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Metastasis is the major cause of treatment failure in patients with prostate adenocarcinoma (PRAD). 
Diverse programmed cell death (PCD) patterns play an important role in tumor metastasis and hold 
promise as predictive indicators for PRAD metastasis. Using the LASSO Cox regression method, we 
developed PCD score (PCDS) based on differentially expressed genes (DEGs) associated with PCD. 
Clinical correlation, external validation, functional enrichment analysis, mutation landscape analysis, 
tumor immune environment analysis, and immunotherapy analysis were conducted. The role of 
Prostaglandin D2 Synthase (PTGDS) in PRAD was examined through in vitro experiments, single-
cell, and Mendelian randomization (MR) analysis. PCDS is elevated in patients with higher Gleason 
scores, higher T stage, biochemical recurrence (BCR), and higher prostate-specific antigen (PSA) levels. 
Individuals with higher PCDS are prone to metastasis, metastasis after BCR, BCR, and castration 
resistance. Moreover, PRAD patients with low PCDS responded positively to immunotherapy. Random 
forest analysis and Mendelian randomization analysis identified PTGDS as the top gene associated 
with PRAD metastasis and in vitro experiments revealed that PTGDS was considerably downregulated 
in PRAD cells against normal prostate cells. Furthermore, the overexpression of PTGDS was found 
to suppress the migration, invasion, proliferationof DU145 and LNCaP cells. To sum up, PCDS may 
be a useful biomarker for forecasting the possibility of metastasis, recurrence, castration resistance, 
and the efficacy of immunotherapy in PRAD patients. Additionally, PTGDS was identified as a viable 
therapeutic target for the management of PRAD.
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Globally, PRAD has consistently remained a prominent research focus in urology, as it exhibits the highest 
incidence and mortality rates among urothelial malignancies. Worldwide, there are around 375,000 disease-
related fatalities and 1.4 million new cases in men each year1. PRAD exemplifies indolent tumors, for which 
active surveillance is often recommended to circumvent adverse outcomes of overtreatment, such as erectile 
dysfunction and lower urinary tract symptoms2. However, radical prostatectomy or radiation therapy, with 
or without androgen deprivation therapy, is usually necessary for individuals with intermediate or high-risk 
localized and locally progressed malignancy3. Unfortunately, biochemical recurrence occurs in 17–33% of 
PRAD patients who have radical prostatectomy, and around 30% of individuals acquire metastatic disease4–9.
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Over 90% of cancer-related fatalities are caused by metastasis, and the majority of individuals with prostate 
cancer also meet this statistic10. The only treatment that can increase survival and quality of life if metastatic 
prostate cancer is detected is palliative care. Despite several new medications and technologies being developed 
in recent years, there is still little chance of any kind of cure, particularly for individuals with metastatic castrate-
resistant prostate cancer who are in the last stages of the disease11–13.

Recently, a growing appreciation for the crucial connection between PRAD and cancer immunotherapy 
(CIT) has emerged, encompassing checkpoint inhibitors, cytokines, and therapeutic cancer vaccines14. For 
instance, the multicenter immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT) trial evaluated 
sipuleucel-T, which received Federal Drug Administration approval, in addition to three Phase III clinical 
trials (NCT00065442, NCT00005947, and NCT01133704). Patients treated with sipuleucel-T exhibited a 3-fold 
increase in activated T cells within prostatectomy specimens compared to untreated individuals15. Moreover, 
the median survival time for sipuleucel-T recipients was 25.8 months, as opposed to 21.7 months for those 
administered a placebo. Beer et al. observed a significant difference in progression-free survival (PFS) between 
ipilimumab and placebo-treated patients, with 5.6 months for the former group and 3.8 months for the latter16. 
Despite the sustained clinical efficacy of CIT, most patients unfortunately do not derive benefit from these 
approaches17. Consequently, identifying a biomarker that accurately predicts metastasis, recurrence, and CIT 
response for prostate cancer has emerged as a primary objective, which holds significant potential for guiding 
patient management.

Cell death occurs through two principal mechanisms, contingent on the triggering factors. Programmed cell 
death (PCD) includes complex regulatory systems and a variety of mechanisms, such as apoptosis, disulfidptosis, 
necroptosis, ferroptosis, pyroptosis, netotic cell death, entotic cell death, lysosome-dependent cell death, 
parthanatos, autophagy-dependent cell death, oxeiptosis, and alkaliptosis18, whereas accidental cell death (ACD) 
is an uncontrollable biological event. It has been known for decades that programmed cell death is a crucial 
factor in the formation and metastasis of malignant tumors. Cancer cells cannot proliferate unless they can 
overcome several types of cell death19,20. However, a comprehensive understanding of the relationship between 
PCD and PRAD remains elusive, with relatively little investigation of the specific roles played by PCD in PRAD. 
Consequently, this study aimed to establish a novel indicator, the PCD score (PCDS), to simultaneously predict 
metastasis, recurrence, and immunotherapeutic efficacy of PRAD. Additionally, we examined the role of PTGDS 
in the progression of prostate cancer and assessed its therapeutic target potential.

Materials and methods
Data sources and model development
The workflow of this study is illustrated in Fig. S1. The present study analyzed a comprehensive set of 1267 
genes associated with PCD(Supplementary Table 1), which were sourced from diverse resources such as GSEA 
gene sets, KEGG, review articles and manual curation. Among them, 580 genes were related to apoptosis, 15 to 
disulfidptosis, 52 to pyroptosis, 88 to ferroptosis, 367 to autophagy, 15 to entotic cell death, 101 to necroptosis, 14 
to cuproptosis, 9 to parthanatos, 8 to netotic cell death, 7 to alkaliptosis, 220 to lysosome-dependent cell death, 
and 5 to oxeiptosis18.

In the TCGA-PRAD cohort, raw transcriptome counts of 499 PRAD patients and 52 matched normal tissues 
were generated. Then, using the criteria P < 0.05 and | log2FC| > 1, the “DESeq2” package was utilized to filter 
out DEGs. The resulting differentially expressed genes intersected with 1156 genes from 13 cell death modes, 
resulting in 98 candidate genes (Supplementary Table 2). Using Lasso and Cox regression analysis, 248 samples 
with full clinical data in GSE116918 were utilized to identify the final genes21. To determine if these genes 
affected the metastatic status of PRAD, univariate Cox regression was used. We modified the cut-off P-value 
at 0.1 to prevent omissions(Supplementary Table 3). To create the best possible signature, the choices were 
further reduced using the LASSO Cox regression approach, and the “lambda. min” value was chosen (“glmnet” 
R package). In the end, each patient’s PCDS was exported by the model using the following formula:

 
PCDS =

∑
n
i=1 β i ∗ Ei.

The risk coefficient is represented by βi, while each gene’s expression is shown by Ei. Based on the median PCDS, 
we classified the patients into high- and low-PCDS groups.

GSE2103422 and GSE13405123 were used to validate the diagnostic and prognostic values of PCDS based 
on definitive genes. Moreover, we assessed the recurrence using the GSE116918 and TCGA-PRAD cohorts and 
tested the ability of the PCDS to predict CTRP using the GSE3598824 and GSE2868025 cohorts.

Datasets from public repositories might be used without the need for informed permission or approval from 
an ethical review committee. In compliance with the exclusion criteria, individuals lacking prognostic data or 
expression profiles, as well as those who passed away within 30 days, were not included in this study.

Functional enrichment analysis
Differential analysis was conducted using the limma package, leveraging the GSE116918 dataset. To 
investigate the potential biological functions and signaling pathways of these DEGs, we performed GO, Kyoto 
Encyclopedia of Genes and Genome (KEGG)26–28, and gene set enrichment analysis (GSEA) using the R package 
“clusterProfiler”29. We also performed a similar analysis on the PTGDS gene.

TME and mutation analysis
From a study by Jia et al.30, which 28 human immune cell types were preserved, including natural killer T cells, 
activated CD4 T cells, activated dendritic cells, regulatory T cells, effector memory CD4 T cells, effector memory 
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CD8 T cells, gamma delta T cells, immature B cells, activated CD8 T cells, central memory CD4 T cells, central 
memory CD8 T cells, etc. (Supplementary Table 4), we were able to get a gene set designating each TME-infiltrating 
immune cell type. The relative abundance of each TME-infiltrating cell in each sample was represented by the 
enrichment fraction determined by ssGSEA analysis. Furthermore, prevalent immune checkpoint markers were 
included in the current work. Next, we estimated the probability of the immunotherapeutic response using the 
TIDE method (http://tide.dfci.harvard.edu) and the submap algorithm (https://cloud.genepattern.org/gp)29.

We compared mutational patterns among subgroups by analyzing and visualizing somatic data using the 
R package Maftools31. Furthermore, we utilized the transformation analysis function module to examine the 
variations in drug-gene interactions and carcinogenic signaling pathways across various subgroups.

Single-cell sequencing analysis
The GSE141445 provided the single-cell sequencing data for 33,441 cells from 13 human PCa samples. The 
R package “Seurat” was utilized for the single-cell sequencing samples’ data processing. Following principle 
component analysis (PCA) with the “RunPCA” function, a K-nearest neighbor was built using the “FindNeighbors” 
function. The “FindClusters” function was used to integrate cells with the highest gene alteration. Subsequently, 
cell annotation was carried out using the “SingleR” package.

Downscaling was used to graphically display complex expression profiles, with the " RunTSNE " function 
making this possible. The substantially differentially expressed genes (DEGs) between the identified 
microenvironment cells were eliminated by the “FindMarkers” algorithm. Then we conducted pseudotime 
analysis using the “monocle” R package. Analysis of cell-to-cell interactions was conducted with the “CellChat” 
R package. An analysis and visualization were conducted on the different interactions between malignant cells 
expressing high or low levels of PTGDS and other recognized cell types in various receptor-ligand signaling 
pathways32.

Cell culture and transfection
Human prostate cancer cells DU145 and LNCaP, along with the human benign prostatic hyperplasia cell line 
BPH-1, were purchased from the American Type Culture Collection (ATCC, Rockville, MD, USA)0.10% FBS 
was added to RPMI medium to boost BPH-1,DU145 and LNCaP cultures. By transfecting the PTGDS plasmid 
(WZ Biosciences Inc., China) with the aid of Lipofecamine 3000 Transfection Reagent (Thermo, USA) by the 
suggested procedures, the PTGDS was overexpressed in the PRAD cells.

Cell counting kit-8 assay
The 96-well plates were seeded with 3000 cells per well, and the cells were cultured for 24, 48, 72, or 96 h at 37 °C 
in 5% CO2. After adding 10 µl of CCK8 solution (GlpBio, USA) to each well at the specified time, the OD value 
was measured at 450 nm using a multi-scan spectrophotometer after two hours.

Migration and invasion assays
To test PRAD cells’ ability to invade or migrate, a transparent PTFE membrane (Millipore, 8 μm pore size) with 
or without Matrigel was utilized. In summary, 200 µl of FBS-deficient media was placed in the upper chamber 
and 2–4 × 104 cells were added. Concurrently, a 600 µl media containing 20% FBS was introduced into the lower 
chamber. The chambers were incubated at 37 °C for 24, 48, or 96 h. Afterward, they were cleaned with PBS 
and preserved for about 30 min using 4% paraformaldehyde. Following a half-hour staining period at room 
temperature with crystal violet, the cells on the upper side of the membrane were scraped off. After three PBS 
washes, the membranes were allowed to dry at room temperature before being photographed.

Wound healing assay
A 6-well plate was seeded with 1.2*106 cells per well. After cultivation for 24 h, the cell layer was scraped off using 
a sterile plastic suction pipette, and the cells were then cultivated in a medium lacking in fetal bovine serum. The 
photos were taken at 0, 24, or 48 h, respectively. Using ImageJ, the retained area was computed. The change in 
the wounded area’s size was indicative of the cells’ ability to migrate.

Total RNA isolation and quantitative RT-PCR
The total RNA extracted from the cells was done so using the TRIZOL reagent (Fastagen, China). Reverse 
transcription kits (Yeasen, China) were used to generate cDNA utilizing quantified RNA as a substrate by the 
manufacturer’s instructions. RT-qPCR, or real-time quantitative PCR, was carried out using a Bio-Rad CFX 96 
touch (Bio-Rad, Hercules, CA, USA). The formula 2-ΔΔCt technique was utilized to compute the fold changes. 
β-actin forward, 5′- C C T C G C T C T C C C A C A C C A; β-actin reverse, 5′- G C C A G T C C C A T C C A C A G T; PTGDS 
forward, 5′- C C C A G G G C T G A G T T A A A G; PTGDS reverse, 5′- G A G T C C T A T T G T T C C G T C A T were the PCR 
primer sequences used for qRT-PCR.

Western blot
Cells were lyses in RIPA lysis buffer (Beyotime Biotechnology, China) containing protease inhibitor cocktail. 
BCA protein quantification kit (Solarbio, China) was used to detect the protein concentration. 30ug protein 
were separated by SDS-PAGE and then transferred to NC membrane. After blocking with 5% nonfat milk, the 
membranes were incubated overnight at 4℃ with the indicated primary antibodies, followed by incubation 
with HPR-labeled secondary antibody for 1 h at room temperature. Primary antibodies used in this study were 
purchased from ABclonal (E-Cadherine, 1:1000; N-Catherine, 1:1000; β-Actin, 1:20,000), Zenbio (Slug, 1:1000; 
PTGDS,1:1000; Vimentin, 1:1000; β-Catenin, 1:1000; Snail, 1:1000).
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Mendelian randomization analysis
eQTLGen consortium
Genome-wide significant cis-eQTLs (false discovery rate < 0.05) within ± 1 Mb of probe locations were identified. 
The dataset utilized for this analysis, eQTLGen, encompasses 16,987 genes and was derived from the analysis 
of 31,684 blood samples, primarily collected from individuals of European ancestry and characterized by their 
overall good health. Emphasizing the relevance of eQTLs in drug development studies due to their proximity 
to the target genes and direct impact on gene expression, we narrowed down our selection to SNPs situated 
within 100 kb upstream of transcription start sites or 100 kb downstream of transcription end sites of druggable 
genes. Finally, we conducted an intersection of genes between the eQTLGen Consortium and the PCDS model, 
resulting in the identification of four genes: ALOX15, CD38, CD68, and PTGDS.

GWAS of prostate cancer
The GWAS data for prostate cancer were sourced from FinnGen Release 10 (https://www.finngen.fi/en)33, 
which was published in December 2023. Prostate cancer in FinnGen was defined based on the International 
Classification of Disease (ICD), encompassing 15,199 cases, and 131,266 controls.

Mendelian randomization analysis
The TwoSampleMR R package (version 0.5.7, https://mrcieu.github.io/TwoSampleMR/) was employed to 
execute two-sample MR analysis34. Stringent quality control of the SNP instruments was implemented before 
MR testing. First, variants with weak instrument strength (F-statistic < 10, where F = (beta/se)2) were excluded. 
Conditionally independent variants in low linkage disequilibrium (LD r2 < 0.1 per 1000 Genomes European 
panel) were then selected. Finally, Steiger filtering removed genes wherein SNPs explained greater outcome than 
exposure variance.

For proposed instruments that encompassed more than one SNP, a comprehensive approach was adopted. 
This included the use of the inverse variance weighted (IVW) method, MR-Egger, and weighted median MR. 
To account for multiple testing in the sensitivity analyses, Bonferroni corrections were implemented to establish 
adjusted significance thresholds. In the eQTLGen cohort, p-values below 0.0125 (calculated as p = 0.05/4) were 
deemed significant. Following this, quality control procedures were applied to genes identified as significant, 
ensuring consistency in the direction of estimated effects across the three methods and confirming the absence of 
horizontal pleiotropy via the MR-Egger test. Furthermore, a Steiger filtering procedure was executed to confirm 
the directionality of the association between expression quantitative trait loci (eQTL) and prostate cancer35. 
Statistical significance was established at a threshold of P < 0.05, providing a rigorous criterion for the validity 
and reliability of the observed associations.

Colocalisation analysis
For genes with significant Mendelian randomization associations in eQTLGen and cohort, colocalization 
analysis was performed using the coloc R package with default priors36. This Bayesian approach tested whether 
the gene expression-prostate cancer links were driven by shared causal variants at a given locus rather than 
linkage disequilibrium. Specifically, five mutually exclusive hypotheses were assessed: (H0) no association with 
either trait; (H1) association with expression only; (H2) association with disease only; (H3) association with 
both traits, but independent causal variants; (H4) association with both traits driven by a shared causal variant37. 
Posterior probabilities were furnished for each hypothesis. Prior probabilities were set at 1E − 4 for trait 1 only 
(p1) and trait 2 only (p2), and 1E − 5 for both traits (p12).

Phenome‑wide association analysis
Utilizing the AstraZeneca PheWAS Portal (https://azphewas.com/), a Phenome-Wide Association Study 
(PheWAS) was carried out to thoroughly evaluate the horizontal pleiotropy of possible therapeutic targets and 
probable adverse effects38. To mitigate the risk of false positives, we implemented multiple corrections and 
established a significance threshold of 2E − 9, as per the default setting in the AstraZeneca PheWAS Portal.

Statistical analysis
All statistical analyses were conducted via R software (v.4.2.1). Student’s t-test or Wilcoxon test was used to 
analyze differences between the two groups. Survival curves were described by Kaplan-Meier plots and 
compared with the log-rank test. Spearman’s correlation analysis was used to measure the degree of correlation 
between certain variables. All statistical tests were two-sided, with P < 0.05 as statistically significant (*P < 0.05, 
**P < 0.01, ***P < 0.001).

Results
Construction of a prognostic gene signature for PRAD patients
In the TCGA-PRAD cohort, we identified 2,044 DEGs with P-values < 0.05 and absolute log2 fold change > 1 
compared to normal samples. Of these DEGs, 800 were upregulated and 1,244 were downregulated in PRAD, as 
depicted in Fig. 1A. Furthermore, we have identified 98 tumor-related cell death-related genes by intersecting 
the differential genes with programmed cell death-related genes, as depicted in Fig. 1B. In order to establish an 
8-gene signature, which we refer to as the PCD Score (PCDS), we utilized univariate Cox regression analysis and 
LASSO Cox regression analysis, drawing upon the GSE116918 cohort as a basis. Of the 8 genes in the signature, 
BIK, CCK, and CD38 were derived from apoptosis, CD68 and PTGDS were derived from lysosome-dependent 
cell death, EEF1A2 was derived from autophagy, CDKN2A was derived from cuprotosis, and ALOX15 was 
derived from ferroptosis, as illustrated in Fig. 1C–E. Significant correlations were detected between PCDS and 
multiple adverse clinical features, including metastasis (Fig.  1F), Gleason score (Fig.  1G), T stage (Fig.  1H), 
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Fig. 1. Construction and validation of the PCD-related prognostic model and its association with clinical 
characteristics. (A) Volcano plot; (B) Venn diagram; (C) Selection of the 8 model genes by Lasso regression 
method; (D) Cross-validation of the constructed signature; (E) Coefficients for 8 modeled genes; Comparative 
analysis between the PCDS and metastasis status (F), Gleason score (G), T stage (H), and biochemical 
recurrence (I); (J,K) Univariate and multivariate Cox analysis of PCDS and clinical parameters for metastasis-
free survival. ****P < 0.0001, ***P < 0.001,**P < 0.01,*P < 0.05,ns non-significant.
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and biochemical recurrence (BCR) presence (Fig. 1I). This trend was further confirmed in our analysis using 
the two external validation cohorts (Fig. S2). Remarkably, PCDS exhibited independent predictive capacity for 
metastasis in both univariate and multivariate Cox regression analyses, while accounting for other significant 
clinical variables (Fig. 1J,K).

Prediction of MFS and MFS after BCR using PCDS
Our analysis demonstrated that high-PCDS patients faced a greater risk of metastasis compared to low-PCDS 
patients (Fig. 2A), as well as an increased risk of MFS following BCR (Fig. 2B). The PCDS exhibited exceptional 
diagnostic accuracy in predicting MFS (Fig.  2C,D) and MFS after-BCR (Fig.  2E,F). Moreover, our findings 
indicated that PCDS outperformed other clinical variables in metastasis diagnostic accuracy, particularly age 
and PSA levels (p < 0.05, Fig. 2G,H). In both the GSE21034 and GSE134051 validation cohorts, PCDS displayed 
remarkable metastasis diagnostic precision (Fig. 2I,J).

Fig. 2. Clinical Relevance of PCDS in Predicting Metastasis. Kaplan–Meier curves illustrating metastasis-free 
survival (A) and metastasis-free survival after biochemical recurrence (B). ROC curve of PCDS for metastasis 
(C) and its time-dependent ROC curve (D). ROC curve of PCDS for metastasis after biochemical recurrence 
(E) and its time-dependent ROC curve (F). Comparison of ROC curves between age and PCDS (G), and 
between PSA and PCDS (H). ROC curve of PCDS for metastasis using GSE21034 (I) and GSE134051 (J).
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Predicting BCR and CTRP using PCDS
Strikingly, our results suggest that PCDS not only holds the potential to predict prostate cancer metastasis but 
also demonstrates outstanding performance in predicting and diagnosing recurrence within the GSE116918 
cohort (Fig. 3A,B). To further substantiate these findings, we employed the TCGA-PRAD dataset for validation 
and observed analogous outcomes (Fig. 3C,D). Additionally, PCDS was shown to accurately discern castration-
resistant prostate cancer among prostate cancer patients (Fig. 3E,F).

Function analysis
GSEA analysis demonstrated a positive association between high PCDS and immune-related pathways, 
including cytokine − cytokine receptor interaction, antigen processing and presentation, natural killer cell-
mediated cytotoxicity, and primary immunodeficiency (Fig.  4A). Furthermore, pathways related to tumors, 
such as those associated with cell cycle, apoptosis, and bladder cancer, were also identified (Fig. 4B). KEGG 
analysis revealed the involvement of candidate genes in various pathways, including PI3K − Akt signaling 
pathway, focal adhesion, complement, and coagulation cascades, ECM − receptor interaction, cell adhesion 
molecules, cell cycle, leukocyte transendothelial migration, platinum drug resistance, p53 signaling pathway, 
and intestinal immune network for IgA production (Fig. 4C). Additionally, GO analysis indicated the candidate 
genes’ involvement in positive regulation of cell adhesion, wound healing, negative regulation of immune system 
process, and other biological processes (Fig. 4D).

Dissection of tumor microenvironment based on PCDS group
Moreover, we conducted an analysis to discern disparities in tumor-infiltrating immune cell populations 
between the high and low PCDS groups. Utilizing the ssGSEA algorithm, we observed that patients in the high 
PCDS group exhibited significantly elevated scores for activated dendritic cells, eosinophils, gamma delta T cells, 
immature dendritic cells, MDSCs, and regulatory T cells compared to their low PCDS counterparts (Fig. 5A). A 
strong positive connection between PCDS and these immune cells was found using Spearman analysis (Fig. 5B). 
In accordance with prior research, the prognostically relevant immune cells among these populations included 
MDSCs and regulatory T cells, both of which have been associated with unfavorable outcomes39. This finding 
may provide an explanation for the worse prognoses of patients in the high-PCDS group compared to those 
in the low-PCDS group. Remarkably, compared to individuals without metastases, MDSC levels were likewise 
much higher in patients who had metastases (Fig.  5C). In light of these observations, we hypothesized that 
MDSCs may play a critical role in prostate cancer metastasis. Patients in the MDSCs-high group exhibited a 
greater propensity for metastasis compared to the MDSCs-low group (Fig. 5D), and MDSCs demonstrated an 
accurate predictive capacity for metastasis in prostate cancer patients (Fig. 5E).

Mutation spectrum characteristics between PCDS group
Apart from the tumor microenvironment, genomic mutations are recognized as critical drivers of metastatic 
progression40. Differential distribution analysis of tumor somatic mutations between the two subtypes was 
conducted to discern potential distinctions. The PCDS-high subtype exhibited a higher frequency of gene 
mutations compared to the PCDS-low subtype (Fig. 6A). The top 20 mutated genes are depicted in the figure, 
with TP53, TTN, and SPOP being the most frequently mutated genes in both subtypes. The PCDS-high subtype 
displayed a higher mutation frequency for several genes, including TP53 (23.2% vs. 11.3%), TTN (17.5% vs. 
16.9%), MUC16 (9.6% vs. 7.3%), LRP1B (8.5% vs. 4.8%), KMT2C (7.3% vs. 5.6%), ATM (6.2% vs. 5.6%), and 
CACNA1E (5.1% vs. 4.8%). The forest analysis further substantiated these findings (Figure S3A). The fraction of 
affected pathways and affected samples in the high-PCDS group was more frequent than in the low-PCDS group 
(Fig. 6B). For example, the high-PCDS subtype exhibited a higher frequency than the low-PCDS subtype for the 
fraction of affected pathways in RTK-RAS (60/85 vs. 22/85), WNT (42/68 vs. 18/68), NOTCH (31/71 vs. 17/71), 
and Hippo (24/38 vs. 9/38). The PCDS-high subtype also demonstrated a higher frequency for the fraction of 
affected samples in RTK-RAS (48/243 vs. 27/241), WNT (41/243 vs. 20/241), NOTCH (35/243 vs. 21/241), and 
Hippo (43/243 vs. 19/241). To investigate possible therapeutic targets of altered genes, the DGIdb database was 
utilized. The potential therapeutic targets for the PCDS-low subtype included ATM, BRAF, FOXA1, GRIN2A, 
and KDM6A, while the PCDS-high targets primarily consisted of ATM, CACNA1E, CNTNAP5, MUC16, and 
MUC17 (Figure S3B). The somatic interactions analysis, presented in Figure S4, suggests that these co-occurrence 
and mutually exclusive characteristics could potentially be harnessed for the development of treatments tailored 
to specific subtypes.

The PCDS has predictive potential as an indicator of response to CIT
The implementation of immune checkpoint inhibitors targeting PD-L1 and PD-1 has revolutionized cancer 
treatment, establishing itself as a pivotal advancement in immunotherapy. Our investigation reveals that patients 
classified in the PCDS-low group exhibit low levels of immunosuppressive molecule LAIR1 (Fig. 7A), as well 
as lower TIDE and exclusion scores (Fig.  7B), all of which are associated with enhanced responsiveness to 
immunotherapy.In contrast, the submap algorithm’s outcomes imply that the PCDS-high group may exhibit 
reduced immunotherapy sensitivity (Fig. 7C). These findings substantiate the marked therapeutic superiority 
and clinical response of patients with low PCDS to anti-PD-1 immunotherapy compared to their high PCDS 
counterparts.

PTGDS as a core gene and its role in the PRAD
Among the eight modeling genes, only six demonstrated statistically significant associations with metastasis, 
as determined by Kaplan-Meier survival analysis: PTGDS, CD68, ALOX15, CD38, BIK, and EEF1A2 (Fig. S5). 
In order to ascertain the gene with the greatest influence on PRAD metastasis, a random forest analysis was 
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Fig. 3. Clinical Relevance of PCDS in Biochemical Recurrence and Castration Resistance. Kaplan–Meier 
curves depicting biochemical recurrence using GSE116918 cohort (A) and TCGA-PRAD cohort (C). Time-
dependent ROC curve of PCDS for biochemical recurrence using GSE116918 cohort (B) and TCGA-PRAD 
cohort (D). ROC curves of PCDS for castration resistance generated using data from the GSE35988 (E) and 
GSE28680 cohorts (F).
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conducted, identifying PTGDS as potentially playing a central role (Fig.  8A). Moreover, the area under the 
receiver operating characteristic (ROC) curves substantiated the high sensitivity and specificity of PTGDS in 
predicting PRAD metastasis in both the training and validation cohorts (Fig.  8B,C). In both discovery and 
validation cohorts, PTGDS expression was significantly lower in metastatic versus non-metastatic prostate 
cancer (Fig. 8D,E). Furthermore, inverse correlations emerged between PTGDS levels and increasing Gleason 
score, T stage, biochemical recurrence incidence, and PSA levels (Fig. 8F and I), aligning with more advanced 
disease. PTGDS mRNA expression was examined by qRT-PCR in benign prostatic hyperplasia BPH-1 cells 
versus prostate cancer DU145 and LNCaP lines. PTGDS levels were significantly reduced in the malignant cells 
compared to BPH-1 controls (Fig. 8J). The Human Protein Atlas (HPA) database further confirmed substantial 
downregulation of PTGDS protein in prostate cancer tissues relative to adjacent normal tissue (Fig. 8K). All 
these results collectively indicate that low PTGDS expression serves as a promising biomarker for predicting 
aggressive PRAD.

Unveiling PTGDS as a prospective biomarker using mendelian randomization and 
colocalization study
The intersection of model genes and drug-related genes resulted in four genes: ALOX15, CD38, CD68, and 
PTGDS. At Bonferroni significance (P < 0.0125), the Mendelian randomization (MR) analysis revealed that only 
PTGDS is causally related to the risk of PRAD, as illustrated in Fig. 9. PTGDS showed a consistent direction of 
effect across the three methods and no heterogeneity (P > 0.05, Table S6) and horizontal pleiotropy (P > 0.05, 
Table S6) was detected in the primary analysis. Finally, steiger filtering further ensured directionality(P < 0.05, 
Table S7).To study the potential side effects of PTGDS, we used gene expression as exposure and summary 
statistics of diseases in the UK Biobank cohort (n ≤ 408,961) as outcomes to perform phenome-wide MR based 
on AstraZeneca PheWAS Portal database. As illustrated in Fig.S7, PTGDS not show significant associations with 
other traits at the gene level (P < 5E − 8 for genomic association). This further supports the validity of the study 

Fig. 4. Functional enrichment analysis. (A,B) GSEA; (C) KEGG26–28; (D) GO.
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Fig. 5. Analysis of the tumor microenvironment. (A) Heatmap illustrating differences in immune cell 
infiltration between the high-PCDS and low-PCDS groups. (B) Radar plot showing the correlation 
between PCDS and immune cells. (C) Comparison of immune cell infiltration between metastasis and 
non-metastasis groups; (D) Kaplan-Meier curves were generated to show the association of MDSC 
with metastasis-free survival; (E) Time-dependent ROC curve of MDSC for metastasis. ****P < 0.0001, 
***P < 0.001,**P < 0.01,*P < 0.05.
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Fig. 6. Landscapes of somatic mutations and potential targets in the two groups. (A) Waterfall plot showing 
the mutation patterns of the top 20 most frequently mutated genes in two groups. (B) The fraction of pathways 
or samples of oncogenic signaling pathways in PCDS-high and PCDS-low groups.
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results by indicating that the likelihood of adverse medication reactions against this target and the existence of 
horizontal pleiotropy in PTGDS is probably low. Unfortunately, colocalization analysis suggested that PTGDS 
didn’t share the same variant with PRAD(PP.H4 = 0.13).

Molecular characteristics of PTGDS at single-cell sequencing level
We proceeded to investigate the PTGDS characteristics in 13 PCa samples using single-cell sequencing analysis. 
Through this approach, we identified a total of 8 distinct cell types: B cell, CD8Tex, endothelial, epithelial, 
fibroblasts, malignant, mast, and monocyte/macrophage(Fig.  10A). Remarkably, our results demonstrated a 
noteworthy upregulation of PTGDS expression in non-metastatic tissues, whereas metastatic tissues exhibited a 
comparatively lower expression of PTGDS (Fig. 10B,C). To gain further insights, we visualized the DEGs among 
the identified cell types, as depicted in Fig. 10D. Analysis of single-cell sequencing data using GSVA revealed 
that tumor cells with lower PTGDS demonstrated more pronounced malignant biological characteristics, such 
as angiogenesis, epithelial-to-mesenchymal transition, and Kras signaling (Fig. 10E). Additionally, we employed 
pseudotime trajectory analysis using monocle and observed an increase in PTGDS expression as pseudotime 
increased (Fig. 10F). We investigated the intercellular communication between malignant cells exhibiting high 
and low PTGDS expression levels. Our findings demonstrate that malignant cells with high PTGDS expression 
establish a greater number of interactions within the tumor microenvironment when compared to malignant 
cells with low PTGDS expression (Fig. 10G-H). Notably, these interactions predominantly involve immune cells 
and are mediated through the MK, MIF, and VISFATIN signaling pathways (Fig. 10I–K).

Functional analysis of PTGDS using GSEA
The biological role of PTGDS in PRAD was elucidated through GSEA. We analyzed functional HALLMARK, 
KEGG, and GO terms associated with PTGDS. The results revealed that the top five HALLMARK terms in 
the low-PTGDS group included complement, epithelial-mesenchymal transition, apoptosis, IL-6/JAK/STAT3 
signaling, and KRAS signaling upregulation (Fig. 11A). In the low-PTGDS group, the top five KEGG terms were 
primary immunodeficiency, complement and coagulation cascades, cytokine-cytokine receptor interaction, 
JAK-STAT signaling pathway, and NF-kappa B signaling pathway (Fig.  11B). Additionally, the top five GO 
terms in the low-PTGDS group comprised epithelial cell migration, epithelial cell proliferation, immune effector 
process, immune receptor activity, and T cell-mediated cytotoxicity (Fig. 11C). Enrichment analyses across three 

Fig. 7. Immunotherapy efficacy analysis. (A) Comparison between the PCDS-high and PCDS-low 
groups concerning immune checkpoint genes; (B) and TIDE score; (C) Submap analysis. ****P < 0.0001, 
***P < 0.001,**P < 0.01,*P < 0.05, ns non-significant.

 

Scientific Reports |        (2024) 14:21680 12| https://doi.org/10.1038/s41598-024-72985-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 8. The central role of PTGDS in PRAD. (A) Random forest analysis identifying PTGDS as core gene. 
ROC curve of PTGDS for metastasis in GSE116918 (B) and GSE21034 (C) cohorts. Comparison of PTGDS 
expression between metastasis and non-metastasis groups in GSE116918 (D) and GSE21034 (E) cohorts. 
Comparison of PTGDS expression with Gleason score (F), T stage (G), biochemical recurrence (H), and PSA 
levels (I) in GSE116918 cohort. (J) Expression levels of PTGDS detected by qRT-PCR in three cell lines. (K) 
Protein expression of PTGDS validated by Immunohistochemistry (IHC) based on the Human Protein Atlas 
(HPA) database. ****P < 0.0001, ***P < 0.001,**P < 0.01,*P < 0.05, ns non-significant.
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databases consistently implicated PTGDS in EMT regulation. Validating these in silico predictions, correlation 
analysis revealed significant positive associations between PTGDS expression and epithelial markers occludin 
(OCLN) and E-cadherin (CDH1). Conversely, significant inverse correlations were noted with mesenchymal 
markers vimentin (VIM), α-smooth muscle actin (ACTA2), tenascin C (TNC), and matrix metalloproteinase-2 
(MMP2) (Fig. 11D).

PTGDS inhibited invasion, metastasis, and proliferation in PRAD
In order to get more insight into the biological function of PTGDS in PRAD cells, we increased the levels of 
PTGDS in DU145 and LnCaP cells, repectively (Fig.  12A, Figures S7, 8). As demonstrated by CCK-8 tests, 
PTGDS overexpression dramatically reduced the proliferation ability of PRAD cells (Fig. 12B). The influence 
of PTGDS overexpression on prostate cancer cell migration and invasiveness was appraised through wound 
healing and transwell assays. A substantial reduction in migratory capacity was observed in both DU145 and 
LNCaP cells, coupled with impaired invasion ability (Fig.  12C–H, Table S8). Collectively, these functional 
assays underscore the pivotal role of PTGDS as a suppressor of prostate cancer cell proliferation, invasion, and 
metastatic properties.

Discussion
PCa is generally an indolent disease with a favorable prognosis in comparison with other urological 
malignancies41. Nevertheless, despite surgery and radiation, around 30% of intermediate to high-risk localized 
and locally progressed PCa patients have recurrence or metastasis, which ultimately proves fatal3. PCD includes 
elaborate regulation and involves various mechanisms. Accumulating evidence indicates that PCD is integral to 
biological processes that have long been implicated in the proliferation and metastasis of malignant tumors19. 
Previous studies have utilized programmed cell death-related genes to develop prognostic models for predicting 
the outcomes of tumor patients or the efficacy of immunotherapy42,43. Furthermore, some studies have also 
developed prediction models related to prostate cancer to forecast clinical outcomes, including metastasis44 
and biochemical recurrence45, among prostate cancer patients. Fewer studies have, nonetheless, created a 
straightforward and useful genetic biomarker that uses PCD-associated markers to forecast metastases in patients 
receiving radical radiation treatment. This study represents the initial comprehensive analysis of thirteen distinct 
programmed cell death patterns in PRAD metastasis. This study represents the first comprehensive analysis of 
thirteen distinct PCD patterns in PRAD metastasis. In this work, we established a signature made up of eight 
PCD genes(ALOX15, BIK, CCK, CD38, CD68, CDKN2A, EEF1A2, and PTGDS) that exhibit strong predictive 
potential for both metastasis, as well as for BCR and CTRP in patients diagnosed with PRAD. Moreover, PCDS 
is an independent risk factors for metastasis in prostate cancer, and they demonstrate notably higher diagnostic 
accuracy in contrast to clinical variables like age and PSA.

Enrichment analysis indicated that pathways associated with immunity, tumors, and EMT may potentially 
participate in the metastasis of PCa. Over the past two decades, one of the intriguing discoveries in cancer 
research has been the intricate interplay between tumors and their surrounding microenvironment, also known 
as the tumor immune microenvironment (TIME). The TIME encompasses a variety of elements, including 
adjacent blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, various signaling 
molecules, and extracellular matrix (ECM)46. Within the context of our study, we have noted that patients with 
prostate cancer who were categorized under the high PCDS group and the metastasis group exhibited greater 
infiltration of MDSCs when compared to their respective control groups. This observation implies that MDSCs 
could potentially facilitate the metastasis of prostate cancer. MDSCs are a diverse subset of innate immune 
cells that are produced from the myeloid lineage at different developmental stages. In a healthy physiological 
environment, they can differentiate into granulocytes, macrophages, and dendritic cells (DCs). However, the 

Fig. 9. Forest plots displaying the findings from the eQTLGen Consortium for 4 model genes.
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Fig. 10. Molecular features of PTGDS at the single-cell level. (A) t-SNE of 8 cell types; (B) t-SNE of 
metastasis and no-metastasis patients; (C) t-SNE of the distribution of PTGDS among different types; (D) 
The differentially expressed genes among the identified 8 cell types; (E) Gene set variation analysis of PRAD 
cells with different levels of PTGDS; (F) Pseudotime trajectory analysis based on PTGDS expression; (G) The 
quantity of interactions in a network of cell-cell communication; (H) The weights and strengths of the cell-
to-cell communication network interactions; (I–K) Cellular interaction networks between PRAD cells with 
different PTGDS level and other cells in MK(I), MIF(J), and VISFATIN signaling pathway(K).
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release of immunosuppressive factors impedes the differentiation of myeloid progenitors in some pathological 
conditions, including inflammation, trauma, tumors, and autoimmune diseases. This inhibits the immune 
response, which is mediated by T cells, natural killer cells, and dendritic cells; it also encourages the production 
of regulatory T cells and tumor-associated macrophages; it drives the immune escape; and, ultimately, it results 
in tumor progression and metastasis47–49. Significant variations in the mutation landscape between the high and 
low PCDS groups were also seen in our study, which implies that the mutation landscape may be essential to 
tumor metastasis.

CIT is an established and vitally significant method of cancer treatment. Numerous studies have shown that 
PCD is common in almost all malignancies and is closely linked to the response to CIT50–53. Considering the 
correlation between PCD and CIT, we utilized two datasets associated with CIT response and determined that 
the PCDS serves as a reliable biomarker for predicting CIT response.

Prostaglandins generated by prostate support tissues can profoundly impact cancer cell growth54. Lipocalin 
prostaglandin D synthetase (L-PGDS or PTGDS) resides on chromosome 9q34.2-34.3 within the lipocalin gene 
cluster55 and possesses bifunctional enzymatic and transporter roles for PGD256. While some studies report 
PTGDS overexpression in melanomas, ovarian, diffuse large B-cell lymphoma, and liver tumors57–60, others find 
reduced PTGDS inhibits progression in lung61 and gastric cancer62. However, the role of PTGDS dysregulation 
in prostate cancer metastasis remains undefined.

To further validate the relationship between PTGDS and prostate cancer, MR analysis of expression 
quantitative trait loci (eQTLs) was performed. Multiple MR methods consistently revealed significant associations 
between PTGDS and PCa risk, including MR-Egger, inverse variance weighted, weighted median, Cochran’s Q 
heterogeneity test, horizontal pleiotropy assessment, bidirectional MR, Steiger filtering, colocalization analysis, 
and phenome-wide association study (PheWAS).

Using the random forest algorithm, we identified PTGDS as a potential core gene involved in prostate metastasis 
with an AUC of 0.688 in the GSE116918 cohort and 0.834 in the GSE21034 cohort. We observed a negative 
correlation between PTGDS expression and the presence of metastasis or BCR, as well as increasing Gleason 
score, T stage, and PSA levels. Transcriptomic analysis revealed significantly lower PTGDS expression in tumor 
tissues compared to normal tissues. This differential expression was further validated by immunohistochemistry 
and quantitative PCR (qPCR) analyses. Collectively, these results demonstrate an inverse relationship between 
PTGDS expression and tumor occurrence as well as progression.

Vanessa C. Thompson et al. highlighted the significance of the PTGDS gene in biochemical recurrence 
among prostate cancer patients. However, the specific molecular mechanisms underlying its impact on the 
prostate cancer phenotype were not elucidated, and in vitro experiments were not conducted45. It is widely 
recognized that acquiring migratory and invasive capacities represents the crucial rate-limiting initial step in 

Fig. 11. GSEA analysis. (A) GSEA Hallmark analysis; (B) GSEA KEGG analysis; (C) GSEA GO analysis; (D) 
Correlation heatmap illustrating the relationship between PTGDS and EMT-related genes.
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Fig. 12. PTGDS suppressed the proliferation, invasion, and metastasis potential of PRAD cells. (A) The 
effectiveness of PTGDS overexpression was verified by qRT-PCR in DU145 and LNCaP cells. (B) Cell 
Counting Kit-8 (CCK-8) assay to detect the proliferative capacity of PRAD cells. (C–E) Representative data 
from wound healing assays and transwell assays conducted with the DU145 cells. (F–H) Representative 
data from wound healing assays and transwell assays conducted with the LNCaP cells. ****P < 0.0001, 
**P < 0.01,*P < 0.05, ns non-significant.
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the metastatic cascade63. Bioinformatic analyses including GSEA, correlation, and single-cell RNA sequencing 
consistently linked high PTGDS expression to inhibition of EMT-related pathways. We validated these findings 
in vitro by developing PTGDS-overexpressing prostate cancer cell lines via plasmid transfection and verifying 
overexpression using RT-PCR. Strikingly, elevated PTGDS significantly suppressed cellular invasion, metastasis, 
and proliferation capacities. Collectively, these multi-modal results demonstrate that PTGDS acts as a protective 
factor in prostate cancer cells.

Despite the promising findings in this study, certain weaknesses still remain. It is widely acknowledged 
that gene expression signatures may be subject to sampling bias due to intratumor genetic heterogeneity. 
Furthermore, it is imperative that all findings in this study undergo external validation through larger sample 
research in order to delve deeper into the underlying mechanisms of pathogenesis. Finally, while Mendelian 
randomization provides insight into potential causal relationships, it assumes low-dose chronic exposure and 
linear dose-response links that may not fully extrapolate to real-world clinical trials that often feature short-term 
high-dose treatments.

Conclusion
Our work developed a gene signature model related to PCD that can predict MFS, BCR, CTRP, and 
immunotherapy effectiveness in PRAD. Furthermore, we have assessed the potential predictive value of PTGDS 
in hindering PRAD metastasis. We believe that our findings have expanded the current knowledge on the 
involvement of PCD in PRAD biology and prognosis prediction and that PTGDS has the potential to serve as a 
novel predictive biomarker for clinical outcomes in PRAD.
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