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Quantifiable blood TCR repertoire
components associate with immune aging

Jing Hu1,2, Mingyao Pan 1, Brett Reid 3, Shelley Tworoger3,4 & Bo Li 1,2

T cell senescence alters the homeostasis of distinct T cell populations and
results in decayed adaptive immune protection in older individuals, but a link
between aging and dynamic T cell clone changes has not been made. Here,
using a newly developed computational framework, Repertoire Functional
Units (RFU), we investigate over 6500 publicly available TCR repertoire
sequencing samples frommultiple human cohorts and identify age-associated
RFUs consistently across different cohorts. Quantification of RFU reduction
with aging reveals accelerated loss under immunosuppressive conditions.
Systematic analysis of age-associated RFUs in clinical samples manifests a
potential link between these RFUs and improved clinical outcomes, such as
lower ICU admission and reduced risk of complications, during acute viral
infections. Finally, patients receiving bone marrow transplantation show a
secondary expansion of the age-associated clones upon stem cell transfer
from younger donors. Together, our results suggest the existence of a ‘TCR
clock’ that could reflect the immune functions in aging populations.

Deterioration of the immune system is one of the key features of aging1.
Previous work has uncovered systematic changes in the innate and
adaptive cellular compartments in older individuals2,3. Many studies
have further focused on T cell senescence given their critical role in host
defense against external pathogens and cancer4,5. Phenotypically,
exhaustion-like T cells emerge and accumulate in aged tissues, with an
altered, pro-inflammatory cytokine production program6. Quantita-
tively, there is continuous shrinkage of naïve T cell populations due to
thymic atrophy7,8, which is usually accompanied by the expansion of
memory clones in older individuals9. In addition, decreased abundance
of innate-like T cell compartments was also observed, such as γδT cells10

andmucosal-associated invariant T cells11. Consistently, studies using the
immunogenomics profiling of T cell receptors (TCR) confirmed a robust
decrease in repertoire diversity with aging9,12–14. Concomitant with the
reduction of repertoire diversity, certain clones becomemore dominant
while others decline or disappear, resulting in imbalanced naïve-
memory ratio and increased clonality13,15,16.

Compared to cross-sectional studies, research based on long-
itudinal cohorts could estimate age-associated changesmoreprecisely

given the inter-individual heterogeneity of TCR repertoires17. Yoshida
et al. profiled TCRβ repertoires of CD4+ and CD8 +T cells collected
from six healthy donors over three visits, and reported significantly
decreased CDR3β diversity and increased frequencies of clonal
populations with age for CD8 +T cells18. Another longitudinal cohort
with more donors and larger age spans further confirmed the reduc-
tion of richness in the naïve CD4+ and CD8+ subsets, but not in
memory T cells19. Contrarily, retention of the same TCRs is found
in different timepoints of the same donors, with more prominence in
CD8+ memory cells than in CD4+ or naïve cells19.

While these studies provided critical insights on the overall decay
of adaptive immune functions in aging populations, there has been no
report of the age impact on specific T cell clones defined by the T cell
receptor sequences. Such an investigation is challenging given the vast
diversity of the human TCR repertoire20, yet it holds the promise to
uncover shared ‘aging antigens’ that could be targeted in the older
population for improved immune protection6. To address this chal-
lenge, we have developed a new TCR analysis method, Repertoire
Functional Unit (RFU)21, which dissects the hypervariable TCR
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repertoire into quantifiable segments, or RFUs, that can be compared
across different individuals.

Here in this work, we apply the RFUmethod to investigate a large
number of repertoire samples deeply sequenced for the β chain
complementarity determining region 3 (CDR3) of TCRs and system-
atically study the age associations of individual RFUs. Our analysis
reveals 13 RFUs showing dynamic changes with age and confirms this
observation in multiple independent cohorts. These clones carry the
features of mucosal-associated invariant T cells (MAIT) that recognize
antigens derived from bacteria. Through investigation of the clinical
impact of these RFUs, we confirm their prognostic value during acute
viral infections and quantify their loss under normal or pathological
conditions. Our work provides novel insights over immune aging that
can open up potential opportunities to maintain a ‘younger’ T cell
repertoire in the older population.

Results
Robustly age-associated TCR signatures in multiple human
cohorts
We first implemented Repertoire Functional Unit, or RFU, our recent
computational method to analyze the TCR repertoire samples21. In
brief, each TCR sequence was projected to a 500-dimensional Eucli-
dean space, with shorter distance between a pair of TCRs representing
higher similarity. The embedding space was then divided into 5000
conservative TCR neighborhoods, with the centroid of each neigh-
borhood defined as an RFU. A new TCR-seq sample can be converted
into a 5000-length numeric vector of RFU counts, which can be
compared across multiple samples in a large cohort.

We then investigated the age associations of RFUs using three
TCR-seq blood sample cohorts, includingNolan cohort22 of 1414 adults
with COVID-19, Emerson cohort of 666 samples mainly from healthy
adults23 and Mitchell cohort of 359 samples from children24. RFU-by-
sample matrix (hereby denoted as RFU matrix) of each cohort was
calculated using the abovemethod.We compared the age associations
of the two adult cohorts and observed consistency of a subset of
negatively correlated RFUs in both cohorts (Fig. 1a, Supplementary
Data 1). We defined the 13 RFUs with Spearman’s ρ ≤ −0.2 in the
Emerson cohort and ρ ≤ −0.3 in the Nolan cohort as ‘essential RFU’, or
eRFU (Fig. 1b and Supplementary Fig. 1a). The T cell clones of these
eRFUs demonstrated an approximately 50% reduction by age 80 or
above compared to early adulthood (Fig. 1b). This trend was reversed
when we investigated the Mitchell cohort of younger individuals: all
the adult age-related eRFUs were positively associated with age
between birth to early 20 s (Fig. 1c, d). Combining adult and children
cohorts, we obtained the full spectrum of non-linear age association
(Fig. 1e). All the 13 eRFUs exhibited dynamic changes with chron-
ological age, experiencing rapid expansion after birth. They reached
peaks around age 27 and then gradually decreased, ultimately
returning to the birth level as participants aged.

We next explored the nature of eRFU T cells. Public TCRs, defined
as TCRs shared across multiple individuals, appear to be an important
part of the TCR repertoire25. To explore the relationship between eRFU
and public TCRs, we repeated the previous work12 to define public
TCRs. We found that eRFUs were not enriched for public TCRs com-
pared to a randomly selectedRFU set (Fig. 1f) and the public TCRswere
not significantly associated with age (Fig. 1g). Next, to understand how
eRFUs are shaped by genetic factors, we took advantage of a TCR-seq
sample cohort of identical twins26. Interestingly, while the TCR reper-
toire is overallmore similar within than between twins (Supplementary
Fig. 1b), this heritability was not observed for the eRFUs (Fig. 1h).
Further, intra-twin over inter-twin similarity calculated as Spearman’sρ
between a pair of individuals using eRFUs were not higher when
compared to those using randomly selected RFU sets (Fig. 1i). Finally,
we sought to determine whether eRFUs had a specific T cell pheno-
typic subset. We analyzed two sample cohorts with memory CD4 and

CD8 T cell repertoires separately sequenced27,28 and discovered that
eRFUs were consistently enriched for the CD8+ population (Fig. 1j–l),
suggesting that eRFUs clones are potentially cytotoxic. However,
examination of their associations to the commonMHC-I alleles did not
identify any significant associations (Supplementary Fig. 2a). These
observations suggested that eRFUs are non-public and MHC-
independent CD8 T cells.

MAIT signatures of T cells with eRFU receptors
Previous studies indicated that mucosal associated invariant T (MAIT)
cells possessed the TCRmotifs observed in the eRFUs with Aspartic or
Glutamic acid on the 5th position29. Consistent with our observation,
MAIT cellswere notMHC-I restricted as they recognize antigens bound
by MR130. Interestingly, we identified one putative MAIT TCR, M33.64
that carries the sequence signatures of eRFU 841 (Supplementary
Fig. 2b). M33.64 binds to 5-(2-oxopropylideneamino)−6-d-ribitylami-
nouracil, or 5-OP-RU (Supplementary Fig. 2c), a potent MAIT activator
derived from vitamin B metabolism in bacteria31. Further, although
MAIT cells are known for their invariant ɑ chain32, conserved patterns
in the β chain have also been observed29, consistent with our findings.
We therefore investigated a single cell RNA-seq dataset paired with
TCR sequences from human T cells of diverse phenotypes33. T cells
assigned to eRFUs were enriched in cluster 7 (Supplementary Fig. 2d),
which overexpressed putative markers of MAIT cells (Supplementary
Fig. 2e).We further selected all the 2619 annotatedMAIT cell TCRs and
analyzed each of the eRFUs. 7 out of the top 40 RFUs enriched in the
MAIT TCRs (O/E ≥ 50) were eRFUs (Supplementary Fig. 2f). These
results indicated that most eRFU T cells belong to a subset of
CD8 +MAIT cells.

To further investigate the nature of eRFUs, we analyzed another
recent scRNA-seq dataset34, which contained paired scTCR-seq sam-
ples from flow-sorted MAIT cells and conventional memory T cells
(Tmem). We confirmed that eRFUs were dominantly expressed by
MAIT cells (Fig. 2a), with an enrichment in the TRAV1-2+ subset
(Fig. 2b). Unbiased differential gene expression analysis revealedmore
upregulated genes in the eRFU cells compared to the non-eRFU
MAIT cells (Fig. 2c), suggesting a globally different transcriptional
program between the two groups. Particularly, putative T cell stem-
ness markers TCF7, BACH2 and KLF235–37 were significantly down-
regulated in the eRFU group (Fig. 2d). Unbiased analysis using
signature gene sets (up-or down-regulated in CD8 stem T cells)38

confirmed a low stemness state of eRFU MAITs (Fig. 2e). Finally,
pseudotime analysis39 with direction determined by CytoTRACE40

revealed that eRFU cells are significantly enriched at the most-
differentiated end of the trajectory (Fig. 2f, g). These results collec-
tively indicated that eRFU-expressing cells belong to a more differ-
entiated group of CD8 +MAIT cells.

The same dataset contained individuals aged from 27 to 65,
allowing for the investigation of how stemness of eRFU MAITs trends
with age. First, T cell stemness markers (TCF7, BACH2, KLF2)35–37 con-
sistently decrease with age (Supplementary Fig. 3a). The activity of
transcription factors BACH2 and KLF2, measured by the expression
levels of their regulating targets by SCENIC41, showed a similar trend
(Supplementary Fig. 3b). Signature genes upregulated CD8 stem cells
decrease with age in eRFU MAITs, while an opposite trend was
observed for the down-regulated genes (Supplementary Fig. 3c, d).
These results potentially indicated that the faster shrinkage of eRFU
clones than the other MAIT cells is likely due to their relatively lower
and continuously decaying stemness with aging.

Quantification of eRFU loss with age in adults
We next sought to quantify the rate of eRFU decrease in adult cohorts.
First, we observed a linear, homoscedastic relationship between age
and log-scaled total eRFU summation in adults (Supplementary
Fig. 4a). In the Nolan cohort, log10 eRFU sum is estimated to decay at
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Fig. 1 | Identification and characterization of age-associated essential RFUs
(eRFUs). a Scatter plot showing the aligned age associations calculated from two
large sample cohorts. Selection criteria of eRFUs were described in the main text.
RFUs were defined by mapping the top 10,000 most abundant TCR clones in a
repertoire to the embedding space. Statistical significancewas evaluated using two-
sided Spearman’s correlation test, with FDR corrected using the Benjamini-
Hochberg approach. b Sequence logo plot paired with scatter plot showing the
direct age association for 3 eRFUs. c Scatter plot showing the anti-aligned age
associations fromone adult and one childhood cohort, with eRFUs labeledwith red
circles. d Positive age association of a selected eRFU in the childhood cohort.
Statistical significance of the association in b and d was evaluated using two-sided
Spearman’s correlation test, with FDR corrected using the Benjamini-Hochberg
approach. e Smoothed lines showing dynamic changes with age for all 13 eRFUs.

The shaded areas show 95% confidence intervals, which were calculated using 95%
standard error estimated by Loess polynomial fitting. f Beeswarm plot showing the
distribution of overlaps of public TCRs with each of 1000 random RFU set. eRFU
was colored in purple. g) Violin plots comparing age associations for 3 groups of
RFUs. Statistical significance was estimated with one-way ANOVA. h Neighbor
joining tree showing the relationships between pairs of twins with distance matrix
calculated using the 13 eRFUs. i) Barplot showing the ratio of intra-/inter- twin
associations of random RFU sets or eRFU. Associations were calculated as Spear-
man’s correlation using RFU as markers between a pair of individuals. j–l Boxplots
showing enrichment of eRFUs into CD4 or CD8 subsets in 3 independent adult
cohorts. Data are presented as mean values ± SD. Statistical significance was
evaluated using two-sided Wilcoxon rank sum test. Source data are provided as a
Source Data file.
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the rate of 0.0092 ±0.00044 (mean ± s.d., Fig. 3a), which is approxi-
mately 2.1% loss per year. The second discovery set, Emerson 2017
cohort, provided a similar estimation of −0.0088, i.e. 2.0% annual loss
(Fig. 3b). To confirm these results, we analyzed two additional adult
patient cohorts: Greenberger 2022 cohort42 with 480 subjects and
Britanova 2016 cohort with 32 individuals12. The Britanova cohort was
profiled using a different data generationmethod based on RNA, while

all the other cohorts were profiled using genomic DNA. Interestingly,
we observed similar rate of decay in both cohorts, with −0.0076 (1.7%)
and −0.011 (2.5%) respectively (Fig. 3c, d). We observed similar trend
using another large human adult cohort with categorical age
information43, which saw a rate of −0.093 per 10 years on the log10
scale (Fig. 3e). Further analysis of racial groups revealed a potentially
faster eRFU loss among Asian and Pacific Islanders (Supplementary
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Fig. 4b), though statistical significance was not reached due to small
sample size. These results suggested that total count of eRFUs
decreases by approximately 2% each year in the general population
aged from 30 s till 80 s.

All above cohorts were derived from blood samples. We further
investigated the aging trends of diverse organs using a postmortem
patient cohort with TCR repertoires sequenced for skin, liver, spleen,
and gastrointestinal (GI) track44. We observed that blood, skin and
esophagus shared similar eRFU levels, whereas colon, liver and spleen
were closely correlated (Fig. 3f), though no p value passed FDR level at
0.05 due to small sample size.

Accelerated loss of eRFUs under immunosuppressive conditions
Wenext investigated eRFUs loss among individuals with HCMV, HIV or
COVID-19, in contrast to the healthy donors. For HCMV infection,
HCMV+ was defined as patients with a positive serology. Interestingly,
the age-association curves of patients with HCMV or SARS-CoV2
infections were similar to the healthy controls, while HIV infection was
associatedwith a 37%drop in the overall eRFU levels (Fig. 4a). Of the 13
eRFUs, 2428 and 4712 showed highest age-adjusted reduction in the
HIV+ group (Fig. 4b). These HIV patients (Towlerton 2020) received
anti-retroviral treatment (ART)45, allowing us to investigate if ther-
apeutic intervention could reverse this trend. Indeed, we observed a
significant increase of eRFUs 2 years post ART (Fig. 4c), which became
more significant after correcting for participant age and individual
baseline levels using a mixed effect model (Fig. 4d). Based on these
results, we speculated that immunosuppressive conditions lead to
accelerated immune aging,manifested by faster reduction of the eRFU
levels that could be rescued by therapy.

To test this hypothesis, we leveraged the Nolan 2020 cohort,
which comprehensively documented the medical records of over
1400 COVID-19 patients. A subset of the patients reported usage of
immunosuppressant drugs, such as corticosteroids to treat asthma46.
We observed significantly reduced levels of eRFUs in those patients
after adjustment for age (Fig. 4e). In addition, 24 patients in this
cohort were diagnosed with cancer before the time of blood draw.
These patients may have been immunocompromised due to cancer-
induced immune exhaustion47 or exposure to immunosuppressive
therapies that are common for cancers48. Indeed, we observed a sig-
nificant decrease of overall eRFU counts in these patients (Fig. 4f).
Interestingly, we noticed that use of immunosuppressant had a
stronger influence among younger (35–50yrs) individuals, while can-
cer occurrence in the older (65–80 yrs) patients was associated with
higher reduction of eRFUs (Fig. 4e, f). Together, our analysis indicated
that immunosuppressive conditions might further lower the eRFU
levels.

Clinical impact of eRFUs in COVID-19 patients
To further understand the functional impact of eRFUs in the context of
diseases, we performed a systematic analysis of TCR repertoire sam-
ples from several recent COVID-19 patient cohorts22,42,49. First, among
the adult COVID-19 patients, higher overall eRFU level was associated
with reduced risk of ICU admission when controlled for patient age
(Fig. 5a). Within hospitalized patients, we observed a suggestively

higher eRFU count associated with fewer days in the hospital (Fig. 5b).
Quantitatively, at the same age, an increment of one eRFU clone
reduced the odds of ICU admission by 6% and hospitalization by 0.29
days. Next, we investigated a cohort of pediatric patients49 who
developed multisystem inflammatory syndrome in children (MIS-C), a
rare but serious condition associated with COVID-19. Consistent with
the analysis in adults, higher eRFU level in childrenwas associatedwith
lower risk of MIS occurrence (Fig. 5c). Further, within the patients who
developed MIS-C, higher eRFU count appeared to be associated with
lower risk of cardiac involvement (Fig. 5d), although this observation
did not hold for neurologic involvement (Supplementary Fig. 5a).
Notably, eRFUs showed different correlations with age in adults
(inverse) and children (positive), yet in both groups, eRFUs were
associated with better clinical outcomes. Finally, we studied the out-
come of COVID-19 mRNA vaccination in a patient cohort with hema-
tologicmalignancies42. Total eRFUcountwaspositively correlatedwith
anti-Spike protein antibody titer (Fig. 5e; Spearman’s ρ = 0.21,
p = 2.3 × 10−6), for both types of mRNA vaccines studied (BNT and
Moderna) (Supplementary Fig. 5b). We controlled for related factors
(age, gap between 1st and 2nd vaccines and COVID-19 status) using
linear regression and confirmed that eRFU levels independently pre-
dicted higher antibody production after vaccination (Fig. 5f). Toge-
ther, our results suggested that higher eRFU counts were related to
better outcomes in patients with COVID-19 and improved vaccine
response.

Secondary expansion of eRFUs following bone marrow
transplantation
Given the potential predictive value of eRFUs in the clinical outcomes
during acute infection, we next sought to investigate which factors
influenced the expansion of eRFUs. For this purpose,weobtainedTCR-
seq samples from leukemia patients who received bone marrow
transplantation, which allowed us to separately investigate the age
associations of both donor and recipient. We first analyzed the
Kanakry 2016 cohort50, including blood samples from 16 healthy
donors and 46 recipients. We confirmed that recipient blood eRFU
levels were negatively associated with age in the donors, and yet
uncorrelated with recipient patient age (Fig. 6a). In addition, using
another cohort51 (Pagliuca 2021), we observed that in the patients who
received peripheral blood stemcell (PSC) transfer, the associationwith
donor age was no longer significant, in contrast to those who received
bone marrow transplant (BM) (Fig. 6b). These findings, together with
our previous observations (Fig. 3, Supplementary Fig. 3), suggested
that senescence of the hematopoietic stem cells (HSC)52 may be a
cause for the decreased eRFU levels in older populations with hema-
tologic malignancies.

We next studied the changes of eRFUs after bone marrow trans-
plantation. Interestingly, in both cohorts, we observed a significant
increase of eRFUs by 2-fold within the first 100 days (Fig. 6c, d). RFUs
60, 2428 and 4712 showed highest positive correlations with post-
transplantation time (Supplementary Fig. 6). Notably, of these, RFUs
2428 and 4712 also displayed largest decrease in the Towlerton cohort
of HIV patients (Fig. 4b).We used the term ‘primary expansion’ to refer
the increase of eRFUs after birth, and ‘secondary expansion’ the

Fig. 2 | MAIT signatures and differentiation status of eRFU cells. a UMAP plot
showing the distribution of MAIT or memory T cells in the gene expression space
(left) and the distribution of eRFU expressing T cells on the UMAP (right).
b Percentage plots for eRFU expressing T cells enrichment in TRAV1-2 vs non-
TRAV1-2 (left) T cell subsets or inMAIT vs Tmem (right). Statistical significance was
evaluated using two-sided Fisher’s exact test. c Volcano plot showing the differ-
entially expressed genes between eRFU and non-eRFU cells. Statistical significance
was evaluated using two-sided Wilcoxon rank sum test, with FDR corrected using
the Benjamini-Hochberg approach. Red color marks absolute log2 fold change
greater than 1. Blue color indicates statistical significance at FDR =0.05. d Violin

plot showing the distributions of three putative T cell stemness markers. e Violin
plot showing the distribution of two scores measuring the signature genes that
either down- (left) or up- (right) regulated in CD8 stemmemory cells vs naïve CD8
T cells. Statistical significance of the difference in d and ewas evaluated using two-
sided Wilcoxon rank sum test. f Monocle pseudotime trajectory plot of all the
MAIT cellswith direction ofdifferentiationdeterminedbyCytoTRACE,where lower
value indicates higher differentiation status. g Percentage plot showing eRFU cells
enrichment in state 3. Statistical significancewas evaluated using two-sided Fisher’s
exact test. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-52522-z

Nature Communications |         (2024) 15:8171 5

www.nature.com/naturecommunications


Fig. 3 | Quantification of eRFU loss with age in adult cohorts. a–d Regression
analysis of eRFU sum on age in four different adult cohorts. All individuals are
within the range of 30 to 80 years. The solid lines denote linear regression fits
between eRFU sum and age. The shaded areas show 95% confidence intervals,
which were calculated using 1.96 standard deviation estimated from the model.
Top right text boxes show the Spearman’s correlation and p values between eRFU
sum and age. e Association of eRFU sum with age group information. All box plots
display the median, interquartile range (IQR), whiskers extending up to 1.5 times

the IQR, and individual data points representing the minimum and maximum
values. Two-sided Spearman’s correlation test was applied to evaluate statistical
significance. The p-values in a and e are less than 2.2 × 10−16 and are denoted as
< 2.2 × 10−16. f Heatmap showing correlation of eRFU sums between a pair of tissue
samples collected from 10 patients (postmortem). Statistical significance was
evaluated using two-sided Pearson’s correlation test. Source data are provided as a
Source Data file.
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increase after bone marrow transplantation. We observed that even
though selected eRFUs may reach a high magnitude in a secondary
expansion, the overall count of eRFUs is lower than the primary
expansion (Fig. 6e). On average, the sum of eRFUs 5 years after
transplantation was 59.6% of that in 5 yr old children.

Discussion
In this study, we identified quantifiable TCR repertoire units, or eRFUs,
that robustly correlate with chronologic age, with a bell-shaped asso-
ciation peaking around 27 years old. Systematic investigation over
6500 TCR-seq samples led to several intriguing discoveries: 1)

immunosuppressive conditions, such as HIV infection or cancer, were
associated with more loss of eRFUs than aging alone, and this trend
was partially reversible with certain therapeutic interventions; 2)
higher intrinsic eRFU levels were predictive of better outcomes during
an acute viral infection in both pediatric and adult patients; 3) HSC
transplant from younger donors might lead to a partial restoration of
eRFUs in older recipients.

eRFU clones phenotypically belong to MAIT cells that recognize
MR1-bound small molecules derived from bacteria30, which also are
activatedduring viral infections53,54. Although theoverall percentageof
MAIT cells among CD3+ T cells in the blood is reported to dynamically

Fig. 4 | eRFUs are decreased in patients under immunosuppressive conditions.
a Scatter plot showing eRFU loss with age in different patient groups. b Coefficient
plot for all 13 eRFUs from linear regressionwith age and viral infection categories as
covariates. c eRFU sum dynamics pre- or post- ART treatment. Color changemarks
2-year post ART. Two-sided Spearman’s correlation test was implemented to esti-
mate statistical significance. d Dynamics of eRFU sum post ART treatment for each

patient. Statistical significance was estimated using linear mixed effect model.
eRFU dynamics with age stratified by the use of immunosuppressant (e) or exis-
tence of past cancer diagnosis (f). Statistical significance was estimated by logistic
regression controlled for age. The shaded areas in a, c, e and f show95%confidence
intervals. Source data are provided as a Source Data file.
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change with age55, there has never been a systematic investigation of
whichMAIT clones have strong age associations.Our results suggested
that only a subset of CD8+MAIT clones expand after birth, and con-
tractwith aging. The age-associations of the 13 eRFUsdefinedusing the
Nolan 2020 and Emerson 2017 cohorts are repeatedly seen across all
theTCR sample cohorts in our analysis. This is a surprising result, given
the high diversity, high plasticity and potentially unseen batch effects
of the immune repertoire samples. This reproducibility suggests that
there might exist a driving immunologic factor, which could be the
exposure to a common pathogen, a stimulating cytokine56 or an
immune-related hormone57.

A likely explanation to the non-linear age-dynamics of eRFUs is
that these T cell clones are expanded with antigen exposure during
childhood, while contraction follows thymic involution58 and HSCs
senescence59 in adulthood. A critical remaining question is, what
antigens do these TCRs recognize? One hypothesis is that these RFUs
are against common viral or bacterial infections given their constant
exposures after birth. Through analyzing sequence logo and protein
structure data, we identified 5-OP-RU as one potential bacterial target
for eRFU 841. This finding is supportive for the above hypothesis.
However, it should be noted that the pool of known antigen targets
remains extremely limited, and it is unclear whether eRFUs, which

mostly present in the form of CD8 + T cells, will directly kill the target
cells to exert their functions.

Within the same agegroup, the total eRFUcounts exhibited nearly
4-fold difference in the healthy donor cohort (Fig. 3e). Genetics might
be a contributing factor to this large variation, such as the poly-
morphism of the TRB variable gene region or the MHC loci60. Envir-
onmental factors, such as pathogen exposures, use of medications or
supplements, lifestyle, disease history, psychosocial stress or other
factors, could also be influential to eRFUs, though a systematic inves-
tigation is beyond the scope of this study. Notably, many of these
factors, particularly diet, distress (e.g., depression), and smoking,
among others, have been associated with other age-related
phenotypes61–64. Leveraging epidemiologic studies will be critical in
identifying these relationships.

There are several limitations of this study. First, the eRFUs were
identified using cross-sectional data, which limits our ability to assess
how changes within individuals over long periods might replicate the
patterns observed. To better understand the age-related dynamics of
eRFUs, future research should include large longitudinal cohorts with
blood specimens collected from multiple timepoints within the same
individuals. Second, the eRFU analysis was focused on the βCDR3
region, which cannot fully determine the antigen specificity without

Fig. 5 | Clinical impacts of eRFUs in COVID-19 patients. a Trending of eRFU sum
with age stratified by ICU admission status. Odds ratio and p value were estimated
using logistic regression controlled for patient age. b eRFU sum trending with days
in hospital. Linear regression controlled for age was used to estimate the impact of
eRFU sum and p value. eRFU sum over age among pediatric COVID-19 patients
stratified by disease groups: healthy control vs MIS-C (c) or cardiac involvement
status (d). Odds ratio and p value were estimated using logistic regression

controlled for patient age. e Scatter plot showing the relationship between eRFU
sum and antibody titer after COVID-19 vaccination in an adult cohort. Statistical
significance was evaluated using two-sided Spearman’s correlation test for both
groups combined. The shaded areas in a–e show 95% confidence intervals.
f Coefficient plot of linear regression analysis with related clinical covariates in the
COVID-19 vaccination cohort. Estimate of coefficients are shown as points, and 95%
confidence intervals as bars. Source data are provided as a Source Data file.
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the pairing of the α chain. As paired TCR sequences from known
antigens become more prevalent, it has been observed that certain
antigen specific TCRs predominantly utilize TCRα65. Future high-
throughput single T cell sequencing efforts to pair with the α chains
are needed to understand the functional significance of the eRFUs.
Third, while multiple different cohorts were included in our analysis,
their racial/ethnic diversitywas limited. Also,manyof the individuals in
the analysis were experiencing diseases, which could influence the
results. Finally, our study remains descriptive. The findings in thiswork
are suggestive of selected MAIT clones in healthy immune aging, but

in vivo experimentswouldbe required toprove their functional impact
during viral or bacterial infections in aged individuals.

In the future, more research is needed to investigate eRFUs and
their potential clinical implications. The MR1-restricted eRFU clones
are unlikely to be directly specific to SARS-Cov2 antigens, thus, their
role in acute infectionsmay transcend the type of pathogens involved,
for example, boosting B cell responses through cytokine production66.
Hence, it will be critical to understanding how the eRFUs are related to
othermetrics of immune systemhealth and the potential role that they
play in driving immunity in the context of infections and cancer.

Fig. 6 | Secondary expansion of eRFUs after bone marrow transplantation.
a Heatmap showing the correlation of eRFU values and age (donors and recipient
patients) or post-transplantation time (patients only). Statistical significance was
evaluated using two-sided Spearman’s correlation test with FDR corrected using
the Benjamini-Hochberg approach. Graft types included bone marrow (BM) or
peripheral stem cell (PSC). b Association of eRFU sum with donor age stratified by
graft types. c Increase of eRFU sumwith post-transplantationdays. For both (c) and
(d), statistical significance was evaluated using two-sided Spearman’s correlation

test. d Boxplot showing eRFU increase after transplantation in Pagiluca 2021
cohort. The boxplot display the median, interquartile range (IQR), whiskers
extending up to 1.5 times the IQR, and individual data points representing the
minimum and maximum values. One-sided Wilcoxon rank sum test was imple-
mented to estimate statistical significance. e Comparisons of primary and sec-
ondary expansions of selected eRFU clones or the summed value. Age (x-axis) was
measured in years. The shaded areas in b, c and e show 95% confidence intervals.
Source data are provided as a Source Data file.
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Additional validation in other populations as well as evaluating rela-
tionships with other age-related markers will be important to under-
stand which aspects of the aging phenotype are captured by the eRFU
measurement. Finally, our findings might provide novel opportunities
to develop approaches for immune rejuvenation, including vaccina-
tion approach to achieve higher eRFU levels67.

Methods
Datasets and preprocessing procedures
All TCR repertoire sequencing samples were accessed from the
immuneAccess database (https://clients.adaptivebiotech.com/
immuneaccess) managed by Adaptive Biotechnology by Nov 27th,
2023, or downloaded from literature-provided repositories. Samples
collected from immuneAccess were profiled using the immunoSEQ
platform developed by the company. Zip files were directly down-
loaded through the ‘Export’ function and selecting ‘v2’. Accession
numbers for each cohort are available in Supplementary Table 1. For
each repertoire sample, sequences with missing variable genes or
nonproductive CDR3 regions were removed. The top 10,000 TCRs
with most abundant clonality were selected for RFU calculation. We
exclusively used the top 10,000 clones to minimize the batch effects
caused by differences in sequencing depths. These preprocessing
criteria were applied to all the TCR-seq samples throughout this study.
Associated clinical information for each cohort were individually
accessed through literature. Single cell RNA sequencing paired with
TCR sequencing data were downloaded from GEO by accession num-
bers GSE178991 and GSE194189.

Repertoire functional units
We applied GIANA68 to perform clustering of over 20 million TCRs
using both the CDR3 sequences and variable gene alleles obtained
from public domain. These samples covered a wide spectrum of dis-
ease context, including healthy individuals and patients with cancer,
autoimmune disorders as well as viral infections. Previous work,
including ours, have demonstrated that TCRs clustered using such
strategy are highly specific (> = 95%) to the same antigen epitopes69,
with smaller (n < = 5) clusters being more likely to share antigen-
specificity68.

FromGIANAoutput,we identified a total of 821 K such clusters.An
example of a typical cluster of two sequences, CSARQGARTYEQYF and
CSARQGAYTYEQYF, bear amismatch R/Y in position 8.We considered
the amino acids flanking this mismatch and extracted the trimer
sequences from both TCRs. As the two TCRs likely share antigen-
specificity, the two trimers, ART and AYT, are thus considered
‘replaceable’ in the context of antigen recognition. We then traversed
all 821 K clusters and built the 8000-by-8000 trimer-substitution
matrix (TSM) by calculating the number of replacements of each tri-
mer pairs. We calculated the Spearman’s correlationmatrix using TSM
and converted it into a Euclidean distance matrix (EDM). Next, similar
as in GIANA, we obtained the isometric embedding vector for each of
the trimers using multi-dimensional scaling based on the EDM. This
approach allowed us to use a numeric vector to represent each trimer,
with similar trimers located closely in the Euclidean space. The
embedding of eachCDR3 sequence is then calculated as the average of
all the vectors from consecutive trimers. This embedding is a con-
tinuous representation of TCR similarity.

We pooled 1.2 million TCRs from 120 healthy donors from a pre-
vious study23, and projected them onto the Euclidean space with
trimer-based embedding. We divided the TCR sequences in this space
into 5000 groups with the k-means method. We referred the centroid
of eachgroup asa ‘Repertoire FunctionalUnit’, orRFU. Tocalculate the
RFU vector of a new TCR repertoire sample, we first select the top
10,000 most abundant TCRs based on clonal frequencies. We con-
sistently used the top 10,000 clones for all the datasets to minimize
the influence of sequencing depth. For each TCR, we calculate the

embedding vector and assign it to the closest centroid from 5000
RFUs. The value of each RFU is determined by the number of TCRs
assigned to its centroid. We chose 5000 as the group number so that
the expected count for each RFU is 2.

Regression analysis
The relationship between eRFU sum (log10 scale) and age was quan-
tified with ordinary linear regression for all the cohorts with numeric
age information (Fig. 3a–d). Constant variance of residuals (homo-
scedasticity) was visually confirmed on the residual plot using the
Nolan 2020 cohort (Supplementary Fig. 4a). Linear regression with
viral infection status and age was performed to evaluate the impact of
each viral infection over eRFU sum (Fig. 4b). Linearmixed effectmodel
was implemented with patient age and time post ART therapy as fixed
effect, and patient ID as random effect (Fig. 4d). Regression was per-
formed using R package lme4 (v1.1-33). Statistical significance of ART
over eRFU sum was evaluated using the lmerTest package (v3.1-3)70.
Logistic regression controlled for patient age and/or other covariates
was implemented to assess the impact of eRFU sumover binary clinical
outcomes in COVID-19 patients (Fig. 5). Odds ratio and statistical sig-
nificance were both estimated from the R function glm.

Public TCR analysis
4425 public TCRs were defined as occurring in 90% of an age-
representative population12. For each public TCR, we assigned its RFU
number based on themethod described above. To determine if eRFUs
were enriched for the public TCRs, we randomly selected 13 RFUs
(without replacement) from the 5000 pool and calculated the number
of public TCRs that had been assigned with an RFU within the random
set. This number could be larger than 13 since it was the TCR count.
The overlapping TCR count for eRFU was then compared to 1000
random RFU sets to evaluate statistical significance. RFUs that were
assigned with any public TCRswere compared to all or eRFUs for their
age associations using the correlation values estimated in the Nolan
cohort.

HLA allele association analysis
We applied the Emerson 2017 cohort to investigate RFU association
with HLA alleles (A or B loci) at 2-digits resolution. Specifically, we
selected alleles occurring in 10 or more individuals in the full cohort.
For each allele and for each RFU, we performed a one-sided t-test, to
investigate if individuals with the allele have higher RFU count than
those without, and recorded the z-score. We obtained and visualized
the allele-by-RFU matrix of z-scores from this analysis (Supplemen-
tary Fig. 2a).

Single cell RNA-seq data analysis for MAIT cells
An analysis of the gene expression pattern of MAIT cells was
conducted using the Dong cohort33 (Access number: GSE178991)
containing paired scRNA-seq and scTCR-seq data. We primarily used
R/4.1.1 and R Package Seurat/4.0.5 for scRNA-seq data analysis. A total
of 75,820T cells passed quality control, with a mitochondrial
gene percentage of less than 5% and a ribosomal gene ratio of less than
2%, allowing them to proceed to downstream analysis. When finding
clusters, T cells were divided into 12 subgroups using a 0.3 resolution.
T cells with age-associated RFU were highlighted in red in the tSNE
plot and were found to be significantly enriched in cluster 7. The
expression levels of four MAIT markers34 (TRAV1-2, CD161, ITGAE, and
SLC4A10) were evaluated across all clusters. Notably, T cells in cluster 7
displayed typical MAIT gene signatures and were thus designated as
MAIT cells.

For the Garner cohort34 (GSE194189), we directly downloaded the
processed data from GEO which had been quality-controlled and
normalized. We used Seurat v5.0.3 for single-cell data analysis for this
cohort. This dataset contains paired scRNA-seq and scTCR-seq
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samples from flow-sortedMAIT cells and conventional memory T cells
(Tmem). There were 12 donors in this dataset, aged from 27 to 65,
comprising 89,456 cells in total. We further kept cells with only one
pair of productive TCRɑ and TCRβ chains for both cell types. We fur-
ther discarded some potential contaminating MAIT cells from Tmem
cell population, which expressed TRAV1-2 paired with TRAJ33, TRAJ12
or TRAJ20 and had a 12 amino acid CDR3ɑ region. Finally, we retained
30,058MAIT cells and 25,927 Tmemcells.We assigned RFU number to
each T cell based on the TCRβ chain and obtained 1971 T cells
expressing eRFUs. Enrichment of eRFUs in specific cell subsets/states
was performed using Fisher’s exact test. Differential analysis was done
using the FindMarker function in Seurat package. Pseudotime trajec-
tory was constructed using Monocle239 v2.30.1, and the direction of
pseudotime was determined by CytoTRACE40 v0.3.3. Visualization of
volcano plot was performed using EnhancedVolcano package v1.22.0,
and violin plots and bar plots were made with ggpubr v0.6.0,
ggstatsplot v0.11.0 and patchwork v1.2.0.

Statistical analysis
Computational and statistical analyses in this work were performed
using the R programming language v4.3.0. FDR control was using the
Benjamini-Hochberg method. Sequence logos were generated using
package ggseqlogo (v0.1), by performing multiple sequence alignment
(msa, v1.32.0) using CDR3s with length 16. Neighbor joining trees were
calculated based on pairwise correlation matrix by RFU values and
visualized using R package ape (v5.7-1). Subpanels ofmainfigures were
produced using ggplot2 (v3.4.2). Loess smooth lines were estimated
using the loess function in R with default parameters, which was
automatically implemented in the ggplot function. Beeswarm plots
were generated using R package beeswarm (v0.4.0). Violin plots were
produced using R package vioplot (v0.4.0). Due to limited sample size
(n = 10), Pearson’s correlation test was implemented to calculate the
eRFU associations between each pair of somatic organs and statistical
significance (Fig. 3f). Visualization of the heatmap was performed
using ggplot.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the TCR repertoire sequencing data can be downloaded at https://
clients.adaptivebiotech.com/immuneaccess, and single-cell RNA
sequencing and TCR sequencing data can be downloaded at GEO
database, with accession links listed in Supplementary Table 1. Source
data are provided with this paper.

Code availability
RFU codebase is available at: https://github.com/s175573/RFU.
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