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Diverse decarbonization pathways under
near cost-optimal futures

AdityaSinha 1 ,AranyaVenkatesh 2,5, Katherine Jordan 2,CameronWade3,
Hadi Eshraghi 1, Anderson R. de Queiroz 1,4, Paulina Jaramillo 2,6 &
Jeremiah X. Johnson 1,6

Energy system optimization models offer insights into energy and emissions
futures through least-cost optimization. However, real-world energy systems
often deviate from deterministic scenarios, necessitating rigorous uncertainty
exploration in macro-energy system modeling. This study uses modeling
techniques to generate diverse near cost-optimal net-zero CO2 pathways for
the United States’ energy system. Our findings reveal consistent trends across
these pathways, including rapid expansion of solar and wind power genera-
tion, substantial petroleum use reductions, near elimination of coal combus-
tion, and increased end-use electrification. We also observe varying
deployment levels for natural gas, hydrogen, direct air capture of CO2, and
synthetic fuels. Notably, carbon-captured coal and synthetic fuels exhibit high
adoption rates but only in select decarbonization pathways. By analyzing
technology adoption correlations, we uncover interconnected technologies.
These results demonstrate that diverse pathways for decarbonization exist at
comparable system-level costs and provide insights into technology portfolios
that enable near cost-optimal net-zero CO2 futures.

To limit global temperature rise to below 1.5 °C andmitigate theworst
impacts of climate change, it is imperative to transition to a net-zero
CO2 emissions energy system by the middle of the century1. In net-
zero systems, the amount of CO2 emissions released into the atmo-
sphere is balanced by the amount removed through various
mechanisms such as carbon capture and storage, reforestation, or
technological innovations. However, this transformation poses sig-
nificant challenges and uncertainties in determining the configuration
of the energy system tomeet these targets2,3. Key decisions regarding
capital-intensive and long-term energy system investments must be
made today, with far-reaching consequences for future social, eco-
nomic, and environmental systems. Promoting energy efficiency,
electrifying end-use technologies, and transitioning to a carbon-
free electricity grid are crucial components of this transition4–6.
Nevertheless, there are unresolved questions surrounding the

implementation of these solutions and coordinating efforts across
different energy sectors.

Energy system optimization models (ESOMs) enable the study of
energy transitions7. These models typically rely on least-cost optimi-
zation to inform decision-making, with investment and operational
decisions achieving the lowest net present cost. ESOMs can determine
the optimal deployment of resources, considering existing and new
technologies, within a specified time horizon and subject to various
constraints. Model designs can vary based on their sectoral repre-
sentation and assumptions on technology advancements, policy
measures, or economic factors. ESOMs can provide insight into crucial
decision-making in interlinked systems where analyzing only a single
technology or sector in isolationmay be insufficient. Thesemodels are
emerging as the standard in studying macro scale energy systems
spanning over multi-decadal time periods8. For example, previous
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studies have used capacity expansion models, a type of ESOM, and
explored ranges of fuel and technology options for achieving net-zero
CO2 emissions in the United States by 20509–11, yielding valuable
insights into the need for technological flexibility10 and identifying key
challenges and opportunities for decarbonization11,12. However, these
studies have often relied on deterministic simulations of a small
number of scenarios, with limited exploration of uncertainties in input
parameters (parametric) or model architecture (structural)13,14. As a
result, model projections may fail to anticipate future events15. Addi-
tionally, the detailed narratives often associated with these scenarios
can introduce cognitive bias in interpreting results16.

Recent researchhasproposedexpanding themodeling frameworks
to support feasibility assessment and robust strategy development to
address these limitations17,18. For example, Lempert and Trujillo suggest
that modelers should seek robust strategies for decarbonization, as this
encourages more expansive thinking over potential futures and an
iterative stress-testing process19. More recently, Jewell et al. proposed
developing feasibility spaces through which modelers can add bound-
aries to the solution spaces (i.e., all possible decarbonization pathways)
based on a multi-dimensional evaluation that accounts for parameters
not included in the ESOMs (e.g., technology acceptability)17. Thus,
identifying robust decarbonization pathways for the U.S. energy system
warrants a systematic treatment of the deep uncertainty under which
these models are formulated20.

Approaches to address the uncertainty in input parameters
include Monte Carlo analysis, stochastic programming, and robust
optimization. Monte Carlo analysis involves propagating the uncer-
tainty of one or more input parameters, represented by probability
distributions, through the ESOM21. Stochastic programming considers
numerous uncertain factors in the future and seeks to offer an optimal
hedging strategy that informs a single best course of action21,22. How-
ever, these methods suffer from high computational burdens and
require reliable probability distributions for model inputs14,22, limiting
their effectiveness in ESOMs, particularly when used alongside capa-
city expansion problems22–26. Robust optimization integrates elements
from sensitivity analysis, multi-objective optimization, and stochastic
programming to produce a set of solutions that gradually become less
influenced by the uncertainties associated with input variables. These
solutions remain stable and resilient even when facing modeled
uncertainties14. Unlike stochastic programming, robust optimization
cannot provide a unified hedging strategy yet still requires quantifi-
cation of uncertain model parameters. Further, if knowledge of
probability distributions of uncertain inputs is available, this uncer-
tainty can potentially be better captured by other methods14.

Structural uncertainties in ESOMs have been shown to lead to
dramatic differences in the cost-optimal pathway and real-world
energy transitions27. Modeling to generate alternatives (MGA) has
emerged as a method to mitigate this uncertainty by exploring the
near-optimal region to account for unmodelled considerations28. MGA
produces near-cost-optimal solutions that can be maximally different
to allow for more complete consideration of a wide range of alter-
natives. The solutions from this approach can represent outcomes
beyond cost-optimal technology choices, illustrating the potential
influence of non-monetary factors such as public acceptance, con-
sumer preferences, and equity on decision-making. Further, MGA
alleviates the cognitive biases of the energy modeler and also allows
for the inspection of “knife-edge” effects, where small perturbations in
the input assumptions can lead to drastically different outcomes14,16.
The solutions from MGA can be assembled into a portfolio of options
and presented to policymakers, giving them insight into making
decisions while keeping inmind the interests of multiple stakeholders.
These options may be able to capture non-monetary factors without
any cognitive biases in a way that deterministic scenario modeling
cannot. The applicability of MGA in the context of energy system
modeling has been previously demonstrated27,29–39.

In applyingMGA, wemodify the original optimization problemby
converting the objective function into a constraint and allowing sys-
tem costs to exceed the original optimal value by a specified threshold
or slack. This addition of slack permits the exploration of near-optimal
solutions within the decision space, even if there is a slight increase in
the total system cost. As a result, alternative solutions that capture a
broader range of possibilities beyond traditional least-cost formula-
tions are extracted. MGA can identify correlations and trade-offs
among technology choices, as well as options that are consistently
favored or excluded across multiple pathways. By generating hun-
dreds of pathways that cover a large solution space, this approach
enables stress-testing of different system representations to assess
robustness or the performance of multi-dimensional evaluations to
establish a feasibility space. Given the inevitable presence of structural
uncertainties and unmodeled objectives in ESOMs, near-optimal
model solutions may prove more desirable when factoring in deci-
sion-makers’ preferences. Furthermore, MGA results may also be
interpreted as perturbations in the objective function coefficients,
reflecting parametric uncertainty40. In this work, we use the Tools for
Energy Model Optimization and Analysis (Temoa), an open-source
energy system optimization model41,42, in conjunction with an open-
source database of the U.S. energy system42. Temoa represents the
energy system as a process-based network, linking technologies
through the flow of energy commodities. The database incorporates
various exogenous engineering-economic parameters to describe
each process in the network, including capital costs, operations and
maintenance costs, technology lifetimes, conversion efficiencies, and
emissions factors.

In this study, we introduce an application and design of MGA,
applied to a comprehensive U.S. energy system model to assess near
cost-optimal net-zeroCO2 futures. In the context of this study, near-cost-
optimal net-zero CO2 futures refer to pathways to achieve net-zero CO2

emissions by 2050 that are close to the lowest possible system cost.
These pathways allow for consideration of factors that may be desirable
to include but difficult to explicitly model. The model endogenizes
technology adoption, allowing for an extensive exploration of technol-
ogy choices across diverse decarbonization pathways. By incorporating
explicit descriptions of the transportation, buildings, power, and
industrial sectors, the model accounts for the complex interactions
between the major energy sectors. Furthermore, our work extends
beyond previous studies in that it accounts for path dependencies
resulting from past investments in energy system infrastructure, pro-
viding insights into the dynamics of the energy system in later years of
the simulations. These featuresof themodelingeffort enableus tobetter
address the questions: What are the characteristics of a wide range of
near cost-optimal pathways that achieve a net-zero energy system in the
United States? Are there common themes amongst these pathways,
including favored and disfavored technologies, from which we can
extract robust insights? Are there correlated decisions in technology
adoption that may be particularly informative for policy-making?
Through ourmodeling, we find several consistent trends across the near
cost-optimal pathways, including the rapid expansion of solar and wind
power generation, substantial reductions in petroleum use, near elim-
ination of coal combustion, and increased end-use electrification. We
also observed varying levels of deployment for natural gas, hydrogen,
direct air capture of CO2, and synthetic fuels, with important correla-
tions in adoption across some technologies.

Results
This section presents the findings from analyzing 1100 near-cost-
optimal energy system pathways designed to achieve net-zero CO2

emissions by 2050. These pathways were developed using MGA and
exhibit variations in fossil fuel use, levels of electrification in end-use,
as well as the incorporation of other net-zero enabling technologies,
such as hydrogen production and direct air capture.
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Fossil fuel use in near cost-optimal net-zero pathways
Figure 1 illustrates the range of primary fossil fuel use, specifically coal,
natural gas, and petroleum, within the near cost-optimal net-zero CO2

pathways along with the least-cost (deterministic) net-zero pathway
for the U.S. energy system. The figure also shows the least-cost
(deterministic) current-policy pathway, which includes the Inflation
Reduction Act (IRA) provisions but excludes any other carbon con-
straints after the IRA provisions expire. Figure 1a shows that by 2050,
most near cost-optimal pathways result in the near elimination of coal
use by 2050, consistent with previous work11,43,44. Although achieving
net-zero targets while maintaining higher levels of coal use is theore-
tically possible, nearly 99% of the decarbonization pathways rely on
less than0.1 exajoule (EJ) of coal in 2050, representing a 98% reduction

from current levels. In 2020, the U.S. electric sector accounted for
approximately 90% of the coal use in the energy system, with the
remainder attributed to the industrial sector45. Consequently, Fig. 1a
highlights that the pursuit of net-zero futures necessitates a rapid
reduction in coal use in the electric sector, with the median pathway
achieving a 67% reduction by 2030 compared to 2020. While most
near-cost-optimal net-zero pathways align with the least-cost deter-
ministic pathway, leading to the elimination of coal in the electric
sector by 2040, some pathways extend coal phase-out until 2050. This
extension can be attributed, in part, to the availability of the IRA tax
credits that enable continued electric sector coal use when combined
with carbon capture and sequestration (CCS) technologies. As
observed in the least-cost current-policy pathway, the IRA succeeds in

Fig. 1 | Fossil fuel use in near cost-optimal net-zero CO2 pathways. Near cost-
optimal pathways for coal (a, b), natural gas (c, d), and petroleum (e, f) in net-zero
CO2 pathways. The box plots (a, c and e) show the distribution of the total energy
use by fossil fuel type across all 1100 net-zero pathways in exajoules (EJ). The
pathway plots in (b, d and f) show the range of fossil fuel use by sector, with the
shading representing each decile of results across the 1100 model runs (darkest

shades around the median, lightest shades around the 10th and 90th percentiles).
The solid lines show the deterministic least-cost net-zero pathway, while the
dashed lines depict the least-cost current-policy pathway. Box plots indicate
median (middle line), 25th, 75th percentile (box) and 1.5 times the inter-quartile
range from the first and third quartiles (whiskers) as well as outliers (single points).
Source data are provided as a Source Data file.
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reducing coal use while the tax credits are active. Still, there is a
rebound to nearly pre-existing levels of coal use once these credits
expire (typically by 2033 for most provisions).

Figure 1c shows that the distribution of natural gas use exhibits
significant variation across the near cost-optimal pathways, with con-
sumption in 2050 ranging from less than 3 EJ to 21 EJ, the latter being
comparable to 2020 levels. This diversity in natural gas use is primarily
driven by the industrial sector, which encompasses various applica-
tions, including direct air capture (DAC), hydrogen production
through steam methane reforming (with and without CCS), and
industrial manufacturing and non-manufacturing demands. In the
least-cost current-policy pathway, industrial natural gas consumption
increases steadily through 2050, surpassing the levels seen in any of
the net-zero pathways. The range of industrial natural gas used in the
near cost-optimal net-zero pathways often exceeds the results in the
current-policy case until the last decade of the study period (i.e.,
2040–2050). While natural gas use in the current-policy pathway may
be comparable in magnitude to the decarbonization pathways, the
drivers of such consumptiondiffer. A substantial portionof natural gas
is allocated to DAC or hydrogen production in the decarbonization
pathways. For instance, the least-cost net-zero pathway uses about 8 EJ
of natural gas for DAC in 2050, accounting for almost half of total
natural gas use. In the current-policy pathway, these technologies are
not widely adopted, and natural gas is primarily used for process heat
or conventional boilers in the industrial sector. Within the electric
sector, natural gas use undergoes a rapid reduction, declining from
approximately 9 EJ in 2020 to less than2.5 EJ by 2030 in over half of the
near cost-optimal pathways. By mid-century, natural gas use in the
electricity sector approaches zero in allmodeled net-zero pathways. In
the commercial sector, natural gas use remains relatively constant
until 2035 across the pathways, after which it will decrease to
approximately one-tenth of the current commercial natural gas use by
2050 (0.1–0.5 EJ, Interquartile Range, IQR). By contrast, the transition
from natural gas in the residential sector is slower, with levels
remaining relatively constant until 2040 before declining to a median
of 0.3 EJ (0–0.9 EJ, IQR). Overall, reductions in natural gas use across all
decarbonization pathways are a consequence of the increased elec-
trification of end-use technologies in all sectors. However, despite
substantial reductions, all decarbonization pathways retain some level
of natural gas use. Compared to coal and petroleum, natural gas is a
lower-carbon alternative, particularly for challenging-to-decarbonize
processes in the industrial sector. It is important to acknowledge that
factors not considered in Temoa, such as labor impacts and energy
security perceptions, will likely influence natural gas use during a low-
carbon transition.

Primary energy use from petroleum products, shown in Fig. 1e,
consistently declines from 31 EJ in 2020 to 3.6 EJ (3.1−4.1, IQR) in 2050
across the decarbonization pathways. The transportation sector
exhibits a steady decrease within a relatively narrow range of out-
comes. By 2050, all pathways use more than 1.5 EJ of petroleum for
transportation but less than 4.8 EJ, with the deterministic least-cost
net-zero pathway falling on the higher end of this range. By contrast,
petroleum use in the transportation sector will reach 10 EJ by 2050 in
the least-cost current policy pathway (i.e., without a net-zero con-
straint). The adoption of electric vehicles (EVs), synthetic liquids, and
hydrogen (discussed below) drives the reduction in petroleum use in
the net-zero pathways. In the absence of additional decarbonization
policies, substantial petroleum use will continue through 2050.

Net-zero pathways exhibit increased end-use electrification
Figure 2a illustrates that total electricity consumption within the near
cost-optimal pathways consistently increases, reaching a median total
use of 9400 terawatt-hours, TWh (9200−9500 TWh, IQR) by 2050.
This growth is a three-fold increase in electricity use compared to
current levels. While the range of total electricity consumption varies,

all decarbonization pathways necessitate substantial and rapid
investments in clean electric generation capacity to fulfill the needs of
end-use sectors. Supplementary Fig. 12 disaggregates the electricity
consumption by sector. Electricity demand in the least-cost net-zero
pathway reaches 9200TWh in 2050, placing it at the lower end of the
distribution of all the near cost-optimal pathways. Although some
pathways exhibit lower electricity consumption than the least-cost
option, most pathways lean toward higher relative electricity use by
2050. By contrast, the least-cost current-policy pathway remains
similar to net-zero trajectories until 2035 but diverges from the net-
zero pathways after that year. Most provisions of the IRA expire by
2033. Without additional policy interventions after the IRA expires,
electricity consumption would experience only modest increases to
meet population and economic growth.

Figure 2b–f offer insights into the evolving generation sources
within the power sector, and Supplementary Fig. 10 shows the capa-
cities. Fig. 2b shows that even the most conservative decarbonization
pathways require a ten-fold increase in solar generation by 2050,
compared to current levels. This level of solar, totaling 3700 TWh
(3600–4100 TWh, IQR), nearly matches the total power system gen-
eration from all sources in 2020. This trend highlights the magnitude
of transformation required for deep decarbonization and emphasizes
the pivotal role of solar power in a decarbonized power system. Across
the modeled pathways, the greatest relative increase in solar genera-
tion occurs between 2025 and 2030, with a three-fold increase spurred
by the federal Production and Investment Tax Credits (PTC and ITC)
available through the IRA. Figure 2c shows that generation from wind
also experiences substantial growth, reaching a median of 6700 TWh
(6100–7400TWh, IQR) in the net-zero pathways. Most of the wind
generation and capacity comes fromonshore resources, with a smaller
contribution from offshore resources that produce amedian 100 TWh
(80–110 TWh, IQR) by 2050. Much like solar, the PTC and ITC incen-
tives drive a two-fold or more increase in wind generation between
2025 and 2030. The rapid expansion of wind and solar power high-
lights the need for substantial and sustained investments in integrating
these variable resources to achieve net-zero CO2 emissions effectively.
The growth of wind and solar in the net-zero pathways is com-
plemented by the expansion of battery storage, with installed battery
capacity projected to reach 380 gigawatts, GW (370–400GW, IQR) by
2050, compared to less than 1GW in 2020 (Fig. 2f). Further, Supple-
mentary Fig. 11 shows that 94% of power generation in the median
pathway comes from renewables by 2050 (93−95%, IQR), consistent
with previous research43. Furthermore, variable renewable sources
constitute an increasing share of all renewable generation, reaching
96% by 2050.

Notably, no new nuclear infrastructure is brought online across
the decarbonization pathways. However, existing nuclear capacity
remains available across all the near cost-optimal decarbonization
pathways, contributing between 210 and 2000 TWh of generation and
providing approximately 100GW of capacity in 2050 (Fig. 2d and
Supplementary Fig. 10). By contrast, most existing nuclear infra-
structure retires by 2035 in the least-cost current policy pathway. This
pattern suggests that while nuclear generation is an important com-
ponent of a net-zero power sector capable of providing firmpower, its
continued use without an emissions constraint is not economical after
the expiration of the IRA tax credits46. When considering both
renewable energy and nuclear power, the median contribution to
power generation is 98.1% (97.9–98.5%, IQR) by 2050, underscoring
the importance of a low-carbon power system (Supplementary Fig. 11).

Figure 2e shows that electricity generation from natural gas
decreases from present levels (~1300 TWh) to nearly zero for most
near cost-optimal decarbonization pathways by 2050. This decrease is
not strictly monotonic, as a temporary increase in natural gas elec-
tricity generation occurs between 2030 and 2035 when federal IRA tax
credits expire. The rebound in natural gas consumption for power
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generation ismost prominent in the least-cost current-policy scenario,
exceeding 1000TWh in 2050. Consequently, additional policy mea-
sures beyond the IRA will be essential to fully decarbonize the power
sector.

Substantial investments in electricity transmission capacitywill be
necessary to support the high levels of electrification in the net-zero
pathways. Based on the regional representation of the U.S. energy
system in Temoa (Supplementary Fig. 1), the results suggest the need
for 47GW (46–49GW, IQR) of new inter-regional transmission lines
between California and the Southwest by 2050. Substantial transmis-
sion expansion also occurs between the Central and North-Central
regions, totaling 50GW (45–57 GW, IQR), with the highest pathway
reaching 106GW. Other pathways also indicate the need for

transmission expansion in various regions, such as between California
and the Northwest and between the Southwest and the Northwest.
New transmission into and out of the Northeast, Mid-Atlantic, South-
east, and Texas is comparatively small. The consistent deployment of
this transmission capacity in the near cost-optimal pathways highlights
the benefits derived from inter-regional electricity transfer in these
regions.

Hydrogen consistently meets hard-to-decarbonize demands
Hydrogen has the potential to play an important role in decarboniza-
tion efforts, particularly in the industrial and transportation
sectors47,48. Consistent with other studies that identify hydrogen as a
key component of a net-zero future, Fig. 3a shows a median

Fig. 2 | Power sector characteristics in near cost-optimal net-zero CO2 path-
ways. Near cost-optimal pathways in the power sector where box plots show (a)
total electricity use across the entire energy system, (b) electricity generation from
solar, (c) electricity generation from wind, (d) electricity generation from nuclear
and (e) electricity generation from natural gas all in terawatt-hours (TWh). f shows
the battery capacity in gigawatts (GW) deployed in the near cost-optimal

decarbonization pathways. The solid lines show the deterministic least-cost net-
zero pathway, while the dashed lines depict the least-cost current-policy. Box plots
indicate median (middle line), 25th, 75th percentile (box) and 1.5 times the inter-
quartile range from the first and third quartiles (whiskers) as well as outliers (single
points). Source data are provided as a Source Data file.
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production of 8.0 EJ (5.6–10.5 EJ, IQR) by 205043. While the least-cost
net-zero pathway shows 3.5 EJ of hydrogen production in 2050, this
value is at the lower end of a broad distribution of hydrogen produc-
tion across the near cost-optimal net-zero pathways.

Figure 3b–d show that the primary mechanisms for hydrogen
production up until 2040 are from natural gas steam-methane
reforming and bioenergy with carbon capture and storage (BECCS).
In 4% of the near cost-optimal pathways, steam methane reforming
with CCS produces at least 1 EJ of hydrogen, reaching up to 3 EJ in
pathways with the highest hydrogen production via this method. In
2045 and 2050, electrolysis emerges as a cost-competitive alternative,
supplanting hydrogen production from natural gas steam-methane

reforming. The IRA tax credit, Internal Revenue Code section 45 V,
incentivizes green hydrogen production with a subsidy of up to $3/kg
of H2. In the database used for this analysis, both electrolysis from new
renewables and BECCS qualify for the full credit, while steammethane
reforming with CCS qualifies for a $1/kg of H2 credit. These incentives
result in an increase in total hydrogen production from 2030 onwards.
While hydrogen proves to be an attractive energy carrier, the chosen
pathway to production is sensitive to emissions and cost assumptions.
For example, a sensitivity test on the exogenous fuel prices indicates
that high fuel prices would result in considerably more hydrogen
production via steam methane reforming in the early years of the
modeling horizon (Supplementary Note 3). The carbon dioxide

Fig. 3 | Hydrogen production and consumption in near-cost optimal net-zero
CO2 pathways. The box plots in panels (a–d) show hydrogen production from
1100 near cost-optimal net-zero pathways: (a) total hydrogen production,
b hydrogen from electrolysis, c hydrogen frombioenergywith carbon capture and
storage (BECCS), and (d) hydrogen from natural gas steam methane reforming
with carbon capture and storage (SMRwithCCS), all in exajoules (EJ). The boxplots
in panels (e–h) show where hydrogen is used across the energy system in the near

cost-optimal net-zeropathways: (e) transportation, (f) buildings, (g) industrial, and
(h) electric sectors. The solid lines show the deterministic least-cost net-zero
pathways, while the dashed lines in each panel represent the deterministic current-
policy pathways. Box plots indicatemedian (middle line), 25th, 75th percentile (box)
and 1.5 times the inter-quartile range from the first and third quartiles (whiskers) as
well as outliers (single points). Source data are provided as a Source Data file.
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removal benefits fromBECCS also prove to be an attractiveway to take
advantage of the federal tax credits and meet CO2 constraints in
the model.

Figure 3e–h illustrate that hydrogen is primarily used in the
transportation sector, followed by industrial applications. In the
transportation sector, 1.5 EJ (1.2–1.7 EJ, IQR) of hydrogen are used in
2050 for fueling fuel-cell vehicles, particularly heavy-duty vehicles.
Additionally, 2.1 EJ (0.4–4.0 EJ, IQR) of hydrogen is used for synthetic
fuel synthesis, serving several transportation demands. In the indus-
trial sector, the primary role of hydrogen is to replace conventional
boilers and meet the demand for process heat. Hydrogen use for
industrial processes converges around 1.0 EJ in 2050 across all net-zero
pathways. Hydrogen is used for synthetic natural gas production for
heating in the residential and commercial sectors only in the final
decade, with a median 2050 hydrogen use of 1.2 EJ (0.9−1.4 EJ, IQR).
While hydrogen is a viable option for electricity generation in com-
bined cycle power plants, it was seldom chosen in the near cost-
optimal net-zero pathways. However, in a subset of these pathways,
substantial amounts of hydrogen are used for electricity generation in
2025. The presence of two tax incentives in the IRA, one for hydrogen
productionand theother for clean electricity generation facilitates this
choice. As the IRA provisions expire, the use of hydrogen-enabled
power plants diminishes in future time periods, but the capacity
remains to meet power sector reserve margins.

CO2 removal and management span a range of deployment
As detailed above, all of the net-zero CO2 emissions scenarios retain
some fossil fuel use across in 2050. The resulting residual CO2 emis-
sions are primarily from hard-to-decarbonize sectors like aviation or
high-temperature processes in the manufacturing sector. Given these
residual emissions, carbon management, and particularly carbon
dioxide removal (CDR), is likely to play a pivotal role in enabling net-
zero futures. Figure 4 shows the carbon management technologies
represented in thenet-zeropathways, includingbioenergywith carbon
capture and storage (BECCS), coal and natural gas electricity genera-
tion with carbon capture and storage (CCS), and direct air capture
(DAC). The near cost-optimal pathways exhibit a wide range of
potential deployment levels for these technologies, with some path-
ways more heavily reliant on carbon mitigation options.

Figure 4a shows that most near cost-optimal pathways have a
notable reliance on BECCS. BECCS can be an attractive tool in dec-
arbonization efforts, as it couples the production of energy carriers
(electricity or hydrogen) that can then meet service demands across
the energy system with carbon dioxide removal. While the contribu-
tion to electricity generation from BECCS remains minimal in the near
cost-optimal pathways, many pathways incorporate hydrogen pro-
duction (discussed above). Coal powerwith CCS and natural gas steam
methane reforming with CCS are not deployed in the least-cost cur-
rent-policy or the least-cost net-zero pathways. By contrast, Figs. 4b, c
depict that these technologies are extensively deployed in a small
subset of near-cost-optimal net-zero pathways. Overall, total CCS,
calculated as the sum of BECCS, coal CCS, and natural gas CCS,
amounts to 690 Million tons of CO2/year (Mt CO2/yr) (250–1030 Mt
CO2/yr, IQR) in 2050 in these pathways (Fig. 4d).

Figure 4e shows that the median DAC deployment in 2030 (when
the technologyfirst becomes available in themodel) is0.45 gigatons of
CO2/year (Gt CO2/yr) (0.10–1.18 Gt CO2/yr, IQR). Currently, DAC is a
nascent technology and has not been deployed on a large scale.
However, the IRA tax credit (Internal Revenue Code section 45Q) can
incentivize the adoption of DAC. Even in the least-cost current-policy
scenario (i.e., without a net-zero requirement), DAC is employed to
take advantage of the available tax credits. Consequently, the model
builds and uses DAC capacity while these tax credits remain in effect
until 2033. The tax credits catalyze capital investments, and the
infrastructure continues to be used beyond the expiration of the

credits. In 2050, DAC use is expanded in the net-zero pathways to
compensate for residual CO2 emissions from hard to decarbonize
processes49, reaching 1.22 Gt CO2/yr (0.97−1.50Gt CO2 /yr, IQR). This
wide range of outcomes suggests that DAC deployment is sensitive to
cost shifts and incentives, at times serving as a backstop in achieving
net-zero targets in response to changes in the rest of the energy
system.

Figure 4f displays the range of total geologic sequestration,
spanning 0.77 to 1.86 Gt CO2/yr in 2050, with amedian result of 1.70Gt
CO2/yr. The least-cost net-zero pathway prioritizes the extensive
sequestration of CO2 rather than using it for synthetic fuel
production50. However, near cost-optimal pathways indicate that net-
zero futures are possible with lower levels of geologic sequestration
of CO2.

Near cost-optimal pathways may differ greatly from cost-
optimal
Tounderstand the characteristics of near cost-optimal decarbonization
pathways in more detail, we used clustering approaches to identify
“illustrative” pathways that represent groups of decarbonization path-
ways. These illustrative pathways offer insights into key differences
between the least-cost solution and solutions obtained with a 1% slack
on the total system cost. As described in Supplementary Method 2, the
pathways are identified using k-means clustering on the near cost-
optimal decarbonization pathways. Figure 5 shows results for six illus-
trative pathways that differ in the deployment of hydrogen, DAC, and
energy system-wide electricity use. These groups were chosen as they
represent important levers in decarbonization efforts51–53.

Figure 5a presents carbon dioxide emissions for the chosen
illustrative pathways. While the timing and magnitude of mitigation
measures vary across the selected pathways, there are some obser-
vable common trends. The CO2 constraints in this study apply a linear
reduction to net-zero emissions by 2050. However, these limits are not
binding in 2030 due to the decarbonization impacts of the IRA. Fur-
ther, the power sector is generally the first to decarbonize, consistent
with other studies53. The pathways representing low hydrogen and
high electricity (Low H2 and High Elec in Fig. 5) deploy coal power but
mitigate these emissionswithCCS. There are also commonalities in the
primary energy consumption of illustrative pathways shown in Fig. 5b.
Increased deployments of solar, wind, and biomass accompanied by
reduced or eliminated coal and petroleumuse areubiquitous. All cases
greatly reduce or eliminate power sector, transportation, and building
emissions butmust contendwith residual CO2 emissions fromhard-to-
decarbonize industrial processes and upstream fuel emissions.

Carbon management is required in all illustrative pathways, but
there is heterogeneity in the technologies chosen for this purpose. For
example, the low hydrogen and high electricity pathways rely on car-
bon management from several technologies. In contrast, other path-
ways, such as the ones representing high hydrogen or DAC use, rely
heavily on one carbonmanagement option. The carbon removal in the
high DAC case allows for higher emissions across the energy sector,
resulting in higher petroleum consumption and lower biomass use
compared to the low DAC pathway. More carbon management is
required in the low electricity pathway, with increasedDACusedriving
higher natural gas consumption compared to the high electricity
pathway. Hydrogen can play an important role as a low-carbon energy
carrier. Its absence in the low hydrogen pathway results in higher
transportation and industrial emissions. The pathway with high
hydrogen use shows increased biomass consumption compared to the
low hydrogen case, indicative of the hydrogen production process
via BECCS.

Tradeoffs and synergies in decarbonization technologies
Different energy sources and end-use technologies tend to be used
more frequently alongside or in the absence of other options. Figure 6
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explores the relationships between select technology deployments
across the near cost-optimal decarbonization pathways in 2050,
showing correlations among energy sources and carriers (Fig. 6a),
among end-use technologies (Fig. 6b), and between these two groups
(Fig. 6c). A positive correlation indicates that the technologies are
more often deployed together, while a negative correlation suggests
potential competition between technologies. The results only show
the strength of the correlation. Two technologies may have a positive
correlation even if both have low deployment levels or overall use is
decreasing.

In Fig. 6a, solar generation, wind generation, and battery capacity
demonstrate a notable positive correlation. This association stems
from the critical role batteries play in ensuring reliability as the
adoption of variable renewable energy sources like solar and wind
increases.Hydrogen isproducedextensively via electrolysis in thenear
cost-optimal net-zero pathways in 2050. This pattern drives the posi-
tive correlations between hydrogen production with wind generation,
solar generation, and battery capacity, as additional renewable gen-
eration provides a carbon-free energy source for hydrogen electro-
lyzers. In relation to fossil fuels, increased hydrogen use leads to

Fig. 4 | Carbon management technologies in near cost-optimal net-zero CO2

pathways. The box plots show the deployment of (a) bio-energy with carbon
capture and storage (BECCS), b carbon capture and storage from coal plants (Coal
withCCS), c carboncapture and storage fromnatural gas steammethane reforming
(natural gas SMRwith CCS), d total carbon capture and storage (CCS) as the sumof
BECCS, coal CCS, and natural gas CCS, e direct air capture, and (f) total geologic
sequestration in million tons of CO2/year (Mt CO2/year) across 1100 near cost-

optimal pathways to achieve net-zero CO2 by 2050. The solid lines show the
deterministic least-cost net-zero pathways, while the dashed lines in each panel
represent the deterministic current-policy pathways. Box plots indicate median
(middle line), 25th, 75th percentile (box) and 1.5 times the inter-quartile range from
the first and third quartiles (whiskers) aswell as outliers (single points). Source data
are provided as a Source Data file.
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reduced coal consumption but has a less dramatic impact on natural
gas consumption (Supplementary Note 4). While hydrogen commonly
replaces natural gas in the industrial sector, this negative relationship
is dampened due to pathways in which hydrogen is produced via
steam methane reforming. Further, Fig. 6a shows that hydrogen is
most negatively correlatedwith petroleumdue to fuel switching in the
transportation sector, particularly for heavy-duty vehicles. Addition-
ally, biomass exhibits a positive correlation with hydrogen, given the
prevalence of BECCS for hydrogen production. The positive correla-
tion between biomass and synthetic liquids arises from the link
between hydrogen and synthetic liquids (the latter uses the former for
synthesis via the Fischer-Tropsch process). High synthetic fuel use

narrows the range of outcomes in the power sector, most notably
eliminating coal CCS plants (Supplementary Note 4).

When considering end-use technologies, EVs compete with
hydrogen and internal combustion vehicles to meet transportation
demand (Fig. 6b). Competition also exists between heat pumps and
natural gas heaters in the buildings sector, as well as electric and
hydrogen boilers in the industrial sector. Scenarios with more internal
combustion engine (ICE) vehicle use are positively correlated with
more natural gas heating of buildings. The persistence of these tech-
nologies is accompanied by increased DAC use, allowing net-zero
emissions targets to bemet. In pathways withmore deployment of EVs
or heat pumps, less DAC use is required. Moreover, electric industrial

Fig. 5 | Illustrative near cost-optimal net-zero CO2 pathways. a CO2 emissions in
million tons, and (b) primary energy consumption from 2020 to 2050 in exajoules
(EJ) for the deterministic net-zero and illustrative near cost-optimal pathways with
low/high hydrogen production (Low/High H2), low/high direct air capture use
(Low/High DAC), and low/high overall electricity use (Low/High Elec).

BECCS–Electricity refers to bioenergy with carbon capture and storage to produce
electricity. BECCS–Hydrogen refers to bioenergy with carbon capture and storage
to produce hydrogen. NG SMR (CCS) refers to natural gas steam methane
reforming with carbon capture and sequestration. Source data are provided as a
Source Data file.
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boilers and heat pumps exhibit a positive correlation with EVs, indi-
cating a trend where the electrification of various end-uses is inter-
connected. This counters the notion of exclusion or competition
among different electrification methods for end-uses.

Figure 6c illustrates the correlation between end-use technologies
and energy sources/carriers. Within the transportation sector, EV
adoption shows a clear connection to increased renewable electricity
generation, displaying positive correlationswithwind and solar energy

sources. Conversely, EV adoption exhibits negative relationships with
petroleum, synthetic fuels, natural gas, and biomass utilization. The
integration of hydrogen vehicles also contributes to increaseddemand
for renewable electricity and synthetic liquids but tends to reduce
petroleum use. There is a weak reliance on natural gas in net-zero
pathways wheremore ICE vehicles persist. Aweak negative correlation
also exists between hydrogen and DAC, shaped by two competing
patterns. When low- or zero-carbon hydrogen is introduced as an

Fig. 6 | Correlations across key energy carriers and technologies across near
cost-optimal net-zero CO2 pathways. A correlation plot showing a subset of key
(a) energy sources and carriers, (b) end-use technologies along with DAC, and (c)
end-use technologies versus energy sources and carriers across the 1100 near cost-
optimal pathways in 2050. Blue represents positive correlations; red represents
negative correlations. Battery–battery capacity, Solar–solar generation,
Wind–wind generation, Hydrogen–total hydrogen use, Synthetic
Liquids–production via the Fischer-Tropsch process, Petroleum–primary energy

petroleum use, Natural gas–primary energy natural gas use, Biomass–primary
energy biomass use, EVs–electric vehicle use, H2 vehicles–hydrogen used in
transportation, ICE vehicles–internal combustion vehicle use, Heat pumps–heat
pump use across the residential and commercial sectors, Natural gas
heating–natural gas-based heating use in the residential and commercial sectors,
Hydrogen boilers– hydrogen boiler use in the industrial sector, Electric
boilers–electric boiler use in the industrial sector, DAC–direct air capture deploy-
ment. Source data are provided as a Source Data file.
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alternative energy carrier, there is a reduced dependency on DAC.
However, when hydrogen facilitates the production of synthetic liquid
fuels, DAC becomes necessary to capture resulting CO2 emissions.
Figure 6c also shows competition between biomass and DAC, which
Supplementary Note 4 shows is driven by BECCS.

Discussion
Deterministic energy system optimizationmodeling can identify least-
cost decarbonization pathways, but input assumptions, model repre-
sentation, and scenario selection constrain insights. Parametric
uncertainty methods quantify the impact of uncertain parameters on
model outputs. However, diverse near cost-optimal solutions from an
ESOM can provide additional insights that cannot be obtained from
deterministic modeling alone. Applying MGA to energy systems
models provides distinct and diverse alternative pathways that can be
missed by parametric assessment methods. In this study, we applied
MGA to assess decarbonization pathways for the U.S. energy system,
considering path dependencies from early decision-making and the
interactions between different sectors of the energy system. Our
analysis reveals distinct categories of decarbonization options: those
with consistent adoption across pathways, those experiencing uni-
versal decline or elimination, technologies with broad outcome dis-
tributions, and options highly adopted in only a few pathways. This
categorization enhances our understanding of technology dynamics
and decarbonization trends.

In the near cost-optimal decarbonization pathways examined in
this paper, there is a notable trend toward widespread adoption of
specific technologies such as solar and wind power, grid-connected
energy storage, and electrification across various sectors, including
industry, transportation, residential, and commercial sectors. These
options are consistently chosen for achieving net-zero CO2 outcomes.
Our pathways also consistently show that eliminating coal power
without CCS and substantial reductions in petroleum use are required
for near cost-optimal decarbonization. Initiating planning now for a
just and orderly transition away from these industries, considering the
needs of affected communities, is imperative54.

A broad range of outcomes is possible for emerging energy
technologies that could enable decarbonization, such as hydrogen,
DAC, CCS, and synthetic fuels. Currently, these options are either
minimally deployed or not commercially available. In the near cost-
optimal decarbonization pathways explored in this work, their
deployment varies from trivial to pivotal, posing challenges for long-
term planning. To enable their scaled deployment by mid-century,
continued research and development, supportive policies, and early
deployment requirements are needed. Widespread deployment of
carbon management technologies must overcome many challenges,
including biomass resource availability, CO2 storage costs, and the
development of supporting infrastructure such as CO2 pipelines55.
Furthermore, the availability of these novel technologies will have
substantial implications for natural gas consumption in a dec-
arbonized energy system. Natural gas consumption could remain near
current levels in pathways where carbon management technologies
are widely deployed. By contrast, pathways in which carbon manage-
ment technologies are more restricted, natural gas consumption is
nearly zero by 2050. The chosen pathway has significant implications
for gas system infrastructure, including pipeline utilization, main-
tenance, and potential expansion or decommissioning. Planning must
consider these factors to ensure a successful transition towards
decarbonization.

The results indicate several technologies that exhibit a pattern of
limited adoption across most decarbonization pathways but experi-
ence significant deployment in a small number of pathways. These
technologies include new coal with CCS, natural gas SMR with CCS,
and synthetic fuels. These technologies serve as potential insurance
policies, ensuring that decarbonization goals can still be achieved in

scenarios where renewable energy technologies face deployment
challenges or substantial cost increases. However, the construction of
such facilities requires substantial investment and commitment due to
their size and complexity. Therefore, careful consideration is neces-
sary when pursuing these options, weighing their potential benefits as
fallback solutions against the overall decarbonization objectives.

The optimization framework used in this paper can help identify
the solution space for energy system decarbonization. This solution
space contains a diverse array of technically plausible energy path-
ways. However, technical plausibility is not the same as feasibility. The
feasibility of the pathways in the solution space depends on attributes
not well-represented in a least-cost optimization framework56. For
example, consumer behavior and preferences could limit the transi-
tion to electric vehicles.44. In high-penetration renewable systems,
tackling the rate of infrastructure buildout, such as the land require-
ments for wind and solar farms, can be challenging57. Furthermore, all
the decarbonization pathways in the solution space would require
large investments in supporting infrastructure like hydrogen and CO2

pipelines, new transmission lines, and EV charging infrastructure.
While the modeling to generate alternatives framework used in this
paper can provide valuable insights into the decarbonization solution
space, additional analytical tools will be required to identify feasible
decarbonization options. Such feasibility analysis should consider
material and natural resources constraints, labor implications, supply
chain vulnerabilities, climate resilience, environmental justice, waste
generation, and energy equity. Additionally, the range of plausible
solutions and feasible space is likely to differ for different regions
based on local resource availability, behavioral preferences, existing
infrastructure and policy environments, among other factors.

Current and future U.S. policy will significantly shape the energy
transition towards a net-zero CO2 system. The debate over the optimal
policy mechanisms to achieve this transition has been ongoing for
decades. Existing policies have made progress towards decarboniza-
tion. However, our results suggest that reaching net-zero GHG emis-
sions in the U.S. energy sector will require additional policy
interventions after 2033, when key provisions of the IRA expire. Our
results also highlight a large and diverse solution space for energy
system decarbonization, in which technology deployment levels can
vary widely. The results also indicate that deploying some technolo-
gies would lock in the need for synergistic technologies and push out
the deployment of others. For example, expanding infrastructure for
synthetic liquid fuels would, to a certain extent, reduce the need for
EVs but would require DAC. Similarly, deploying EVs would likely be
coupled with electrifying other end-uses in buildings and industry.
While it is likely prudent to avoid locking out specific technologies,
decisions made over the next decade will narrow the solution space
and technology sets available to reach net-zero by 2050. Decision
makers should thus be aware of potential path dependencies to avoid
unintended consequences or unexpected outcomes as the United
States moves toward a sustainable and decarbonized energy system.

Methods
Tools for energy model optimization and analysis (Temoa)
We use the Tools for Energy Model Optimization and Analysis
(Temoa), an open-source technology-rich energy systems model.
Temoa is structured as a linear problem that can generate the least-
cost pathway for energy system development over a user-specified
time horizon, subject to system- and user-defined constraints. Temoa
represents the energy system as a network of interconnected tech-
nologies and commodities. This allows for technology-rich repre-
sentations of the major sectors of the energy system, which are
interlinked through a network. For example, there is competition for
energy carriers such as electricity to meet different energy service
demands across and within the different sectors. Supplementary
Method 1 details the objective function, which calculates the present
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value of the cost of energy supply, considering financed capital costs,
fixed costs, and variable costs. A demand constraint drives the model
and ensures supply is met in every time interval. In Temoa, electricity
demand is determined endogenously based on the requirements of
the rest of the energy system, for which service demands are specified
exogenously. A commodity balance constraint ensures that inter-
mediate system commodity demands are met. A capacity constraint
ensures that the capacity of a given process within the model is suffi-
cient to support its activity. Installed capacities, associated activities,
fuel shares, supply, and end-use technologies are all decision variables
optimized in Temoa. Technology choice is based on several techno-
economic criteria and endogenized within the model. The operational
characteristics, costs, and lifetimes all influence which technologies
are chosen. The model has perfect foresight across the time horizon,
enabling decision-making with the knowledge of future developments
like carbon emission targets or changes in fuel price. The optimization
of technology choice in end-use technologies is one of the key features
of Temoa, similar to the MARKAL TIMES model58,59. Finally, several
physical and operational constraints like ramping considerations,
energy storage charging and discharging rates, and reserve margin
requirements are imposed on the linear problem. Supplementary
Method 1 contains a description of the major constraints in the model
while the complete algebraic formulation of Temoa is presented
elsewhere41. The model source code42, and datasets60 are available on
GitHub, with a commitment to full transparency to allow for easy
replication of our analyses.

In the version of Temoa used in this work, the model balances
energy commodity flows across a set of ordered time slices, which can
represent different combinations of seasons and times of day to
represent seasonal and diurnal variations in energy supply and
demand. While it would be preferable to model the variation in elec-
tricity supply and demand for all 8760h of the year, doing so would
impose heavy computational constraints in running the model and
would not allow us to deploy the MGA approach. Here, we use highly
aggregated (12) time slices to allow for the additional computational
burden imposed. Supplementary Note 1 discusses using this temporal
resolution instead of representative days.

Input database description
For this analysis, we use a nine-region database of the U.S. energy
system developed as part of the Open Energy Outlook Initiative60.
Table 1 summarizes the information included in this database with
more detail in Supplementary Method 3. Supplementary Method 4
also describes the IRA provisions included in this analysis. Supple-
mentary Note 3 contains an assessment of parametric uncertainty on
key uncertain input parameters of the database.

Details on MGA Formulation
Supplementary Fig. 1 shows a flow diagram laying out the main inputs
detailed above, and the major outputs analyzed in this work. A deter-
ministic least-cost solution is first obtained by minimizing the total
system cost subject to physical, operation, and network constraints as

Table 1 | Summary of database assumptions to represent the U.S. energy system

Category Description

Fuel Supply Fossil fuel prices are specified exogenously from projections in the 2022 Energy Information Administration (EIA)
Annual EnergyOutlook’sReferenceOil Price case forNet-Zero runsNo-Policy runs45. A supply curve constructed from
the 2016 Billion-Ton Report61 reflects biomass costs and supply. There are no constraints placed on the availability of
other fuels.

Electric Costs and performance characteristics for new electric generators from the “Moderate-Market” scenario of the
Annual Technology Baseline 202162.

Transportation The transportation sector is divided into fourmodes: road, rail, air, andwater. The demands, efficiencies, and costs for
thesemodes are drawn from sources including the U.S. Environmental Protection Agency’s (EPA) nine-regionmarket
allocation (MARKAL) database59, Net-Zero America study11, and the National Renewable Energy Laboratory’s (NREL)
Electrification Futures Study (EFS)63.

Commercial The servicedemands in the commercial sector are adopted fromNRELEFS63. The techno-economicparameters of the
end-use technology are from the EIA64. Existing capacity of technologies are from the EPA’s MARKAL database58,59.

Residential The service demands in the residential sector are from NREL EFS63. The techno-economic parameters of the end-use
technology are from the EIA64. Existing capacity of technologies are from the EPA MARKAL database58,59.

Industrial End-use demands in the industrial sector are aggregated based on the North American Industry Classification Sys-
tem. Demands are derived from the Manufacturing Energy Consumption Survey65. A set of common industrial
processes represents the energy consumption in the manufacturing sector to account for the heterogeneity across
the industrial sector. These industrial processes include 1) process heating, 2) conventional boiler use, 3) combined
heat and power or co-generation systems, 4) machine drives, 5) facility heating ventilation and air conditioning
systems, 6) process cooling and refrigeration and 7) a catch-all ‘other’ energy use category.

Hydrogen Cost and efficiency assumptions from the International Energy Agency Future of Hydrogen Report47.

Regions The United States is divided into nine regions, as shown in Supplementary Fig. 1.

CCS Bio-Energy Carbon Capture and Sequestration data are drawn from averages of Integrated Assessment Models66.
Powerplant Carbon Capture and Sequestration data comes from PowerGenome46.

Fischer-Tropsch Fuels The capability of synthesizing Fischer-Tropsch fuels using H2 and CO2 is included in the model based on published
techno-economic parameters67.

Direct Air Capture Capital and operating costs are from the literature68. The transport of CO2 to sequestration sites is modeled using a
cost curve, which has eight steps11.

Renewable Resources and Transmission
Build Out

Renewables data are compiled using PowerGenome46, an open-source tool that allows users to create input datasets
for power system capacity expansion models. Annual hourly variable renewables capacity factor data for a repre-
sentative year (2012) areused to develop representative intra-annual time slices.Historical capacity factors of existing
capacity are obtained from EIA, while data for potential new generators are obtained from datasets developed by
Vibrant Clean Energy.

Inflation Reduction Act (IRA) Provisions The database incorporates the IRA provisions, including the investment and production tax credits for renewable
electricity generators, carbon capture, and use/sequestration, the production tax credit for existing nuclear capacity,
the clean hydrogen production tax credit, and tax credits for passenger and commercial vehicles (Detailed in Sup-
plementary Method 4 and Supplemental Table 1-4).

Discount Rate Social discount rate is 5%. Technology-specific discount rates are from PowerGenome.
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described above and Supplementary Method 1. The net-zero scenario
has an additional emissions constraint driving CO2 to zero by 2050.
Exogenously specified end-use demands drive themodel whichmakes
technology investment decisions such that the result is the lowest
present value of the total systemcost. In the caseofMGA, the structure
of the deterministic optimization problem changes by altering the
model’s original objective function and introducing a new constraint.
This constraint allows the model to exceed the original objective
function value (i.e., minimized total system cost) by a user-specified
threshold or slack. The addition of this slack allows for exploring near-
optimal solutions in the decision space by accepting a small increase in
the total system cost relative to the optimal solution. Additionally, the
objective function in MGA runs is reformulated to emphasize a search
direction. In this work, the objective function minimizes the sum of
weighted activity (or flow) of technologies across the time horizon in
themodel, i.e. each technology is represented by a cumulative activity
across the model time horizon. The technology representation in the
current work is diverse and all technologies are chosen agnostically to
be a part of the objective function to influence the search direction.
Weights were sampled from a uniform distribution [−1, 1], assigned
independently for each activity, which allows for the development of
larger solutiondiversitywith fewerMGAruns.The activity variables are
chosen instead of their capacity counterparts as they directly repre-
sent each technology’s contribution towards meeting end-use
demands. This formulation artificially incentivizes/de-incentivizes the
activity of technologies based on the sign and magnitude of the
coefficient. For example, larger weights put the associated decision
variable at a relative disadvantage, allowing other technologies to
enter the solution30. This process is repeated 1100 times, with each
iteration including an updated set of objective function coefficients
from the uniform distribution. Supplementary Note 2 contains justifi-
cation for the chosen number of MGA iterations. In this way, MGA can
explore the decision space to find alternative solutions that are very
different in decision space but have a total cost close to the original
solution and are bound by the user-specified slack value. Equation (1)
summarized the MGA formulation.

Min
X

i

wixi

s:t: f xð Þ≤ f x*ð Þ× ð1 + δÞ
ð1Þ

Where wi 2 unif �1, 1ð Þ, xi represents the decision variables in the
model, f ðxÞ is the new total system cost, f x*ð Þ is the total system cost
resulting from the least-cost optimization and δ is the percent
additional slack on the total system cost (1% in our case). While
deviations of a larger magnitude have been observed in the electric
sector (average of 5%)27, we chose 1% because our slack is applied
broadly over the entire U.S. energy system and not just the electric
sector, andwewish to explorepathways that arenear cost-optimal that
are not necessarily informed by historical deviations.

Data availability
Source data are provided with this paper.

Code availability
The code used to perform themodeling to generate alternative runs is
available. (https://doi.org/10.5281/zenodo.13300106).
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