pα ≃ 4.17: (b) θ = 1.5π
4 , (c,d) θ = π

2 , c1 = 0.132 for two edges (c1 = − 0.132 for the other two edges). (e,f) Limits on the shape index for the regular model.

(e) The minimum shape index with c1 = 0.213, (f) the maximum perimeter based on the square with c1 = − 0.32, and (g) the convex counterpart of (f).
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(3.12)e8(d) =
3 3

2 ± 0.09059
π − 1

2

+ KSI 2π
π
− 2π

π

2
.

While the dimensionless energy eα ultimately depends on the specific values of KSI for the hexagonal case, the dimensionless

perimeter term from (Pα − 2π)2 1
π = (pα − 2π

π )
2
 vanishes for figure 7c,d, which can make the shapes shown in figure 7c the

energetically favourable choice.

4. Multicellular response to applied stresses
For the first case, we will consider a line of cells in the presence of applied, anisotropic stress. In the second case, inspired by
recent experiments [30], we will explore how a group of cells can be compressed by surrounding cells. We study this latter
phenomenon in both ‘ordered’ and ‘disordered’ scenarios.

4.1. Curved edges induced by anisotropic stress
Imagine a line of cells under ‘anisotropic’ stress, meaning that each cell experiences pressure from different directions with
different intensities. This non-uniform force field may cause ‘stress-induced subcellular buckling’, depending on the boundary
conditions. As depicted in figure 8b,c, each cell in the line experiences a unique stress pattern that mimics local anisotropic
forces but does not perfectly mimic stretching [53]. As shown in figure 8, we have developed a simple energy function that
adjusts the top and bottom angles of a hexagon to induce the transformation from a hexagon into a rectangle and vice versa.
This transformation includes a change in the length of corresponding edges (see figure 8c):

(4.1)εθ = KT
2 ∑α θα − θt 2,

with θ as denoted in figure 8a. To drive the cell shape change from hexagon to rectangle, we minimized the top and bottom
angles of each hexagon, as opposed to all angles, as our chosen target angle (θt = π) induces changes in all angles of the
polygons given the other energetic contributions. To study the stress-induced deformations, we implemented independent
optimizations for the SE and CE models.

The energy function for both models is given by E = εθ +A + P +R, parametrized by θt, A0, P0, xt and yt, directed both SE

and CE simulations. While A0, xt and yt correspond to those of a regular hexagon, P0 took non-uniform values between 6 and
6.24 (see table 3) with shape index to be 3.79549 in figure 9a and 3.75973 in figure 9b on average, except for two half-hexagonal
boundary cells in figure 9b. This range of P0 is used to help induce global buckling. Also note that we have fixed boundary
vertices and boundary cell walls. Control parameters are identical for both models: KT = 2, KA = 1, KP = 3 (or KA′ = 1, KP′ = 3)

Shape index pα ~ 4.5

(a) (b)

(c) (d)

Shape index pα ~ 4.5

Ordered packing of a single cell Ordered packing of two cells

y

y

yy

x

x x

– –

x

Figure 7. Tiling of SE and CE shapes for the same shape index and example of circular tiling. (a) Hexagonal cell array with shape index pα ≃ 4.5. (b) CE model
with six-fold symmetry with pα ≃ 4.5. (c) Three edges are concave and others are convex in orientation relative to the hexagon. The shape index of this cell ispα = 3.89811. (d) Two different cells so that, on average, three edges are concave and others are convex with pα = 3.83190 and 3.9679.
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and KR1 = 1. The resistance vertex function is implemented to prevent vertex flipping. In the CE model, we used additional
parameters, KR2 = 0.01 and ct = 0.05.

Examining figure 9c,d, we observe a notable difference in chain shape. The curved model shows a less deformed chain shape
to reach the target angle of θt = π globally as compared with the SE model. This configuration is owing to the increased degrees
of freedom provided by the CEs. These added degrees of freedom allow the cells to energetically conform to the desired θt = π
with smaller deformations at larger length scales over multiple cells such that subcellular buckling emerges as opposed to
multicellular buckling.

Beyond the impact of CEs, confinement plays a crucial role in shaping cell morphology. The availability of space at the top
and bottom can introduce distinct constraints, even within the same model. For example, comparing figure 9c,d, we see that
the restructuring of the cells occurs in double arrays to satisfy θt = π, going beyond top/bottom flattening. This suggests that
cells in confined spaces adapt their arrangements to meet target conditions, highlighting the interplay between shape flexibility
and confinement. Furthermore, the CE model is expected to have lower energy costs associated with shape changes owing to
its proximity to the target shape index of 3.79549 (figure 9a) and 3.75973 (figure 9b). We note that owing to the two boundary
tetragonal cells in figure 9b, there is a slight increase in the shape index compared with the hexagonal one for figure 9d. Without
these two cells, we obtain pα = 4.04877 and 3.81244 for the SE and CE models in figure 9d.

4.2. Compression-induced curved edges
We now focus on the compression of a group of cells in both disordered and ordered scenarios surrounded by boundary cells. For
the ordered case, we modified the target parameters in a way that mimics the swelling of boundary cells [54]. This mechanism
uses vertex position data from the previous minimized state to evaluate and determine the next minimized state. Figure 10
shows the cell array used in the simulations. Details are provided in appendix A. For both the ordered and disordered cases,
we use a simultaneous optimization approach. We define constraints governing the relative increase or decrease in area and
perimeter compared with the initial state (figure 1c; refer also to figure 11). Simulations were conducted using Mathematica
software [55], specifically employing the NMinimize function for optimization.

(a) (b) (c)

y

x

vf θ

θ

Figure 8. A basic model for evaluating local deformations under anisotropic stress. Let vf denote the fixed vertices at the end of the hexagonal cell array, marked by
black-coloured points. The angle θ indicates the top/bottom angles that can convert hexagonal cells into rectangular shapes. The hexagon is changing its angle owing
to a uniform anisotropic stress [52]. Blue arrows in (b) represent the forces applied at each vertex. The blue hexagon in (c) illustrates the change in shape in response to
the applied stress.

(b)(a)

(d)(c)

Double row cell array (initial state)Single row cell array(initial state)

Single row cell array (final state) Double row cell array (final state)

Figure 9. Subcellular buckling simulation of single and double array cells for a fixed boundary. (a,b) Initial cell shape, (c,d) blue lines represent cells with CEs and light
blue shaded cells represent cells with SEs.
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4.2.1. Ordered case

To study the ordered system under compression by a group of surrounding cells that are swelling, we

(i) increase the target boundary cell area by 5%
(ii) decrease the target boundary cell perimeter by 5%.

These percentage changes are similar to the disordered case, which is directly relevant to experiments [30]. States 1–5 refer to
this increase in area/decrease in perimeter for each consecutive step. The ordered simulation evaluates two different subcellular
buckling mechanisms in terms of deformation types A and B. In deformation type A, again, we imagine a cell contracting while
maintaining its edge length, resulting in the curved edge length remaining the same as the initial edge length, but the straight
edge length becoming smaller. On the other hand, deformation type B involves stretching the side length while maintaining the
distance from vertex to vertex, so the straight edge length remains the same while the curved edge length increases.

(i) Deformation type A (figure 3b)
— Cells maintain their initial edge length while contracting their area.
— Shape index remains relatively stable, indicating that the SE behaviour is energetically favourable.

(ii) Deformation type A + B (figure 3b,c)
— Side length increases to approximately 1.4 during cell contraction, mirroring the disordered case.
— Significant rise in shape index, suggesting a transition towards CE behaviour.

Ordered cell array Disordered cell array

(b)(a)

Figure 10. Ordered/disordered cell array used in the simulations. Interior cells are painted white, while boundary cells are represented by blue diagonal stripes. For the
ordered (a) scenario, we conduct simulations on 24 interior cell arrays to investigate subcellular buckling caused by compression by the boundary cells. In the case of
disordered cell array in (b), we used a graph inspired by experiments reported in [30] (see figure 11).

Table 3. Average shape index of individual cells (from the equation pα =
PαAα ).

p0 pα of SE models pα of CE models

single row cell array (figure 9c) 3.79549 4.35291 3.81628

double row cell array (figure 9d) 3.75973 4.11177 3.92456

Table 4. Disordered cell constraints.

state 0 state 1 state 2 state 3

Bd. SE area sa(SE) = 1 1.01 1.02 1.05

Bd. SE peri. sp(SE) = 1 1.01 1.02 1.05

Int. SE area sa(SE) = 1 0.9 0.85 0.75

Int. SE peri. sp(SE) = 1 0.9 0.85 0.75

Int. CE area sa(CE) = 1 1 1 1

Int. CE peri. sp(CE) = 1 1 1.1 1.4

images from Rigato et al. fig. 1a fig. 1b fig. 1c fig. 1d

Bd., boundary (border) cells; Int., interior (inner) cells; peri., perimeter of the cell.
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Note the combination of deformation type A + B is not equivalent to deformation type C, the latter of which does not conserve
the number of vertices.

Our simulations show that both area contraction and perimeter expansion are necessary for curved edge morphologies.
The transition from SE to CE behaviour, as observed in deformation type A + B, begins at state 2 when the SE shape index
limit (pα 4.56 for regular triangles) is used as the transition point, which is represented in figure 11e. See appendix A for more
simulation details.

4.2.2. Disordered cell simulation

As mentioned previously, in development, larval epithelial cells and histoblasts compete for limited space on the growing larval
body surface (even in the absence of cell division) [30]. Histoblasts undergo a remarkable morphological transformation from
convex polygons into cells with CEs, as shown in figure 12a–c, as surrounding larval epithelial cells swell to compress the
histoblasts. Our simulation focuses on the two-dimensional aspects of this process, where readily available information on cell
area and perimeter allows one to analyse the shape changes observed in the experiments. Given the lack of specific data for
individual boundary and histoblasts, we selected parameters by comparing figures from [30] and opted for a smaller value for

Vertex model for (b)

(a) (b) (c)

Rendering of Fig. 1(a) in Ref. [30] Rendering of Fig. 1(d) in Ref. [30]

1

2
3

4
5

6

7

8

9
10

11

12

13

14

Cell ID State 0 (corresponding to (b)) State 3 (corresponding to (c))

(d) (e) (f)

Figure 11. (a–c) Extracted from the experimental data of Rigato et al. (d–f) Disordered cell simulation results. (a) SE cell vertex model for (b). (b,c) Drawings from fig.
1a in [30]. (d) Cell ID of each polygon. (e,f) Simulation results of state 0,3 using the parameters listed in table 4.

State 1 (Type A)

State 1 (Type A + B)

State 5 (Type A)

State 5 (Type A + B)

State 0 State 1 State 2 State3 State 4 State 5

4
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6

Cell swelling state
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SE
CE (Type A)
CE (Type A + B)

Shape index comparison

(a) (b) (e)

(c) (d)

Figure 12. Simulation results and shape index comparison for an ordered collection of cells. In (a–c) the cell edges show wavy shapes and the cell shape indices are
less than pα 4.56, still not significant compared with (d) where the cell shape index is greater than pα 4.56. (e) The black horizontal line represents shape index of
the regular triangle. A transition point pα 4.56 is represented by the dashed grey vertical line.
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the scaling factor (s) than the reported average given sample-to-sample fluctuations. table 4 details the chosen conditions and
parameter values for this disordered case.

Figure 12 depicts our findings. Figure 12a shows the SE cell vertex model, which serves as the starting point for our analysis.
Figure 12a,c features drawings adapted from fig. 1a/d in [30] showcasing the configuration of cells. Figure 12d displays the
assigned cell IDs for each polygon. Finally, figure 12e,f presents the simulation results for states 0 and 3, respectively, achieved
using the conditions specified in table 5. Each state denotes a further increment in time as the boundary cells swell. With
our parametrization choice given in equations (2.6) and (2.7), we observe anisotropic CEs in figure 12f, which are similar to
those depicted in figure 12c. Figure 13a shows the average cell shape indices for the disordered system for each boundary cell
swelling state. We exclude cell IDs as 1 and 9 owing to their significantly higher shape index (>5) as compared with other cells
(approximately 4). To compare our results with those of the experiments, we collect data for both area and perimeter of CE cells.
Figure 13 aligns well with the general trends observed in fig. 1f,g of the experimental average values reported in [30].
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(a) (b) (c)

SE and CE shape indices

Box plot of CE perimeter for interior cells Box plot of CE area for interior cells

Figure 13. Perimeter and area of all interior CE cells and comparison of SE and CE shape indices for disordered cells (*excluding cell IDs 1 and 9). The solid black
horizontal line represents a shape index of 4.56, which is the shape index of a regular triangle. A dashed grey vertical line represents the transition point from SE- to
CE-dominated cells.

1.0
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0.5
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–1.0

–1.0
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Cell cross-sectional shape

reconstruction with the help of hidden edges

Planar view Three-dimensional representation using (c) as a boundary

Cell cross-sectional shape for

different functions of the curved edges

(a) (b)

(c) (d)

Figure 14. Possible extensions of the CE model. (a) Cell reconstruction with the help of hidden edges. Black solid lines filled with grey shade represent SE components
and dashed lines depict hidden edges. (b) Cell reconstruction for different functions of the CEs. Two dashed purple circles represent edges with zero curvature, and
two purple lines show two SEs forming a line similar to deformation type C in figure 3. (c) A single-cell example with a singular point. (d) The three-dimensional
representation using the bounded spherical balloon equation in [61]. The singular boundary point is ignored in the calculation.
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Our analysis also sheds light on the transition point from SE to CE behaviour. For regular polygons, the triangle shape index
is the highest. As the shape index increases, the number of edges decreases while the number of edges per vertex increases,
aligning with the findings of Lin et al. [56]. We can expect a transition to a CE-dominated regime when the shape index exceeds
a critical value, approximately pα 4.56 for a SE cell limit. At this point, cell edge buckling, similar to those observed in state 2
of figure 11e, becomes likely. Alternative criteria can be used for conditions where the initial average cell shape index for SE
cells exceeds 4.56. For example, the region dominated by wavy cell edges can be identified by calculating the difference in the
average shape index. These conditions apply to both area decreasing and perimeter increasing.

To facilitate further comparison with the results of the experiments, we converted the dimensionless shape index pα to
circularity C using the following equation:

C = 4πap2 = 4πpα2 .

For state 0, the circularity is C = 0.77472, and for state 3, it becomes C = 0.31290 (again, excluding cell IDs 1 and 9). While similar
trends to the experiment are observed, we do not yet have a quantitative agreement with experiments. As we do not yet have
information distinguishing changes between the boundary cells and the histoblasts, as evidenced by the differences between
figure 12c,f, it is clear that the boundary cells are not identical (especially top/bottom and bottom left). We will incorporate such
details in future work to ultimately yield a quantitative comparison with experiments.

5. Discussion
We have introduced a CE vertex model for curved cell–cell interfaces in tissues at the subcellular scale using a parametric
function to quantify the edge between two vertices. We can now explore non-convex cell shapes in a tiling without adding
more vertices explicitly. From a cell shape index perspective, there are now two ways to increase the cell shape index, either
by remaining convex and becoming more elongated or by remaining globular and becoming more non-convex. Which shape
change pathway a cell takes depends on a multitude of factors, including the morphology of the underlying cytoskeleton. For
instance, in cell monolayer experiments discovering that the upregulation of RAB5A induced an unjamming transition, the cells
morphed from non-convex to convex shapes [28]. As the cells become convex, they can then perhaps undergo T1 transitions
at very little energetic cost and so the system fluidizes, provided the cell shape index is high enough [12]. In other words,
perhaps cell non-convexity helps put a brake on cell fluidization. Therefore, in addition to the target cell shape index parameter,
topology of the tiling [57] and applied shear [58] as drivers of a rigidity transition, we perhaps should add yet another axis
of the fraction of convex cells to the rigidity transition phase diagram. Interestingly, recent work has demonstrated that when
a polygon, consisting of two-body springs and an area spring constraint, is subjected to expansive strain, the convexity of the
polygon is a necessary condition to generate a state of self-stress, or rigidity, while a cyclic configuration of the polygon is a
sufficient condition for the self-stress [59].

While cellular non-convexity may place a brake on cell fluidization, how then can cells adjust in the presence of applied
compression? Our results indicate that as cells become increasingly non-convex, they can respond to applied compression
without giving up their area by becoming more like jigsaw puzzle pieces. This phenomenon is presumably widely observed in
plant cells because plant cells, which contain cell walls, are not motile. As depicted in figure 1a, Bidhendi et al. [60] established
that the cell wall shaping process relies on spatially confined, feedback-augmented stiffening of the cell wall in the periclinal
walls. Moreover, Belteton et al. [29] demonstrated that tensile forces and the microtubule–cellulose synthase systems dictate the
patterns of interdigitated growth. Finally, experiments in Drosophila [30] demonstrate similar behaviour in which a group of
cells eventually develops significant non-convexity to accommodate the compression by surrounding swelling cells. It would be
interesting to search for other examples of this convex to non-convex transition in other instances in animal tissues.

We envision future extensions to the model we have introduced here that remain distinct from other approaches to capture
edge cell curvature [40,41]. For example, if concave polygons are to be avoided for technical purposes, the CE model can
be extended by adding more vertex points and different curve functions can be selected for the CE model to improve the
representation of cellular shape profiles. Simply, invisible vertex points can be added on each edge. Figure 14a has hidden
edges (for invisible vertex points) to simulate cells with lobes. Representing lobes in the simulations may involve folding
certain edges. By implementing invisible vertex points, cell profiles can be accurately represented and convex polygons can be
maintained for the SE model (grey-shaded polygon in figure 14a). The possibility of setting angles between hidden edges to zero

Table 5. Ordered cell constraints (SE).

state 0 state 1 state 2 state 3 state 4 state 5

Bd. SE area sa(SE) = 1 1.051 1.052 1.053 1.053 1.055

Bd. SE peri. sp(SE) = 1 1.051 1.052 1.053 1.054 1.055

Int. SE area sa(SE) = 1 0.951 0.952 0.953 0.954 0.955

Bd., boundary (border) cells; Int., interior (inner) cells; peri., perimeter of the cell.
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enables the representation of a wider range of shapes. Figure 14a shows an example with hidden edges inspired by fig. 2a in
[28]; figure 14b is the demonstration of the complicated cell structure inspired by figure 1a and fig. 1 in [62].

Because we are using parametrized curves at two fixed ends that correspond to the edges of the straight polygon, we may
get unintended results during the optimization. For example, when implementing sinusoids as the parametric function, there
can be overlaps resulting from adjacent edges, as shown in figure 14c. These points of overlap can be a source of error in the
evaluation of the correct perimeter and area. In addition, if we look in three dimensions, these points will generate several
boundary points; therefore, some of them will have to be recalculated or omitted, as shown in the figure 14d. To achieve
more accurate cell profiles, one may consider using different coefficients for sinusoidal harmonics, such as (ci)2 instead of ci,
or limiting ci to be positive or small enough, will presumably avoid such singular points. Another approach to avoid singular
points is by imposing constraints on the slope of the two endpoints. Moreover, instead of sine functions, other trigonometric
functions, such as elliptic functions, hypergeometric functions or Bézier type functions [63] can be chosen to generate different
edge profiles.

Finally, our analysis has so far been restricted to two dimensions. However, we can model the three-dimensional shape of
a non-convex cell using two-dimensional representations of the cell’s boundary. Re-optimization with constraints can then be
performed in two- or three-dimensional computations, as shown in figure 14d serving as initial parameters. By conceptualizing
the shape of a cell as two-dimensional surface sheets, we can perform minimum energy calculations [64,65] to ultimately study
the three-dimensional aspects of cellular non-convexity at the subcellular scale.
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Appendix A
A.1. More on the methodology
This section addresses more of the technical details for our CE model. Let us first address the issue of how many Fourier
coefficients to include in the computation from a constraint counting perspective. For the cellular packings we considered, there
are approximately two-thirds of the number of vertices where the number of edges is equal to the number of vertices. Suppose
we have a total of N number of packed cell arrays with boundaries. In general, the relation between the number of cells N, the
number of edges E and the number of vertices V  is as follows:

(A 1)V = αE,

(A 2)N = E − V + 1 (for open boundary),

(A 3) or N = E − V (for periodic boundary),

(A 4)N = (1 − α)E + 1 (or N = (1 − α)E),

where α is the ratio of the total number of vertices to the number of edges. For example, α = 2
3  for a cell packing with

periodic boundary conditions. From the energy functional (without the resistance contributions), there are 2N constraints. Using
equation (A 4), we obtain the number of constraints by comparing the number of degrees of freedom in terms of E, and
we can deduce whether the system is marginal, under-constrained or over-constrained. For our case, if we ignore boundary
edges for the open boundary case, we have about E′ = 2

3E number of shared edges. This number can be adjusted by the ratio

of boundary edges to interior edges. Similarly, we have V ′ = 2
3E′ number of shared vertices between cells. So the number of

degrees of freedom is ( 4
9 ⋅ 2 + 2

3 ⋅ 4)E = 32
9 E, with the second term accounting for the four Fourier coefficients. By inserting α = 2

3

into equation (A 4), N 1
3E such that 2N = 2

3E < 32
9 E and so the system is under-constrained. Including the resistance function as

constraints may result in a slightly over-constrained system. Still, there are fewer unknowns for the CE model as compared with
adding more SE vertices V* because the number of unknowns is increased to 2(V* + V) even though the number of constraints
remains the same.
Next, we check how the number of Fourier coefficients affect our results, at least for one cell packing. Figure 15a,c illustrates
the minimal energy configurations for three, four and five Fourier coefficients. It is evident that smaller numbers may result in
rounded profiles. However, the results of the four and five frequency simulations showed minimal differences. The measuredPαCE  were 6.20037 (three harmonics)/6.20103 (four harmonics)/6.20144 (five harmonics), i.e. a change in the third decimal place.
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four sinusoidal harmonics three sinusoidal harmonics

five sinusoidal harmonics four sinusoidal harmonics using Equation A 6 and A 7

(a) (b)

(c) (d)

Figure 15. Exploring different numbers of Fourier coefficients as well as the curve parametrization in the CE model.

Boundary cells

Interior cell

Boundary points

Figure 16. A model for swelling of the boundary cells. Fixed boundary points are symbolized as black points. Boundary cells are marked with blue shading, and interior
cells are represented by blue diagonal stripes, surrounded by boundary cells. Black arrows indicate the direction of swelling.

The parametrization implemented equations (2.6) and (2.7) have several singularities. Here, we introduce another parametriza-
tion that may be useful for other cell packing geometries. The parametrization is

(A 5)vk(t) = vα, i(t) = (fα, i(t), gα, i(t)),
(A 6)fα, i t = 1 − t xα, i + txα, i + 1 −

cα, i t xα, i − xα, i + 1xα, i − xα, i + 1
2 + yα, i − yα, i + 1

2
,

(A 7)gα, i t = 1 − t yα, i + tyα, i + 1 +
cα, i t yα, i − yα, i + 1xα, i − xα, i + 1

2 + yα, i − yα, i + 1
2

.

Using this alternative parametrization does not significantly affect the minimized cell structures (see figure 15a,d). It is worth
noting that figure 15d does not have perfectly flat edges at certain angles.

A.2 Simulation conditions for compression-induced curved edges
To study the deformation of the interior cells as a result of swelling boundary cells, we establish a scaling factor s for the mth
state of cell α as stated below:

(A 8)A0
SE m = saSE ⋅ A0,

(A 9)P0
SE m = spSE ⋅ P0,

(A 10)A0
CE m = saCE ⋅ A0,

(A 11)P0
CE m = spCE ⋅ P0,
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where A0 and P0 are the area and perimeter of the unit-length regular hexagon. Both SE cell characteristics and CE cell character-

istics are determined by the area, perimeter and the cell index α. If spSE = saSE , then the target shape index for the mth statep0
SE m  will be

(A 12)p0
SE m =

P0
SE mA0
SE m = spSE ⋅ P0saSE ⋅ A0

= spSE ⋅ P0saSE ⋅ A0
= P0A0

.

Thus, the shape index of SE remains unchanged. Then we can define the following energy functions in the form of

W ∗ m = KW
2 ∑α Wα∗ m −W0

∗ m 2

(A 13)A SE m = KA
2 ∑α AαSE m − saSE Aα, 0

2,

(A 14)P SE m = KP
2 ∑α PαSE m − spSE Pα, 0

2,

(A 15)A CE m = KA′
2 ∑α δaαCE m 2 → 0    (conserved),

(A 16)P CE m = KP′
2 ∑α PαCE m − spCE Pα, 0

2,

where δaαCE m  denotes an area under the curve such that δaαCE m + saCE ⋅ Aα, 0 = AαCE m  (because the area is conserved when
simulating curved edges for saCE = 1, we get AαCE m = Aα, 0). We set KA = 1,KP = 1,KA′ = 2, and KP′ = 2. Figure 16 illustrates the
swelling of the boundary cells with immovable boundaries (represented by black points), accompanied by the compression of
interior cells. In the ordered scenario, we use an 8 × 3 array of inner cells and impose three rows of cells with central cells
undergoing vertical compression from top and bottom. For the disordered case, we convert a hand-drawn vector image into a
Mathematica graph object [55]. Figure 10 illustrates the use of both disordered and ordered cell arrays in the simulation.
As obtaining precise initial configurations from the experimental images is challenging owing to the curved edges, we use the
same initial parameters for the different states via the resistance function. However, in the ordered case, to mimic the continu-
ous area expansion of the boundary cells, we implement a feed-forward loop that uses the vertex position data of the previous
state to evaluate the next state. Therefore, resistance functions for a state m can be evaluated by

(A 17)R SE m = KR
2 ∑i xi m − xi 0 2 + yi m − yi 0 2  (disordered),

Table 6. Optimization methods.

optimization methods

disordered simultaneous (SE and CE)

ordered (type A) sequential (SE first)

ordered (type A + B) sequential (SE first)

Table 7. Ordered cell (CE, type A + B)

state 0 state 1 state 2 state 3 state 4 state 5

Int. CE area saCE = 1 1 1 1 1 1

Int. CE peri. spCE = 1 1 1 1 1 1

Table 8. Ordered cell (CE, type A + B).

state 0 state 1 state 2 state 3 state 4 state 5

Int. CE area saCE = 1 1 1 1 1 1

Int. CE peri. sp(CE) = 1 1.071 1.072 1.073 1.074 1.075

Int., interior (inner) cells; peri., perimeter of the cell.
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(A 18)R SE m = KR
2 ∑i xi m − xi m − 1 2 + yi m − yi m − 1 2  (ordered),

(A 19)R2
CE m = KR2

2 ∑k ∑j = 1

4 ckj m − 0.05
2

.

We run simulations for KR = 0.1,KR1 = 0, and KR2 = 0.2. Moreover, (xi(0), yi(0)) denotes the initial position for the ith vertex and
(xi(m), yi(m)) denotes the position at the ith vertex in the mth state. In order to reduce computation time, we separate the SE and
CE contributions for the ordered cases, as depicted in table 6. We start with SE conditions in table 5, using its data as input for
both the type A and type A + B simulations indicated in tables 7 and 8. Thus, a comparison between CE types A and A + B
can be made without factoring in the SE cell shape index. The constraints are chosen to correspond the disordered scenario. For
example (1.07)2 ≃ 1.145, which matches state 2 in the disordered scenario (Tables 5, 7 and 8), and (1.07)5 ≃ 1.403, which matches
state 5.
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