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Abstract

Surveillance systems that monitor pathogen genome sequences are critical for rapidly

detecting the introduction and emergence of pathogen variants. To evaluate how interac-

tions between surveillance capacity, variant properties, and the epidemiological context

influence the timeliness of pathogen variant detection, we developed a geographically

explicit stochastic compartmental model to simulate the transmission of a novel SARS-CoV-

2 variant in New York City. We measured the impact of (1) testing and sequencing volume,

(2) geographic targeting of testing, (3) the timing and location of variant emergence, and (4)

the relative variant transmissibility on detection speed and on the undetected disease bur-

den. Improvements in detection times and reduction of undetected infections were driven

primarily by increases in the number of sequenced samples. The relative transmissibility of

the new variant and the epidemic context of variant emergence also influenced detection

times, showing that individual surveillance strategies can result in a wide range of detection

outcomes, depending on the underlying dynamics of the circulating variants. These findings

help contextualize the design, interpretation, and trade-offs of genomic surveillance strate-

gies of pandemic respiratory pathogens.

Author summary

To prevent the spread of infections that are more transmissible, evade immunity, or cause

more serious illness, public health agencies must quickly detect changes in pathogens

such as the virus responsible for COVID-19, which is done by testing the population to

identify infections and then sequencing the positive cases to determine which virus vari-

ants caused the infections. However, it is unclear how different factors, such as the volume

of testing and sequencing, the timing in the outbreak, or the transmissibility of the new

variants affect our ability to quickly detect new variants of concern. In our study, we used
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mathematical simulations of disease spread in New York City to better understand how

these factors influence the time it takes to detect a new variant and how many people have

been infected by the time it is detected. In our simulations, the greatest improvement in

detection speed was achieved by increasing the number of positive cases that are sampled

for sequencing. However, factors beyond policymakers’ control also influenced the time it

took to detect the new variant, meaning that a wide range of detection outcomes was pos-

sible even under an ideal public health strategy. These findings help guide decision mak-

ing for future outbreaks.

Introduction

The COVID-19 pandemic highlighted the importance of genomic surveillance as a tool to

detect and characterize novel genetic variants of pandemic pathogens, monitor their relative

prevalence, and update diagnostics and vaccines [1–7]. Identifying new variants of concern

(VOCs) as early as possible helps public health agencies update nonpharmaceutical counter-

measures, therapeutics, and forecasts, and implement interventions to reduce the spread of

infections that are potentially more transmissible or more immune evasive and that lead to

more severe outcomes than prior variants. As the availability of sequencing technology

expands, guidelines for sampling and variant detection—not only of SARS-CoV-2 but also

other respiratory pathogens with pandemic potential—form an integral component of pan-

demic response.

Challenges in designing effective surveillance systems include determining appropriate

sample sizes and ensuring that samples are representative of the pool of infections, which is

complicated by geographic and temporal variation in case definitions, testing guidelines, and

testing capacity. Sample representativeness may also be affected by the rate of asymptomatic

infections, severity of symptoms, and other variant characteristics as well as population immu-

nity and human behavior, which may change as new variants emerge and the epidemic

evolves.

Existing research has addressed some of these questions. Early in the COVID-19 pandemic,

the European Centre for Disease Prevention and Control (ECDC) provided sample size calcu-

lations based on sampling theory to guide the detection of new variants before they reach a

pre-specified proportion of all infections [8]. Wohl and colleagues expanded these calculations

to account for variant biology and logistical factors, such as testing rates by symptom status,

sample quality, and test sensitivity. They showed that detection likelihood and speed are

affected by these variant-specific biases in sampling probabilities and should be accounted for

in surveillance system design and data interpretation [9]. In addition to sampling theory, sim-

ulations have been implemented to assess the impact of specific surveillance decisions on vari-

ant detection. Contreras and colleagues focused on resource allocation between ports-of-entry

and the broader community, highlighting the importance of adaptive strategies [10]. Han and

colleagues explored the effect of testing volume on variant detection in settings with non-ran-

dom sampling from sentinel sites. Their findings underscore the importance of approximating

population sampling and reaching sufficiently high test volume before expanding sequencing

in low-resource settings [11]. Wegner and colleagues also measured the impact of sampling

rates, using empirical genomic data from Switzerland. They found that the delay in variant

detection at different levels of down-sampling was strongly lineage-dependent [12]. However,

the combinations of sampling strategies, variants, and epidemiological settings that have been
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observed empirically in pandemic settings are limited, and many questions remain about the

effects of surveillance decisions on variant detection.

Here, we expanded on this prior work and considered the role of geography, human mobil-

ity, epidemic stage, and sampling volumes, as well as their interactions. We developed a geo-

graphically explicit stochastic transmission model using empirical human mobility data to

simulate the geographic dispersal of two SARS-CoV-2 variants across New York City (NYC).

We chose COVID-19 in NYC as a case study given publicly available data on testing, sequenc-

ing, and mobility [13,14] and the City’s role in variant importation [15], but our model may be

adapted to other locations and respiratory pathogens. We varied both the timing and location

of introduction of the novel variant and its transmissibility relative to the preexisting variant.

For each combination of surveillance strategy, epidemiological setting, and variant transmissi-

bility, we measured the speed of new variant detection and the undetected disease burden. By

developing this framework, we aimed to contextualize decision-making on genomic surveil-

lance within the diversity of possible disease scenarios.

Methods

Data

Baseline COVID-19 testing rates (609 tests per 100,000 residents per week) and sequencing

rates for NYC were obtained from the NYC Department of Health and Mental Hygiene (NYC

DOHMH) [14] from December 2020 until November 2021 at the geographic resolution of

modified ZIP-code tabulation areas (MODZCTAs). We obtained mobility data from Meta via

the Facebook Data for Good Initiative [16], which reported the physical locations of anon-

ymized app users within 600m-by-600m tiles in 8-hour intervals. We aggregated these data to

boroughs and used them to construct a mixing matrix estimating the rate of interpersonal

encounters among the residents of NYC. We defined mappings between MODZCTAs, tiles,

and boroughs using United States Census Bureau data. Full details are provided in the Supple-

mentary Materials and Methods (S1 Text).

Transmission model

To simulate the transmission of a novel SARS-CoV-2 variant, we constructed a geographically

explicit two-strain stochastic compartmental model. We used a stochastic model to account

for randomness in transmission associated with the small initial number of infections with the

novel strain. We assumed a closed population given the short time period considered in this

study.

Individuals proceed through model states as follows (S1 Fig): Individuals are initially sus-

ceptible (S) and become exposed to one of two strains (E1, E2), upon contact with an infected

individual (I1, I2). Contact may occur within and between locations, modeled as patches, at

rates determined by empirically observed mobility patterns across NYC [16]. Each location

represents a borough. Infections may remain undetected (IU), detected through testing (IT), or

selected for sequencing after testing (IG). Sequencing a sample from an infection with the

novel variant leads to variant detection, which is the main outcome of interest in this study.

Individuals with a positive COVID-19 test (with or without a sequenced sample) choose to fol-

low social distancing guidelines with a probability of pq, thus reducing their transmission

probability to a proportion (θ) of the transmissibility of the base strain. Infections remain

undetected if no COVID-19 test is reported or if the test produces a false negative result. Upon

recovery, individuals are temporarily immune (R), before becoming susceptible to re-infection

at a reduced rate reflecting cross-reactive immunity (S). A small portion of individuals isolate

in response to a false positive test result (Sq) and are removed from the pool of susceptible
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individuals. The novel SARS-CoV-2 strain has greater transmissibility, greater immune eva-

sion, or both, but is otherwise assumed to be identical to the base strain in its incubation and

recovery periods and detection probability. In sensitivity analyses, we considered varying con-

tact rates (S9 Fig) and varying incubation periods of the novel variant (S10 Fig). Full details on

the model structure and parameters are provided in the Supplementary Materials and Meth-

ods (S1 Text). Code is available at github.com/gradlab/detecting-sarscov2-variants.

Surveillance scenarios

We compared surveillance strategies that varied by the volume of testing and sequencing

deployed, represented in the model as varying testing (pt) and sequencing probabilities, (pg).
We considered a range of strategies for test distribution among locations, specifically (1) main-

taining the way tests have been distributed historically in the data by NYC DOHMH (baseline

test distribution), (2) distributing tests by population density, (3) randomly allocating tests

among locations, and (4) over-sampling a single location (20–100% of tests) with the remain-

der of tests distributed among the remaining locations by population density. In a sensitivity

analysis, we modeled fixed caps on sequencing capacity rather than sequencing proportions,

to capture more realistically the resource constraints that may emerge during periods of high

COVID-19 incidence. By definition, sequencing a fixed proportion of positive tests produces a

greater number of sequenced samples when testing volume is increased, thus making it diffi-

cult to understand whether any improvements in variant detection are driven by testing

(increased representativeness among the pool of positive tests) or the larger number of

sequenced samples (and thus opportunities for selecting a sample from the strain of interest).

This sensitivity analysis allowed us to vary testing volume without impacting the number of

sequenced samples, helping to evaluate the contribution of testing versus sequencing to

improvements in detection speed.

Emergence scenarios

While testing and sequencing can be optimized, many factors affecting detection outcomes

remain beyond the control of surveillance systems. In this model, we estimated to what extent

the timing and location of variant emergence affected detection outcomes. Specifically, we var-

ied the introduction time of the novel variant relative to the base variant, delaying introduction

from 0 to 150 days. We also simulated introduction of the novel variant in all possible locations

(boroughs) under each scenario of surveillance resource allocation, and compared situations

where surveillance was targeted in the location where the novel strain emerged (surveillance

scenario 4 described above) and assessed the importance of connectivity of the introduction

location.

Statistical analysis

The main outcomes in this study were the time to variant detection (the number of days

between when the index case becomes infectious and laboratory confirmation of the new vari-

ant among sequenced specimens), the cumulative number of infections, and the variation in

cumulative infections across locations. We ran 3,000 simulations per scenario—100 simula-

tions for each combination of introduction time and location—and calculated the arithmetic

means, medians, and confidence intervals of the main outcomes across simulations. We

assessed whether distributions in detection outcomes were significantly different for different

parameter values using a two-sided Wilcoxon rank-sum test. Finally, we compared the relative

influence of surveillance strategy and emergence context variables, by conducting a
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multivariable linear regression of detection time on testing rates, sequencing rates, geographic

allocation strategy, emergence location, emergence time, and transmission probability.

Results

Testing and sequencing volumes

Outcomes varied considerably across testing and sequencing rates. Higher rates led to faster

detection, fewer cases, and less variation in cumulative infections across locations (Fig 1). In

accordance with sampling guidelines for well-resourced settings [17], we assumed that a fixed

percentage of tests was sequenced. Thus, by definition, increasing the number of tests also

increased the number of sequenced samples.

To differentiate the individual contributions of testing and sequencing, we fixed the quanti-

ties of samples selected for sequencing at varying testing volumes. Fixed sequencing volumes

were implemented as a cap on the maximum number of samples that can be sequenced per

day, with the test positivity rate determining the number of sequenced cases up to the cap. At

all levels of testing, increasing the number of sequenced samples reduced the detection time,

while increasing testing alone had little impact on new variant detection speed (Fig 2). As

such, the improvement in variant detection with increasing test volumes at a given sequencing

proportion was driven by the increase in sequencing volume rather than test volume.

We also considered an alternative strategy for capping sequencing, in which the sequencing

volume depended on both the test volume and the positivity rate (S1 Text). The results from

this sensitivity analysis fall between the fixed volume and fixed rate analyses: raising testing

capacity improved detection times for low levels of testing (up to 50–75 tests per 100k per-

sons), whereas at higher levels of testing, improvements in detection time were driven primar-

ily by increased sequencing capacity (S4 Fig). The first sensitivity analysis maximized variation

in the effective sequencing rate to better compare the effect of raising testes versus sequencing,

while the second sensitivity analysis represents a more realistic scenario of how a sequencing

cap may be implemented in practice.

Geographic sampling strategy

Relative to the baseline volume and distribution of testing and sequencing in NYC (the “base-

line” testing and sequencing strategy), detection times were similarly distributed when test

Fig 1. Detection outcomes by test quantity and sequencing rate. Lines depict the mean duration between variant introduction and detection in days (A) and

the cumulative infections upon detection (B) as a function of daily testing volume (given new variant introduction 50 days after the prior variant, baseline test

strategy). Shaded areas depict the 95% simulation interval for the detection time. Colors represent proportions of tests selected for sequencing.

https://doi.org/10.1371/journal.pcbi.1012416.g001
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volumes were allocated to be (a) proportional to the population density or (b) uniformly at

random across locations (Fig 3). This similarity across geographic sampling strategies was

unaffected by the outcome measure used as well as the timing and location of the new variant’s

introduction. However, the geographic sampling strategy affected detection outcomes if the

introduction location of the new variant was oversampled. Allocating a greater proportion of

tests in a single location reduced detection times and cumulative infections of variants

Fig 2. Detection time by test volume and fixed sequencing capacity. Lines depict the mean duration between variant introduction and detection in days as a

function of daily testing volume, colored by the maximum sequencing volume (A), and as a function of daily maximum sequencing volume, colored by the test

volume (B) (at variant introduction 50 days after the prior variant and baseline sampling strategy). Shaded areas depict the 95% simulation interval for the

detection time.

https://doi.org/10.1371/journal.pcbi.1012416.g002

Fig 3. Distribution of detection times by geographic sampling strategy. Points depict the time between variant

introduction and detection in days for the scenarios where tests are sampled geographically according to the baseline

testing strategy, proportionally to population size, or randomly across New York City (at variant introduction 50 days

after the prior variant, 30% of baseline test volume, and 10% sequencing rate). Boxes and whiskers depict the

minimum, lower 25%, median, upper 75%, and maximum detection times.

https://doi.org/10.1371/journal.pcbi.1012416.g003
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emerging in that location but increased detection times of variants that first appeared else-

where (Fig 4). The size of the targeting effect was inversely correlated with total mobility and

outward mobility of the different boroughs (S6 and S7 Figs).

Emergence context

We compared introduction times of the new variant as an approximation for varying back-

ground prevalence of the previously circulating variant and the population susceptibility to

infection. When the second, more transmissible variant was introduced into a fully susceptible

population together with the first variant (at t = 0), the second variant was more likely to domi-

nate due to its increased transmissibility. Under this scenario, the extinction probability of the

second variant (defined as the likelihood that a variant will cause no more than 10 infections)

was only 9.6% under the baseline sampling strategy. Both variants generally persisted through

Fig 4. Detection time by proportion of tests allocated in a single location. Lines depict the average detection time

for scenarios where between 20% and 100% of tests are sampled from a single location, and the remaining tests are

evenly distributed across the remaining locations by population size. The lines distinguish between scenarios where the

variant emerged in the primary allocation location, i.e., test over-sampling and emergence occurred in the same

location (blue), and scenarios where the variant emerged in one of the other locations, i.e., test over-sampling and

emergence occurred in different locations (red). Shaded areas depict the 95% simulation interval for the detection

time.

https://doi.org/10.1371/journal.pcbi.1012416.g004
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the duration of the simulation, though the second variant caused more infections. Conse-

quently, at a t = 0 introduction time, the second variant was detected in under 33 days in 95%

of simulations. If the second variant was introduced after the peak of the first variant’s out-

break (at t = 80 or t = 100), the second variant had a high probability of extinction (88.2 and

66.6%, respectively), and if it persisted, it was detected later (at least 56 and 37 days after intro-

duction in 95% of simulations, respectively). As the time interval between the first variant’s

peak and the second variant’s introduction increased (e.g. from t = 80 to t = 150) and immu-

nity from infection with the first variant waned, detection times and extinction probabilities

declined again. The greatest range of disease dynamics and consequently detection times was

observed when the second variant was introduced just before the peak of the first variant (at

t = 50), with detection times ranging from 16 to 145 days (Fig 5).

The introduction location did not significantly impact the detection time or cumulative dis-

ease burden across the city (S8 Fig) but did influence where infections occurred. The number

of infections was highest in locations with the highest mobility connectivity to the emergence

location, which was either the introduction location itself or other locations, depending on the

mobility matrix. Emergence in Staten Island, for example, produced infections primarily

within Staten Island, while emergence in Manhattan led to a high number of infections in

Brooklyn and Queens (S5 Fig).

Fig 5. Detection time of a novel variant across introduction times. Points depict the time between variant

introduction and detection in days for different introduction times (with baseline distribution of tests, 30% of baseline

test quantity, and sequencing rate 10%). Points are jittered horizontally to help visualize the distribution. Boxes and

whiskers depict the minimum, lower 25%, median, upper 75%, and maximum detection times. The extinction

probability for each scenario is depicted using inset squares, where the relative area of the red square is proportional to

the extinction probability.

https://doi.org/10.1371/journal.pcbi.1012416.g005

PLOS COMPUTATIONAL BIOLOGY Detection of new pathogen variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012416 September 5, 2024 8 / 15

https://doi.org/10.1371/journal.pcbi.1012416.g005
https://doi.org/10.1371/journal.pcbi.1012416


Variant characteristics

We compared variants with different levels of transmissibility, varying the probability of infec-

tion given an infectious contact from β = 0.25 to β = 0.5 (contrasting with the transmissibility

of the first variant of β = 0.2). This transmission parameter affected the disease dynamics, with

more transmissible variants spreading more quickly, leading to earlier detection. All transmis-

sion rates yielded a wide range of cumulative infections at detection time (Fig 6).

Comparison of surveillance and emergence characteristics

We estimated the relative impact of all factors on detection times in a multivariable regression

model (S2 Table). Of the surveillance characteristics, raising sequencing proportions by 1 per-

centage point decreased detection time by 44 days (p<0.0001) and infections by 502 cases per

100,000 persons (p<0.0001). A 1 percentage point increase in per-capita test rates reduced

detection times by 13 days (p<0.0001) and infections by 124 cases per 100,000 persons

(p<0.0001). Shifting to the random or density-based strategy did not result in significant

changes in detection speed or total disease burden. Emergence context also had a significant

impact on detection, with a 0.1 percentage point increase in transmissibility of the novel

Fig 6. Detection time by cumulative infections for different transmission rates. Points depict the mean detection

time and cumulative number of infections upon detection, averaged across 100 simulations of each introduction

location, for each transmission probability from 0.25–0.5, represented by different colors (at variant introduction 50

days after the prior variant, baseline distribution of tests, 30% of baseline test quantity, and sequencing rate 10%). The

baseline transmission rate of the pre-existing variant is β = 0.2.

https://doi.org/10.1371/journal.pcbi.1012416.g006
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variant led to a 60-day reduction in detection time (p<0.0001) and 133 additional infections

per 100,000 persons (p<0.0001) at detection time.

Discussion

This study provides an assessment of testing and sequencing strategies for the detection of new

SARS-CoV-2 variants to help inform genomic surveillance policies. We considered varying

quantities and distributions of resources within a wide range of potential settings for variant

emergence and assessed how they influenced variant detection speed and the undetected dis-

ease burden. Our results confirmed that variant detection is governed by both the surveillance

strategy and the epidemic dynamics in which the new variant arises [18].

While raising both sequencing proportions and testing rates reduced detection times and

undetected infections, these improvements were driven primarily by the increased number of

sequenced samples, which increase with rising rates of either testing or sequencing. This find-

ing contributes to our understanding of how surveillance systems can be designed to optimize

detection, building on existing research which demonstrated that testing volume should be

sufficiently high to ensure that samples are representative of all COVID-19 infections (e.g.,

through increasing the number of sentinel sites or approximating population random sam-

pling [11]).

The relative transmissibility of the new variant as well as the timing of its emergence influ-

enced both its speed of spread and survival probability, which in turn affected the detection

speed and undetected disease burden (Figs 5 and 6). This result is consistent with and expands

on observations of lineage-dependent effects of down-sampling genomic sequencing data [12]

as well as more explicit calculations of variant-specific biological and logistical biases in sample

size calculations for variant detection [9].

Targeted testing in locations with high positivity rates reduces the number of undetected

COVID-19 infections [19]. Our simulations showed that geographic targeting of locations

with likely variant introduction (e.g., ports of entry) or emergence (e.g., hospitals) can also

improve detection outcomes. The connectivity of the introduction location did not impact

detection times but did affect where infections occurred before variant detection (S7 and S8

Figs). Variants that emerged among residents of boroughs with more inward and outward

mobility produced more infections in other boroughs. In our simulations, a variant first

appearing in a resident of Manhattan, for example, caused more infections on average in

Brooklyn and Queens than in Manhattan itself, likely due to a combination of the high out-

ward mobility and low inward mobility of Manhattan (S7 Fig) as well as the boroughs’ relative

population sizes. Failing to adequately sample locations near emergence or those highly con-

nected to emergence locations could lead to a disproportionate number of infections in those

locations.

Changing the geographic distribution of testing, without specifically targeting emergence

locations, had little impact on detection outcomes in our simulations, though this may be

driven by the random sampling assumption in this case study of NYC. Prior research has

shown that sampling from few sentinel sites with low testing volume negatively impacts variant

detection, relative to random population-wide sampling [11]. Geographic distribution of test-

ing may therefore be more relevant in contexts where random sampling is not yet attainable.

Further, competing public health objectives—including fairness and equitable access to care—

must be balanced to inform how testing capacity is allocated across a city. Distributing limited

capacity according to a density-based strategy may help achieve equity and, according to the

results of our analysis, should not significantly affect variant detection speed relative to the

baseline allocation. In implementing a given surveillance strategy, decision-makers must
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weigh benefits of variant detection and indirect impacts on other public health objectives

(such as disease control effects of increased testing) against the costs associated with both test-

ing and sequencing, which are highly dependent on local contexts, such as the available capac-

ity for sequencing or pooled testing [20,21].

The number of undetected infections varied widely for a given transmission rate, even at

fixed detection times (Fig 6). This result demonstrated the challenge of understanding the epi-

demiologic scenario on discovery of a new variant and the need for combining pathogen

genome sequencing with other forms of surveillance. More work is also needed to understand

whether optimal surveillance strategies differ if the primary objective is monitoring or detect-

ing variants and how to position genomic surveillance within the broader landscape of some-

times competing public health objectives.

The model in this study was designed to be simple, while accounting for the most important

factors affecting testing and sequencing, and to help attain a qualitative understanding of

which parameters influence detection times and the number of infections at the time of first

detection. The model was not fit to disease dynamics observed for any given SARS-CoV-2 var-

iant, but rather evaluated relative changes in detection speed and burden for different surveil-

lance strategies, epidemiologic settings, and variant characteristics. Consequently, the

simulation results, such as the detection times, should not be interpreted as predictions. Spe-

cific simplifications included the modeling of single introductions of a novel variant, rather

than accounting for multiple introductions or several variants. We assumed homogeneous

mixing within locations and did not account for age structure and other demographic factors,

social networks, or social determinants of health. SARS-CoV-2 infection risk varies across

socioeconomic and demographic groups, due in part to variability in the average number of

contacts, vaccine uptake, long- and short-distance mobility, comorbidities linked to more

severe disease outcomes, and other social factors [22–24]. While we incorporated neighbor-

hood-level variations in movement, we did not include within-neighborhood heterogeneity or

between-neighborhood variation in social determinants of health. Increased data stratified by

socioeconomic and demographic factors and continued research will be critical to explaining

the experience of disparities in health outcomes during the COVID-19 pandemic. In particu-

lar, we still lack a complete understanding of how social and demographic heterogeneities

influence where new variants emerge, how they spread, and consequently when and where

they are detected. This data and research are needed to inform future prevention and response

efforts that also advance health equity. We took a simplified view of genomic surveillance pro-

cesses. We assumed random sampling of positive tests and did not account for variations in

specimen quality across testing sites or in access to testing, which may cloud estimates of the

prevalence of circulating variants [9]. In this sense, our model takes an idealized view of our

capacity to sample randomly from the population. Our model simulated the spread of two dis-

tinct variants, though results can be expanded to multiple variants that are introduced with

small numbers of initial cases into distinct population subgroups.

Emerging empirical evidence on genomic surveillance of SARS-CoV-2 variants has allowed

public health agencies to provide guidance on sampling strategies to detect and monitor vari-

ants, though more research is needed to anticipate the impact of these strategies under as yet

unseen epidemiologic settings. This modeling study aimed to contribute to these ongoing

efforts to assess variant detection strategies, by simulating detection outcomes for varying test-

ing and sequencing rates in NYC. Our results highlight the importance of sequencing and geo-

graphic targeting for variant detection and showed that the timing of emergence and variant

properties can impact detection as much as changes to surveillance strategies. To detect new

variants quickly, genomic sequencing should be prioritized, ensuring representative sampling

and targeted testing, and interpreting results in light of the epidemiological context.
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(TIF)

S2 Fig. Mixing among locations. Panel A illustrates how the contact matrix is derived from
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location k from residents of any location l, ∑l M{l!k}. Panel B illustrates how the contact matrix

influences transmission among locations in the model. The likelihood that a resident of loca-

tion i moves from the susceptible to the infectious state is defined by the level of contact with

each other location, kij, and within the same location, kii, as well as the proportion of individu-
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Ni
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. Infections are tracked by location of
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S3 Fig. Example of test rates at the borough level. Boroughs are colored by the proportion of

the population that is tested each week under the baseline (A), density-based (B), and random

(C) sampling strategy. Copyright: OpenStreetMap, openstreetmap.org/copyright.
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S4 Fig. Sensitivity analysis of fixed sequencing capacity. Lines depict the mean duration

between variant introduction and detection in days (A) as a function of daily testing volume,

colored by the maximum sequencing volume, and (B) as a function of maximum sequencing

volume, colored by the test volume.

(TIF)

S5 Fig. Cumulative infections by borough for introduction locations Manhattan and Staten

Island. Points depict the number of cumulative infections in each borough at detection time

(at variant introduction 50 days after the prior variant, baseline distribution of tests, 30% of

baseline test quantity, and sequencing rate 10%). Boxes and whiskers depict the minimum,

lower 25%, median, upper 75%, and maximum cumulative infections.

(TIF)

S6 Fig. Change in detection time by increasing proportion of tests allocated in a single

location, by introduction location. Lines depict and ribbons the average and 95% simulation

interval of the change in detection time for scenarios where the proportion of tests allocated to

a single location increases from 20% to between 30% and 100%. The sub-plots distinguish

between scenarios where the variant emerged in the primary allocation location, i.e., test over-

sampling and emergence occurred in the same location (left), and scenarios where the variant

emerged in one of the other locations, i.e., test over-sampling and emergence occurred in dif-

ferent locations (right).

(TIF)

S7 Fig. Rankings of boroughs by mobility volume. Boxes are shaded by the rank of each bor-

ough’s level of connectivity according to total mobility (first row), within-borough mobility

(second row), and between-borough mobility (third row), where darker shades of blue
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each introduction location (at variant introduction 50 days after the prior variant, baseline dis-

tribution of tests, 30% of baseline test quantity, and sequencing rate 10%). Boxes and whiskers

depict the minimum, lower 25%, median, upper 75%, and maximum detection times.

(TIF)

S9 Fig. Comparing contact rates. Detection time (A) and cumulative infections at detection

time (B) for varying numbers of average contacts per person for introduction time t = 0.

(TIF)

S10 Fig. Comparing incubation periods. Detection time (A) and cumulative infections at

detection time (B) for varying durations of incubation periods of novel variant (3, 5, 7 days)

and a fixed incubation period of 5 days of the base variant.

(TIF)
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assessment of sampling protocols for infectious disease genomic surveillance. Chaos Solitons Fractals.

2023 Feb 1; 167:113093.

11. Han AX, Toporowski A, Sacks JA, Perkins MD, Briand S, van Kerkhove M, et al. SARS-CoV-2 diagnos-

tic testing rates determine the sensitivity of genomic surveillance programs. Nat Genet. 2023 Jan; 55

(1):26–33. https://doi.org/10.1038/s41588-022-01267-w PMID: 36624344

12. Wegner F, Cabrera-Gil B, Araud T, Beckmann C, Beerenwinkel N, Bertelli C, et al. How much should

we sequence? An analysis of the Swiss SARS-CoV-2 surveillance effort [Internet]. medRxiv; 2023

[cited 2023 Oct 19]. p. 2023.08.28.23294715. Available from: https://www.medrxiv.org/content/10.

1101/2023.08.28.23294715v1

13. Vasylyeva TI, Fang CE, Su M, Havens JL, Parker E, Wang JC, et al. Introduction and Establishment of

SARS-CoV-2 Gamma Variant in New York City in Early 2021. J Infect Dis. 2022 Dec 15; 226(12):2142–

9. https://doi.org/10.1093/infdis/jiac265 PMID: 35771664

14. NYC Coronavirus Disease 2019 (COVID-19) Data [Internet]. NYC Department of Health and Mental

Hygiene; 2022 [cited 2022 May 25]. Available from: https://github.com/nychealth/coronavirus-data

15. Au NH, Thomas-Bachli A, Forsyth J, Demarsh PA, Huber C, Bogoch II, et al. Identifying importation

points of the SARS-CoV-2 Omicron variant into the USA and potential locations of early domestic

spread and impact. J Travel Med. 2022 Feb 23; 29(3):taac021. https://doi.org/10.1093/jtm/taac021

PMID: 35234894

16. Maas P. Facebook Disaster Maps: Aggregate Insights for Crisis Response & Recovery. In: Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining [Internet].

New York, NY, USA: Association for Computing Machinery; 2019 [cited 2022 Nov 22]. p. 3173. (KDD

‘19). Available from: https://doi.org/10.1145/3292500.3340412

17. WHO. Guidance for surveillance of SARS-CoV-2 variants: Interim guidance, 9 August 2021 [Internet].

World Health Organization; 2021 Aug [cited 2022 Nov 19] p. 21. Available from: https://www.who.int/

publications-detail-redirect/WHO_2019-nCoV_surveillance_variants

18. Subissi L, von Gottberg A, Thukral L, Worp N, Oude Munnink BB, Rathore S, et al. An early warning

system for emerging SARS-CoV-2 variants. Nat Med. 2022 May 30; https://doi.org/10.1038/s41591-

022-01836-w PMID: 35637337

PLOS COMPUTATIONAL BIOLOGY Detection of new pathogen variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012416 September 5, 2024 14 / 15

https://doi.org/10.1001/jama.2021.2294
https://doi.org/10.1001/jama.2021.2294
http://www.ncbi.nlm.nih.gov/pubmed/33595644
https://doi.org/10.1016/S1473-3099%2820%2930939-7
http://www.ncbi.nlm.nih.gov/pubmed/33587898
https://doi.org/10.1038/s41467-022-33713-y
https://doi.org/10.1038/s41467-022-33713-y
http://www.ncbi.nlm.nih.gov/pubmed/36385137
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-Omicron-Containing-Bivalent-Booster-Candidate-mRNA-1273.214-Demonstrates-Superior-Antibody-Response-Against-Omicron/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-Omicron-Containing-Bivalent-Booster-Candidate-mRNA-1273.214-Demonstrates-Superior-Antibody-Response-Against-Omicron/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-Omicron-Containing-Bivalent-Booster-Candidate-mRNA-1273.214-Demonstrates-Superior-Antibody-Response-Against-Omicron/default.aspx
https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-Omicron-Containing-Bivalent-Booster-Candidate-mRNA-1273.214-Demonstrates-Superior-Antibody-Response-Against-Omicron/default.aspx
https://doi.org/10.1038/s41586-022-04411-y
https://doi.org/10.1038/s41586-022-04411-y
http://www.ncbi.nlm.nih.gov/pubmed/35042229
https://doi.org/10.1016/S2666-5247%2821%2900121-X
https://doi.org/10.1016/S2666-5247%2821%2900121-X
http://www.ncbi.nlm.nih.gov/pubmed/34337584
https://doi.org/10.1038/s41588-022-01033-y
https://doi.org/10.1038/s41588-022-01033-y
http://www.ncbi.nlm.nih.gov/pubmed/35347305
https://doi.org/10.1016/j.xcrm.2023.101022
https://doi.org/10.1016/j.xcrm.2023.101022
http://www.ncbi.nlm.nih.gov/pubmed/37105175
https://doi.org/10.1038/s41588-022-01267-w
http://www.ncbi.nlm.nih.gov/pubmed/36624344
https://www.medrxiv.org/content/10.1101/2023.08.28.23294715v1
https://www.medrxiv.org/content/10.1101/2023.08.28.23294715v1
https://doi.org/10.1093/infdis/jiac265
http://www.ncbi.nlm.nih.gov/pubmed/35771664
https://github.com/nychealth/coronavirus-data
https://doi.org/10.1093/jtm/taac021
http://www.ncbi.nlm.nih.gov/pubmed/35234894
https://doi.org/10.1145/3292500.3340412
https://www.who.int/publications-detail-redirect/WHO_2019-nCoV_surveillance_variants
https://www.who.int/publications-detail-redirect/WHO_2019-nCoV_surveillance_variants
https://doi.org/10.1038/s41591-022-01836-w
https://doi.org/10.1038/s41591-022-01836-w
http://www.ncbi.nlm.nih.gov/pubmed/35637337
https://doi.org/10.1371/journal.pcbi.1012416


19. Jia KM, Kahn R, Fisher R, Balter S, Lipsitch M. Geographic Targeting of COVID-19 Testing to Maximize

Detection in Los Angeles County. Open Forum Infect Dis. 2023 Jul; 10(7):ofad331. https://doi.org/10.

1093/ofid/ofad331 PMID: 37469616

20. Hill V, Githinji G, Vogels CBF, Bento AI, Chaguza C, Carrington CVF, et al. Toward a global virus geno-

mic surveillance network. Cell Host Microbe. 2023 Jun 14; 31(6):861–73. https://doi.org/10.1016/j.

chom.2023.03.003 PMID: 36921604

21. Neilan AM, Losina E, Bangs AC, Flanagan C, Panella C, Eskibozkurt GE, et al. Clinical Impact, Costs,

and Cost-effectiveness of Expanded Severe Acute Respiratory Syndrome Coronavirus 2 Testing in

Massachusetts. Clin Infect Dis. 2021 Nov 1; 73(9):e2908–17. https://doi.org/10.1093/cid/ciaa1418

PMID: 32945845

22. McDonald SA, Devleesschauwer B, Wallinga J. The impact of individual-level heterogeneity on esti-

mated infectious disease burden: a simulation study. Popul Health Metr. 2016 Dec 1; 14:47. https://doi.

org/10.1186/s12963-016-0116-y PMID: 27931225

23. Rodriguez-Diaz CE, Guilamo-Ramos V, Mena L, Hall E, Honermann B, Crowley JS, et al. Risk for

COVID-19 infection and death among Latinos in the United States: examining heterogeneity in trans-

mission dynamics. Ann Epidemiol. 2020 Dec; 52:46–53.e2. https://doi.org/10.1016/j.annepidem.2020.

07.007 PMID: 32711053

24. Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, et al. Population risk factors for severe dis-

ease and mortality in COVID-19: A global systematic review and meta-analysis. PloS One. 2021; 16(3):

e0247461. https://doi.org/10.1371/journal.pone.0247461 PMID: 33661992

PLOS COMPUTATIONAL BIOLOGY Detection of new pathogen variants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012416 September 5, 2024 15 / 15

https://doi.org/10.1093/ofid/ofad331
https://doi.org/10.1093/ofid/ofad331
http://www.ncbi.nlm.nih.gov/pubmed/37469616
https://doi.org/10.1016/j.chom.2023.03.003
https://doi.org/10.1016/j.chom.2023.03.003
http://www.ncbi.nlm.nih.gov/pubmed/36921604
https://doi.org/10.1093/cid/ciaa1418
http://www.ncbi.nlm.nih.gov/pubmed/32945845
https://doi.org/10.1186/s12963-016-0116-y
https://doi.org/10.1186/s12963-016-0116-y
http://www.ncbi.nlm.nih.gov/pubmed/27931225
https://doi.org/10.1016/j.annepidem.2020.07.007
https://doi.org/10.1016/j.annepidem.2020.07.007
http://www.ncbi.nlm.nih.gov/pubmed/32711053
https://doi.org/10.1371/journal.pone.0247461
http://www.ncbi.nlm.nih.gov/pubmed/33661992
https://doi.org/10.1371/journal.pcbi.1012416

