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DNA Methylation signatures underpinning
blood neutrophil to lymphocyte ratio during
first week of human life

David Martino 1,2 , Nina Kresoje1, Nelly Amenyogbe1,3, Rym Ben-Othman4,
Bing Cai5, Mandy Lo5, Olubukola Idoko6, Oludare A. Odumade7,8, Reza Falsafi9,
Travis M. Blimkie9, Andy An9, Casey P. Shannon 10,11, Sebastiano Montante12,
Bhavjinder K. Dhillon 9, Joann Diray-Arce 7,8, Al Ozonoff 7,8,13,
Kinga K. Smolen 7,8, Ryan R. Brinkman12, Kerry McEnaney 7,
Asimenia Angelidou 7,8,14, Peter Richmond1,2, Scott J. Tebbutt 10,11,15, the EPIC-
HIPC consortium*, Beate Kampmann6,16, Ofer Levy 7,8,13,
Robert E. W. Hancock 9, Amy H. Y. Lee17 & Tobias R. Kollmann 1,3

Understanding of newborn immune ontogeny in the first week of life will
enable age-appropriate strategies for safeguarding vulnerable newborns
against infectious diseases. Here we conducted an observational study
exploring the immunological profile of infants longitudinally throughout their
first week of life. Our Expanded Program on Immunization - Human Immu-
nology Project Consortium (EPIC-HIPC) studies the epigenetic regulation of
systemic immunity using small volumes of peripheral blood samples collected
from West African neonates on days of life (DOL) 0, 1, 3, and 7. Genome-wide
DNA methylation and single nucleotide polymorphism markers are examined
alongside matched transcriptomic and flow cytometric data. Integrative ana-
lysis reveals that a core network of transcription factors mediates dynamic
shifts in neutrophil-to-lymphocyte ratios (NLR),which areunderpinnedby cell-
type specific methylation patterns in the two cell types. Genetic variants are
associated with lower NLRs at birth, and healthy newborns with lower NLRs at
birth are more likely to subsequently develop sepsis. These findings provide
valuable insights into the early-life determinants of immune system
development.

Newborn mortality is a global public health concern worldwide1,2.
Infections, including sepsis, are a leading cause of preventable deaths3.
Although substantial progress has been made in reducing mortality in
older children, there has been little progress in preventing neonatal
deaths occurring in the first week of life4. Successful vaccine inter-
ventions offer limited immune protection during the first week of life
when immense developmental transitions are occurring5. To devise
age-appropriate strategies to reduce mortality during this period of

heightened vulnerability, understanding newborn immunity in the first
week is essential6.

The current understanding of immune ontogeny in the first week
of life is limited because biosampling neonates is challenging7. Studies
have focused on umbilical cord blood because of its accessibility or
have investigated immune ontogeny over monthly time intervals
beyond the neonatal period8,9. Innovations in neonatal biosampling
have enabled understanding of the molecular10, cellular, and
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proteomic11 networks mediating early immune ontogeny from small
volumes of peripheral blood, allowing longitudinal assessments. Pre-
viously, in a pilot study (EPIC-001), we described a developmental
trajectory of newborn ontogeny characterized by molecular changes
in interferon, complement, and neutrophil signaling within the first
seven days of life10. Others have found changes in peripheral neu-
trophil and lymphocyte populations within days of birth, reflecting a
stereotypical ontogenesis program in preterm and term infants11,12,
aligning with the concept of a highly conserved layered immune
system13, in which the transition from the fetal to early infant immune
profile occurs through consecutive periods of developmental
programming14. However, the genomic contributors remain unclear.

Epigenetic regulation is crucial in hematopoiesis and mediates
dynamic shifts in ontogeny during postnatal life15. Epigenetic regula-
tion includes post-translational modifications to DNA, histone, chro-
matin remodeling factors, and non-coding RNA signaling that
regulates genome and cellular functions16. DNA methylation remo-
deling via DNA methyltransferases (DNMT) and ten-eleven transloca-
tion (TET) enzymes potentiates gene expression during
hematopoiesis, facilitating the age-dependent plasticity of the immune
system15. DNA methylation remodeling at methylation-sensitive tran-
scription factor-bindingmotifs shapes the hematopoietic landscapeby
modulating the sensitivity of progenitor cells to lineage-defining
transcription factors16. This mechanism may underlie the dynamic
skewing of hematopoiesis in newborns11 and age-dependent changes
within distinct leukocyte populations17. We hypothesize that epige-
neticmodifications, particularly DNAmethylation, play a crucial role in
shaping the immune system during the first week of life. Specifically,
we aim to investigate whether dynamic changes in DNA methylation
patterns are associated with shifts in immune cell populations and
gene expression profiles during this critical period of development
using whole blood samples from two newborn cohorts (EPIC-002,
main cohort; EPIC-003, Gambian Ontogeny cohort; hereafter referred
to as the validation cohort in this report).

We present a genome-wide analysis of dynamic epigenetic chan-
ges, contributing to a deeper understanding of the immune landscape
in newborns. This research expands our knowledge of neonatal
immunity and may inform the development of targeted interventions
to improve newborn health.

Results
Whole blood methylation dynamics in the first week of life
Genome-wide DNA methylation and single-nucleotide polymorphism
(SNP) microarrays were performed at multiple time points. In EPIC-
002, n = 648 participants had available DNAmethylation data at Visit 1
and 619 at Visit 2 (total n = 1,267, 88% of the cohort). In the EPIC-003
validation cohort, 43/45 newborns (96% of participants) had available
methylation data at both Visit 1 and Visit 2 (total n = 86 samples)
(Fig. 1A). We conducted a longitudinal analysis of DNA methylation
levels in 1267 newborn samples fromEPIC-002, using days of life (DOL)
as a categorical outcome variable. Overall, 333 genomic regions
comprising 22,836 individual CpGs underwent dynamic remodeling
over the first week of life in the main cohort (FDR <0.05 & beta ± 2%,
Fig. 1B). These associations were also observed in EPIC-003 (22,676/
22,836 FDR <0.05), suggesting that methylation remodeling is a
robust process (Fig. 1C and Supplementary Fig. 1). The effect sizes
increased continuously with each DOL in the cross-sectional analysis
(Fig. 1D). Methylation loss as a function of DOL was observed more
frequently than methylation gain (260 hypomethylated versus 73
hypermethylated regions). Most genomic features lost methylation
with an increasingnumber of days of life, except forCpG islands,which
exclusively gained methylation (Fig. 1E) in the EPIC-002 and EPIC-003
cohorts (Supplementary Fig. 2). Since CpG islands and gene promoters
have overlapping features, we stratified this analysis into island- and
non-island-associated promoters, observing similar gains in

methylation across categories, suggesting CpG islands are important
reservoirs of methylation gain during early immune ontogeny (Sup-
plementary Fig. 2).

Widespread hypomethylation during the first week of life was
observed on chromosome 14, which encodes germline T cell receptor
gene segments (TRAJ2-TRAJ6; TRAJ42-TRAJ47; Fig. 1B), reflecting chan-
ges in preferential gene use and junctional diversity. The AT-rich
interactingdomain 5B (ARID5B) gene, an epigenetic regulator essential
for the development of hematopoietic cells18, was among the largest
regions of methylation loss. Notably, various interferon (IFN)-induced
antiviral proteins (IFITM1, IFITM2), lymphotoxin alpha (LTA) inflam-
matory cytokine19, Ras superfamily protein (RHOH) cell survival and
growth regulator20, and human leukocyte antigen B (HLA-B), lost
methylation. Hypermethylation was observed in regions encoding
genes such as DEFA4, which encodes the alpha-defensin-4 peptide, an
antimicrobial component of the neutrophil primary granule
response21. The calcium-binding alarmin protein S100A8, a marker of
septic shock22, NLRC4 inflammasome innate response protein23, a
regulator of transforming growth factor beta (LTBP1)24 and ART4 gly-
coprotein, which carries Dombrock blood group antigens25, were
genes that gained methylation. To characterize the biology associated
with these methylation dynamics, we conducted a gene ontology
enrichment analysis of hypomethylated and hypermethylated regions
associatedwithDOL. Hypermethylated regionswere strongly enriched
in neutrophil- and myeloid-related pathways, whereas hypomethy-
lated regions were enriched in lymphocyte processes (Fig. 2A).

Differentially methylated cell type analysis identifies distinct
neutrophil and lymphocyte enrichment of ontogeny signature
To determine the cell-type specificity of this ontogeny signature, we
deconvoluted whole bloodmethylation profiles from each cohort into
inferred immune cell ratios and performed differentially methylated
cell type (DMCT) analysis using the same linear model as before,
incorporating the interaction between DOL and immune cell ratios.
The DOL ontogeny methylation signature was almost exclusively of
neutrophils, B, and CD4 +T cells (Fig. 2B), consistent with the gene
ontology analysis. A significant trend for reduction in neutrophil
counts and increase in T-lymphocytes with each DOL was observed in
both cohorts (Fig. 2C) by repeated measures ANOVA (P < 0.05), and
confirmed by flow cytometry (Supplementary Fig. 3). In longitudinal
models of DOL adjusted for deconvoluted blood cell counts as cov-
ariates, only 53 of 22,836 associations were attenuated, indicating that
methylation remodeling was not a consequence of cell composition
changes. Neutrophils harbored the greatest degree of cell type-specific
differential methylation (570 unique CpGs) and shared many associa-
tions with B cells (527 shared CpGs), and to a lesser degree with
CD4 + T cells (112 shared CpGs) (Fig. 2B). Methylation changes shared
between cell types often exhibited pleiotropy. Essential transcription
factors with chromatin remodeling functions that regulate hemato-
poiesis (FOXP1, MYB, and IKZF1) were positively associated with
CD4 + T-cell counts and negatively associated with other cell types
such as eosinophils and NK cells (Fig. 2D).

Integrative analysis identifies transcription factor changes
mediating neutrophil to lymphocyte ratios
We performed an integrative analysis of blood methylomes with
transcriptomicdatasets from606participants from themain EPIC-002
cohort who had matched RNA-seq data available (n = 1212). The DOL-
associated regions correlated with the expression of 61 target genes
(Fig. 3A–C, Table 1, complete list in Supplementary Data 1). Methyla-
tion changes in gene promoters and CpG islands were associated with
gene silencing, whereas changes in gene bodies were positively cor-
related with gene expression, consistent with prior evidence that gene
body methylation modulates transcriptional isoform usage26. The 61
epigenetically regulated genes encoded hematopoietic transcription
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factors (RUNX3, TCF7, NR3C1, NFE2, RNF10, and BACH2), protein kina-
ses (PRKCH, GRK5, LCK, FYN, and MAP4K4), and cell differentiation
markers (CD3G, CD28, CD226, CD82, and ART4). From these target
genes, we inferred a complex regulatory protein interaction network
(PPI enrichment P = 1.33 × 10−15) significantly enriched for pathways
involved in immune system regulation, signal transduction, cell cycle,
and apoptosis (Fig. 3D, Table 2; complete list in SupplementaryData 2).

The transcription factor dynamics influencing blood cell composi-
tional changes were interesting based on the data of time-dependent
trends in transcription factor promoter methylation and the corre-
sponding changes in blood cell proportions (Fig. 3E). To further
explore whether the methylation of transcription factors mediates
changes in blood composition, we employed a causal mediation fra-
mework constructing individual regression models addressing the
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effect of age (in days) at time of sample collection on neutrophil to
lymphocyte ratios (NLR), including promoter methylation levels as
mediator variables. Both RUNX3 and BACH2 completely mediated the
effect of age on blood cell ratios, whereas significant partial mediation
was observed for other transcription factors (Fig. 3F, statistics in
Supplementary Data 3), suggesting that these transcription factors
play specialized roles in mediating the effect of age on blood cell
ratios.

Reduced NLRs at birth were a pre-morbid risk factor for sub-
sequent early-onset sepsis
We explored whether variations in baseline NLR at DOL0 were related
to clinical inflammatoryoutcomes, such as infections, including sepsis,
occurring in the first week. In the EPIC-002 main cohort, twelve new-
borns developed acute localized infections, and 21 developed sepsis
within the first week of life and were matched to 33 healthy controls
from the same cohort based on sex, vaccination status, DOL, and time
of blood collection after birth. We examined the correlation between
the epigenetically inferred NLR and flow cytometry-derived NLR and
found strong significant positive correlations (R =0.72, P < 2.2−16, Sup-
plementary Fig. 4). Healthy controls had a significantly higher epige-
netic NLR at birth than the neonates who subsequently developed
early onset sepsis (Fig. 4A). In linear mixed-effect models adjusted for
sex, birth weight z-scores, gestational age, and subject ID, the baseline
epigenetic NLR was significantly associated with ‘any sepsis’ outcome
diagnosed between DOL1-7 (estimate, − 1.2; SD, 0.55; P =0.03). This
was statistically corroborated when we used the flow cytometry-
derived NLR in the same models (estimate −0.5, std.error 0.21,
P =0.02). We also explored whether epigenetic NLRs were influenced
by preterm birth since preterm neonates are at a higher risk of sepsis.
As there were no preterm births in this cohort, we accessed publicly
available umbilical cord blood whole-blood methylation profiles from
72 term and 18 preterm newborns27 and calculated the epigenetically
inferred NLR. The NLR scores were lower in preterm newborns than
those in term controls (Fig. 4B) due to significantly lower neutrophil
counts and elevated B-lymphocyte andNK cell counts (Supplementary
Fig. S5). We assessed the possible prenatal characteristics explaining
the variation in the baseline epigenetic NLR using linear regression.
Birth weight, gestational age, the season of birth, APGAR scores, and
maternal age were not significant predictors of baseline NLR (Table 3).
Since the epigenetic NLR at birth had a high degree of inter-individual
variation, we hypothesized potential gene-environment influence.

Genome-wide association study of SNP markers and baseline
NLR identifies novel genetic variants
To explore the genetic contribution to NLR at birth, we conducted a
genome-wide association study (GWAS) of ~ 8.5 million genotypes
from 557/720 individuals from the EPIC-002 cohort regressed on birth
NLRs as a continuous variable. Principal component analysis showed
that the study population clustered with the African super-population
referencedata from the 1000genomes project (Supplementary Fig. 6),
suggesting no major population stratification. We detected 13 asso-
ciations at genome-wide significance (Table 4) and used the model
statistics as input to the FUMAGWAS tool to identify genomic risk loci

and perform expression quantitative trait loci (eQTL) analysis. The
strongest significant genome-wide genetic signals were detected at 13
genomic risk loci (Fig. 5A, B, Supplementary Datas 4, 5). The top SNP
associations indicated an allelic variation in the baseline NLRs (Fig. 5C).
The lead SNP on chromosome 7 tagged a known variant (rs73080951)
previously identified as a protein quantitative trait locus for type I and
II interferon receptor expression28. The variants on chromosome 22
were whole blood expression QTLs (GTExv8 catalog) for the CBX6
polycomb transcriptional repressor protein, which is required to bal-
ance pluripotency and differentiation in mammals (Table 5)29. We
estimated the broad-sense heritability of NLR at birth using GWAS
statistics and linkage disequilibrium (LD) scores from the UK Biobank
African population. The heritability estimate was high at 0.87
(std.dev = 1.3), suggesting that a substantial portion of the variation in
the baseline NLR was due to variation in genotypes, although we
expect this estimate to be inflated due to the small sample size.
Nevertheless, our data provide cogent evidence that host genetic
factors partly influence baseline NLR.

Discussion
Our study has identified genetic and epigenetic factors that contribute
to newborn immune ontogeny and correlate with the risk for neonatal
sepsis in the first week of life, a time of immense developmental
transition and susceptibility to infectious diseases6. We observed
dynamic changes in promotermethylation andgene expression in four
hematopoietic transcription factors, NFE2, BACH2, RUNX3, and TCF7,
and a broader program of epigenetic change at 333 genomic regions,
and 61 expressed genes that were associated with time-dependent
changes in NLR. These ontogenetic patterns were independent of
gestational age or sex. Similar trends in changing blood composition
were described in Scandinavian and American newborn cohorts11,12,
reflecting a stereotypic program of ontogeny across diverse popula-
tions. The changes in methylated DNA we observed in lymphocytes
and neutrophils likely reflect the changing contributions of hemato-
poietic niches (thymus and bone marrow), which impart distinct DNA
methylation profiles to progenitor cells, layering the systemic com-
partment with modified cellular phenotypes30. While we cannot
establish the causality of these associations, statistical analysis sug-
gests methylated alleles in these gene promoters were mediators of
dynamic shifts in NLR. Functional perturbation studies using in vitro
fate mapping and single-cell analysis are planned to decipher the
causal role of transcription factor changes in hematopoietic lineage
decisions31. Together, these findings expand the current under-
standing of the molecular determinants of newborn immune
ontogeny.

NLRmeasured by full blood count is a clinically useful prognostic
marker of inflammation32,33, infection, and sepsis33, and we report it
also as a useful marker of early ontogeny. Although many previous
studies have described the clinical utility of NLR for sepsis diagnosis or
prognosis among hospitalized infants33, we found that lowNLR at birth
among healthy newborns was a pre-morbid risk factor for subsequent
sepsis. It is possible lower NLRs could indicate an underlying predis-
position, but it is difficult to draw causal inferences in this observa-
tional study. Of note, we inferred NLR from the ratio of methylated

Fig. 1 | Genome-wide analysis of DNAmethylation in peripheral blood samples
shows rapid changes in the first week of life. A Overview of study design and
sample collection from each day of life (DOL). B Volcano plot of differentially
methylated regions significantly associated with DOL. The X-axis represents the
average methylation change from DOL0-7, and the y-axis shows the number of
CpGs within each region, which is a function of region size. C Correlation of t-test
statistics for DOL regression model between main and validation cohorts. Each
point is an individual observation from n = 308,655 data points measured in both
cohorts. The solid line indicates the linear regression fit for DOL. A two-sided P-

value for Pearson’s correlation coefficient (R) is shown. D Cross-sectional analyses
of mean effect size (% methylation) at each time point, stratified by hypermethy-
lation (gain) or hypomethylation (loss). E Methylation ratios expressed as percen-
tage (y-axis) for DOL associated CpGs stratified by genomic feature (x-axis).
Boxplots show the median and interquartile range (IQR, 25th-75th percentile).
Whiskers extend to the most extreme data points within 1.5 times the IQR from the
boxhinges (the 25th and 75th percentiles). Points outside this range are considered
outliers and are plotted individually). UTR = untranslated region.Total
n = 1267 samples.
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Fig. 2 | Differentially methylated cell type analysis reveals enrichment in neu-
trophils and lymphocyte populations. A Dotchart of gene ontology enrichment
analysis of the DOL ontogeny signature highlighting significantly enriched path-
ways. B Upset plot showing counts of shared and unique differentially methylated
CpGs among blood cell populations from DMCT analysis. C Deconvoluted whole
blood cellular ratios inferred from DNA methylation profiles. Boxplots show the
median and interquartile range (IQR, 25th-75th percentile). Whiskers extend to the

most extreme data points within 1.5 times the IQR from the box hinges (the 25th
and 75th percentiles). Points outside this range are considered outliers and are
plotted individually). P-values are one-way repeated measures ANOVA.D Heatmap
visualization of the number of CpG associations per cell for the top 50 ranked
genes. Positive associations are shown in red, and negative associations in blue.
*** = P <0.001, repeated measures ANOVA. Total n = 1267 samples.
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Fig. 3 | Integrative analysis of newborn DNA methylation and transcriptomic
changes in the main cohort. A Number of differentially expressed genes (DEG)
correlated with day of life associated with differentially methylated regions in each
genomic context. B Visualization of RUNX3 promoter methylation levels measured
on the main cohort. Average methylation ratios are shown on the y-axis colored by
day of life (0, 1, 3, and 7). Eachpoint on the plot is a CpGdinucleotide. Their relative
position to RUNX3 promoter isoforms is shown in the orange boxes. C Pearson’s
correlation between RUNX3 promoter methylation and gene expression. Data
points are colored according to visit number (V1 = day of life 0; V2 = day of life 1, or
3, or 7). D First-order protein-protein interaction network from InnateDB. Key
transcription factors are colored in yellow, blue nodes are seed nodes from the list

of epigenetically regulated genes, and gray nodes are interactors. Interactions
between nodes are denoted by edge lines. E Violin plots showing average changes
in transcription factor promoter methylation and cell proportions as a function of
day of life (DOL). Plots show the median (white dot) and interquartile range (IQR),
and the thin line extends to the most extreme data points within 1.5x IQR. Points
outside this are considered outliers and plotted individually. The violin shape
represents the probability density of the data. F Summary statistics from causal
mediation analysis. Point estimates from mediation models are shown with 95%
confidence intervals (CI). ACME=average causal mediation effect, ADE = average
direct effect. Total n = 1265.
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alleles in blood samples34. This molecular NLR may be a promising
marker for severe disease risk stratification in newborns, as we found
that it correlated strongly with flow cytometric measures of NLR, but
exhibited stronger associations with early onset sepsis than NLR
derived by flow. Analyzing publicly available cord blood data, we also
observed a lower NLR in preterm newborns known to be at higher risk
of sepsis, which should encourage future studies of NLR in preterm
infants.

Considering the in-utero factors that determine the NLR set-point
at birth, our GWAS implicates host genetics, but other environmental
factors, such as the microbiota, were not explored and could also
contribute. Consistent with previous reports35, inter-individual varia-
bility in NLR at birth was high. A few GWAS of adult NLRs have been
conducted in European populations36,37. A total of 151 genetic asso-
ciations have been described, with broad-sense heritability estimated
at 36%37. Our heritability estimate of 87% from this African cohort is
high, explained by our inclusion of non-European LD scores from the
UK Biobank to calculate heritability, which can produce noisy esti-
mates in small sample sizes. Nevertheless, these data confirm a role for
genetic factors driving NLR. Given population differences in LD
structure, meta-analysis across European and African cohorts for NLR
genetic associations will provide further insights into the genetic
architecture of blood cell traits. Together, our findings suggest genetic
and epigenetic factors play a role in the development of sepsis and
suggest that molecular markers may be useful for developing new
diagnostic tools to identify those at highest risk for and possibly

prevent sepsis. Future studies could develop novel molecular pre-
dictors of sepsis risk and strategies to boost NLRs in those most
vulnerable.

Our findings should be interpreted within the context of study
limitations.Wewere restricted to small volumes of whole blood tissue,
limiting our ability to detect cell-specific effects or conduct functional
studies. Our study focused on an African cohort, prioritizing the
detection of moderate to large effect sizes. Despite this, our sample
size, modest for GWAS, limited the identification of the full spectrum
of genetic associations. We did not consider the differential effect of
participant sex on immune ontogeny, as our models were adjusted for
sex to identify stereotypic ontogenetic patterns. However, our results
are meaningful, identifying target molecules for follow-up studies.
While our study provides valuable insights into the dynamic epigenetic
landscape during early life in an African cohort, it is important to
acknowledge that the generalizability of these findings to other
populations remains unclear. The specific genetic and environmental
factors influencing neonatal immune development may vary across
different populations, potentially leading to distinct epigenetic sig-
natures and immune responses. Future studies in diverse populations
are needed to validate our findings and determine the extent to which
the observed patterns are universal or population-specific. In sum-
mary, by integrating analysis of epigenetic, transcriptomic, and flow
cytometric data in a large cohort using longitudinal sampling, this
study extends insight into the molecular basis of newborn immune
ontogeny and identifies promising candidates for clinical translation.

Table 1 | Differentially methylated and expressed genes associated with ontogeny

Symbol RegionType Gene Correlation P-Value adjPValue

RHOH promoters ENSG00000168421 −0.76 2.31E-228 1.41E-226

DENND2D promoters ENSG00000162777 −0.75 1.01E-221 2.05E-220

ART4 promoters ENSG00000111339 −0.75 7.80E-217 1.19E-215

CD3D promoters ENSG00000160654 −0.70 2.81E-176 2.14E-175

LCK promoters ENSG00000182866 −0.69 1.17E-170 6.47E-170

DGKA promoters ENSG00000065357 −0.68 9.51E-167 4.83E-166

CHI3L2 promoters ENSG00000064886 −0.68 7.88E-164 3.43E-163

CD28 promoters ENSG00000178562 −0.67 2.87E-161 1.10E-160

PCED1B promoters ENSG00000179715 −0.67 1.22E-159 4.38E-159

IL32 promoters ENSG00000008517 −0.65 3.37E-148 1.03E-147

BACH2 promoters ENSG00000112182 −0.65 5.14E-148 1.49E-147

TTC39C promoters ENSG00000168234 −0.64 7.26E-141 1.93E-140

FYN promoters ENSG00000010810 −0.63 7.19E-135 1.76E-134

CLEC2D promoters ENSG00000069493 −0.60 8.38E-121 1.83E-120

S100A8 promoters ENSG00000143546 −0.60 4.02E-118 8.17E-118

BASP1 promoters ENSG00000176788 −0.59 1.69E-116 3.22E-116

RCAN3 promoters ENSG00000117602 −0.59 1.98E-115 3.67E-115

HAL promoters ENSG00000084110 −0.59 1.49E-114 2.53E-114

RUNX3 promoters ENSG00000020633 −0.58 1.06E-109 1.66E-109

CDC25B promoters ENSG00000101224 −0.57 2.02E-104 2.93E-104

NFE2 promoters ENSG00000123405 −0.55 6.87E-97 9.53E-97

SCML4 promoters ENSG00000146285 −0.55 1.02E-96 1.39E-96

FAM69A promoters ENSG00000154511 −0.55 2.92E-96 3.88E-96

FAM134B promoters ENSG00000154153 −0.54 1.30E-91 1.58E-91

TP53I11 promoters ENSG00000175274 −0.52 1.43E-85 1.61E-85

FAR2 promoters ENSG00000064763 −0.52 1.59E-83 1.71E-83

CD226 promoters ENSG00000150637 −0.51 2.77E-82 2.86E-82

CD82 promoters ENSG00000085117 −0.51 7.45E-80 7.57E-80

Correlation: Pearson’s correlation coefficient between lead CpG in DMR (most significant) and transcript expression for genes within 1.5 kb from the DMR. P-values are shown from the Pearson’s
coefficient test. P-values adjusted by False Discovery Rate.
An Abbreviated list of gene promoter associations is shown here, a complete set of regions in Supplementary Data 1.
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Methods
Sample collection
The EPIC-002 main cohort of 720 term newborns was an unselected
sample of healthy newborns enrolled in a larger clinical trial at the
Medical Research Council Unit, The Gambia. The sample size for EPIC-
002 was optimized for multi-omic analysis as described previously38.
The protocol was approved by the local Ethics Committees and by the

Institutional Review Board at Boston Children’s Hospital (IRB-
P00024239) and is registered at clinical trials. gov: https://clinicaltrials.
gov/ct2/show/NCT03246230. Informed consent was obtained from
the parents or guardians of participants. No specific inclusion or
exclusion criteria were applied beyond those of the parent trial, which
were healthy term newborns (gestational age > 36 weeks), born vag-
inally (as is the vastmajority (> 90%) of births in our study population),
5-min Apgar scores > 8, and birth weights > 2.5 kg. Subjects were
screened for HIV-I, HIV-II, and hepatitis B and excluded if positive.
Venous blood samples (2mL) were obtained from all neonates within
the first 24 hours of life (DOL0, Visit 1). Participants were randomized
to a second blood draw (Visit 2) at either DOL1, DOL3, or DOL7. Blood
was collected in heparinized collection tubes (Becton Dickinson) for
multi-omic analyses as described previously10. An Ontogeny cohort
(EPIC-003) comprising 45unselected newbornswas recruited from the
same study site for validation purposes, following the same study
protocol, which is used in this report for validating statistical models.
Neonatal sepsis observed in EPIC-002 was diagnosed by a senior
clinician for neonates hospitalized over the course of the study. Neo-
natal sepsis was defined as (a) blood culture-proven bacterial sepsis
with a clinically significant pathogen (culture-confirmed sepsis) or (b)
without a positive blood culture, fever syndrome, excessive crying,
poor feeding, vomiting, mottled skin, high-pitched cry, convulsions,
and laboratory parameters such as neutrophilia (clinically diagnosed
sepsis). Sepsis was classified as early onset (< 72 h) or late onset (> 72 h)
depending on time of occurrence. Neonates requiring hospital
admissionwere classified as the ‘localized infection’ comparator group
if they had no systemic signs, negative blood cultures, and alternative
diagnoses, including a case of pneumonia associated with congenital
heart disease, bronchiolitis, gastroenteritis, pustular skin infection,
ophthalmia neonatorum, and jaundice. Due to the smaller size of EPIC-
003, no hospitalizations occurred.

Epigenetics
Whole blood samples were randomized by DOL, sex, and vaccination
status in 96-well plates prior to genomic DNA extraction using the
Chemagic DNA 400 kit H96 (cat # CMG-1491). DNA samples were
quantified using the Qant-iT HS kit (cat# Q33120) and sent to the
Australian Genome Research Facility in Melbourne, Western Australia,

Table 2 | Top 10enrichedReactomepathways in theontogeny
protein-protein interaction network

Pathway P.Value FDR

Immune System 2.11E-60 2.88E-57

Adaptive Immune System 4.25E-53 2.90E-50

Antigen processing: Ubiquitination & Protea-
some degradation

6.17E-29 2.80E-26

Class I MHC-mediated antigen processing &
presentation

2.25E-27 7.68E-25

Signaling by the B Cell Receptor (BCR) 4.66E-27 1.27E-24

Signaling by ERBB4 2.30E-25 5.21E-23

Signaling by Interleukins 1.74E-24 3.40E-22

Cytokine Signaling in the Immune System 1.65E-23 2.81E-21

Innate Immune System 1.39E-22 2.11E-20

Signaling by SCF-KIT 2.20E-22 2.99E-20

Downstream Signaling Events Of B Cell
Receptor (BCR)

2.53E-22 3.14E-20

Signaling by EGFR in Cancer 4.85E-21 5.51E-19

Signaling by NGF 5.58E-20 5.85E-18

Signaling by EGFR 6.40E-20 6.23E-18

Downstream signal transduction 4.34E-18 3.95E-16

Signaling by ERBB2 6.10E-18 4.89E-16

DAP12 signaling 6.10E-18 4.89E-16

TCR signaling 1.14E-17 8.63E-16

DAP12 interactions 1.91E-17 1.37E-15

Interleukin-3, 5 and GM-CSF signaling 9.04E-17 6.16E-15

P-Values for the hypergeometric test are shown. FDR= False Discovery Rate. Complete the table
of statistics in Supplementary Data 2.

Fig. 4 | Lower Neutrophil to lymphocyte ratios at birth in term newborns who
later developed sepsis and in preterm newborns. A Median difference in epi-
genetic NLR at birth (D0) between infants that developed localized infection or
clinical sepsis within the first seven days in the EPIC-002 cohort. Exact p-values by
t-test. Total n = 54. B Difference in median epigenetic NLR from preterm and term

(control) umbilical cord blood samples. Exact p-values by t test. Total n = 90.
Boxplots show the median and interquartile range (IQR, 25th-75th percentile).
Whiskers extend to the most extreme data points within 1.5 times the IQR from the
boxhinges (the 25th and 75th percentiles). Points outside this range are considered
outliers and are plotted individually).
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for bisulfite conversion and genotyping using Illumina Infinium
MethylationEPICBeadchip v1 arrays. Raw.iDAT fileswere preprocessed
using the Minfi package39 from the Bioconductor Project (http://www.
bioconductor.org) in R software (http://cran.r-project.org/). Sample
quality was assessed using control probes on the array and con-
cordancebetween the estimatedand reported sex andgenotypebased
on MDS clustering of the SNP genotyping control probes. Samples
discordant for sex, genotype, or failed quality control were removed
prior to analysis. Between-array normalization was performed using
the stratified quantile method to correct for type 1 and 2 probe biases.
Probes exhibiting a P-detection call rate of > 0.01 in one or more
samples, containing SNPs at the single-base extension site or CpG
assay site, probes measuring non-CpG loci, and reported to have off-
target effects by McCartney et al. 40 were removed. After sample and
probe filtering, the final EPIC-002 dataset consisted of 1267 samples
and 747,905 CpG probes, and the EPIC-003 dataset consisted of
90 samples and 771,309 probes (Supplementary Data 6). Methylation
ratios were derived as β values = methylated alleles

unmethylated +methylatedð Þ*100 with log 2
transformation to M values for statistical analysis.

Genotyping and imputation
Genomic DNA samples were genotyped at the Australian Genome
Research Facility using an Illumina Global Screening Array v3 with a
multi-disease drop-in. Genotype calling was performed with the gen-
call algorithm within GenomeStudio (Illumina). Quality control was
performed using the plinkQC package (v 0.3.4)41 to remove samples
with > 5% missing data and high relatedness (PI_HAT >0.2) in identity-
by-descent analysis for all pairs of samples or with mismatched
ancestry estimates based on principal component analysis of merged
data with the 1000 genomes phase 3 data set. We excluded SNPs
characterized by > 5%missing values, a Hardy-Weinberg equilibrium p-
value of < 0.001, and a minor allele frequency of < 5%. Quality-
controlled data were then imputed with the Haplotype Reference
Consortium hg19 r1.1 reference panels using Beagle 5.4 on the Michi-
gan imputation server. Imputed genotypes were filtered to remove
SNPs with a minor allele frequency of < 5% and Hardy–Weinberg
equilibrium p-value < 0.001, with an r2 value greater than 0.3, leaving
8,461,000 variants for analysis.

RNASeq
Total RNAwas extracted fromeach sample using a Paxgene BloodRNA
kit (Qiagen, Valencia, CA, USA) following the manufacturer’s protocol.
RNA quantification and quality assessment were performed using an
Agilent 2100Bioanalyzer (SantaClara, CA). TheNEBNextPoly(A)mRNA
Magnetic Isolation Module (NEB; Ipswich, MA, USA) was used to cap-
ture polyadenylated RNA. Strand-specific cDNA libraries were gener-
ated using the KAPA RNAHyperPrep Kit (Roche, Basel, Switzerland) on
a Freedom EVO 100 (Tecan, Männedorf, Switzerland). cDNA libraries
were prepared across 33 separate batches, and sequencing was com-
pleted over 19 sequencing runs. Thirteen batches of samples were
sequenced on a HiSeq2500 (Illumina; San Diego, CA, USA) using high-
output single-read runs of 100bp-long sequence reads (including
adapter/index sequences). Six batches of samples were sequenced on
HiSeqX (Illumina, San Diego, CA, USA) to generate paired-end reads of
150 bp (the second read pair was discarded). Seven samples were
sequenced on both platforms to evaluate variations between the
sequencing platforms. FastQC v0.11.9 and MultiQC v1.8 1 were used to
assess the sequence quality, and short sequence reads were aligned to
the hg38 human reference genome (Ensembl GRCh38v98) using STAR
v2.7.3a42. Counts of the number of reads mapped per gene were

Table 3 | Summary statistics of the general linear model

Estimate Std.Error P-value

Intercept 2.10 1.08 0.05

Sex 0.40 0.32 0.21

Apgar9* 0.80 0.74 0.29

Apgar101 0.19 0.71 0.80

Birthweight z-score 0.30 0.17 0.08

Birth Season −0.34 0.35 0.32

Maternal Age −0.01 0.03 0.80

Maternal Antibody2 −0.50 0.32 0.12

Breastfeeding 0.39 0.50 0.43

Gestational age 0.09 0.16 0.59

Std.Error = Standard error.
1= Apgar score parameter estimates compared to reference group APGAR 8.0.
2Maternal anti-HepB (HBsAg) serological status.

Table 4 | SNPs associated with epigenetically inferred NLR

CHR ID A1 UNADJ GC BONF HOLM SIDAK_SS FDR_BH

18 18:9004175:C:T T 2.10E-12 2.76E-12 2.3E-05 2.3E-05 2.3E-05 2.3E-05

11 11:44282120:A:G A 5.20E-11 6.60E-11 5.6E-04 5.6E-04 5.6E-04 2.8E-04

7 7:23763730:A:T T 1.33E-09 1.63E-09 1.4E-02 1.4E-02 1.4E-02 2.6E-03

7 7:23796946:C:T T 1.47E-09 1.80E-09 1.5E-02 1.5E-02 1.5E-02 2.6E-03

7 7:23793021:C:A A 1.47E-09 1.80E-09 1.5E-02 1.5E-02 1.5E-02 2.6E-03

15 15:74047924:T:C C 1.48E-09 1.81E-09 1.5E-02 1.5E-02 1.5E-02 2.6E-03

7 7:23773195:A:G G 1.86E-09 2.27E-09 1.9E-02 1.9E-02 1.9E-02 2.7E-03

22 22:39329878:C:T T 2.50E-09 3.05E-09 2.6E-02 2.6E-02 2.5E-02 3.2E-03

22 22:39324344:C:A A 4.36E-09 5.28E-09 4.5E-02 4.5E-02 4.4E-02 3.7E-03

22 22:39333937:G:T T 4.71E-09 5.71E-09 4.8E-02 4.8E-02 4.7E-02 3.7E-03

22 22:39329780:C:T T 4.71E-09 5.71E-09 4.8E-02 4.8E-02 4.7E-02 3.7E-03

22 22:39329593:G:A A 4.71E-09 5.71E-09 4.8E-02 4.8E-02 4.7E-02 3.7E-03

22 22:39332920:C:T T 4.71E-09 5.71E-09 4.8E-02 4.8E-02 4.7E-02 3.7E-03

CHR: Chromosome.
A1 = Effect Allele.
UNADJ = unadjusted P-value, linear regression under an additive model.
GC =Genomic Control.
BONF = Bonferroni P-value.
HOLM=Holm corrected P-value.
SIDAK_SS = Sidak correction single step.
FDR_BH = False discovery rate correction Benjamini Hochberg method.
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generated using htSeq count (HTSeq v0.11.2 3)43. High-read-count
globin genes (< 10 counts in 53 or more samples or the smallest
number of biological replicates within each treatment group) were
removed from the count matrix. Counts were then normalized using
vst-transformation and adjusted for the cDNA library preparation
batch using ComBat-seq44 (a covariate matrix was supplied that
included sex, DOL, and vaccine group to preserve any effects asso-
ciated with major covariates).

Flow cytometry
Following venipuncture, 200 µL of whole blood cells were stained for
viability and stored in Smart tube solutions prior to red blood cell lysis
and cell fixation (Smart tube, CA, USA), and frozen at − 80 °C. The

samples were thawed in a water bath at 10 °C and centrifuged at
600 × g for 10min. Cell pellets were washed by centrifugation in
phosphate-buffered saline (PBS) and stained according to the manu-
facturer’s recommendations. Each sample was stained with antibodies
specific to the anchor markers in the two flow panels. Each panel
contained 13 surface markers and was designed to identify B cell
subsets and the main myeloid cell populations, including neutrophils,
dendritic cells (DCs), natural killer (NK) cells, monocytes, and T cell
subsets (Supplementary Table 1)10. After staining, the blood cells were
washed in PBS, and flow cytometry data were acquired using an LSRII
flow cytometer (BD Biosciences). The samples were run in four dif-
ferent batches, with up to 200 samples analyzed daily in 96well plates.
Initial quality control was performed by inspecting the compensated
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Fig. 5 | Genome-wide association analysis of baseline NLR trait in African
newborns fromthemaincohort.AGWASsummary statistics for linear regression
under the additive genetic model with genome-wide significance threshold is
shown in red (left panel). The quantile-quantile plot of P-values with genomic
inflation score (right panel). B Thirteen genomic-risk loci were identified from
GWAS summary statistics using the FUMA GWAS tool. Genomic location is shown
on the y-axis with region size, number of SNPs and mapped genes shown for each
region. C Median difference in log NLR shown as a function of genotype for two

top-rankedSNPsonChromosome22 (left panel) andChromosome18 (right panel).
Exact P-values are shown using the Wilcox test. Boxplots show the median and
interquartile range (IQR, 25th-75th percentile). Whiskers extend to the most
extremedata pointswithin 1.5 times the IQR from theboxhinges (the 25th and 75th
percentiles). Points outside this range are considered outliers and are plotted
individually). Genotype codes indicate the presence of a minor allele of the SNP
variant; 0 = homozygous major allele, 1 = hemizygous, 2 = homozygous minor
allele. Total n = 557.

Table 5 | Expression quantitative trait loci mapping results

CHR ID A1 UNADJ STAT FDR ENS SYMBOL TISSUE

22 22:39314326:C:T T 2.37E-05 −0.196894 7.44E-20 ENSG00000183741 CBX6 Whole Blood

22 22:39321323:A:G A 5.78E-05 0.188351 7.44E-20 ENSG00000183741 CBX6 Whole Blood

22 22:39324344:A:C A 9.69E-05 0.189103 7.44E-20 ENSG00000183741 CBX6 Whole Blood

CHR: Chromosome.
ID = Unique SNP identifier consists of chr:pos:Allele1:Allele2.
UNADJ = unadjusted P-value for linar regression test.
STAT = Signed test statistic.
FDR = False Discovery Rate P-value of eQTLs.
ENS = Ensembl Gene Identifier.
SYMBOL =Official Gene Symbol.
TISSUE = Tissue source from GTEx/v8 data source.
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cytometry data using FlowJo software (version 9.9, Becton, Dickinson,
and Company) to ensure optimal experimental conditions and popu-
lation gating according to predefined gating strategies. Batch control
was achieved by processing the same whole blood internal control
samples, and the batch data were monitored to assess instrument
performance and perform routine checks on the cytometer45. The cell
counts of all gated populationswere normalized to the counting beads
to derive the cell counts per microliter of blood. Unbiased automated
gating tools were used to generate cell counts of different cells cir-
culating in the blood at a given time point and are described in the
Supplementary Methods.

Statistical analysis
All statistical analyses were performed using R software developed
by CRAN (v4.1.2). Blood cell proportions were deconvoluted from
methylation Beta values using the EpiDISH method under ‘RPC’
mode46. For the primary epigenetic analysis, we included all partici-
pants from EPIC-002 and EPIC-003 with available DNA methylation
data regardless of whether they had complete follow-up samples.
Longitudinal linear regression modeling of M-value methylation
ratios on the sample plate and sex was initially performed using the
Limma framework47, which handles missing data through pairwise
comparisons between available time points for each individual, uti-
lizing all available data. Residuals from the model fit were extracted
and used in the matrix decomposition for repeated measures in the
mixOmics package to decompose individual variation48. To analyze
differentially methylated cell types, a regression model was fitted to
the decomposed dataset with DOL as a numeric predictor and
adjusted for Sentrix slide ID as a batch variable. The estimated cell
counts were used for multiple interaction testing, as implemented in
EpiDISH49. To identify differentially methylated regions, a regression
model was fitted to the decomposed dataset with DOL as the main
numeric predictor for differentially methylated cell type CpGs using
limma, adjusted for covariates sex and sample plate ID as a batch
variable. Limma statistics were then used as inputs to the DMRcate
package50 for the de novo identification of DMRs using a bandwidth
smoothing window of 1 kb, a scaling factor of 2, a minimum of four
CpGs, and a minimum effect size of 2% to define DMRs. Only DMRs
with a minimum smoothed FDR of P < 0.05 were reported. For all
epigenetic analyses, genome-wide significance was declared at a false
discovery rate adjusted P-value of ≤0.05. To evaluate reproducibility
in the validation cohort, we fitted the same regression model of DOL
on methylation M values adjusted for sex and sample plate to both
cohorts and performed Pearson’s correlation analysis on t-statistics
from both datasets. Ontology testing of DMRs was performed using
the MissMethyl package51. The integration of DNA methylation and
RNA-seq data was achieved using themCSEA package52. Both RNAseq
and methylation ratios were subset to those with matching data
before ranking probes based on the association with visit number (V1
or V2) and correlation of the lead CpG with RNAseq counts under the
default parameters. To derive epigenetic NLR scores, we used epiD-
ISH cell counts to calculate NLR= Neutrophils

CD4T +CD8T +Bcells +NKcells. The natural
log10 of the NLR was used to compare the ratio data. General linear
mixed-effect models were used to determine whether the NLR at
DOL0 was a significant predictor of sepsis status. Linear regression
using the DOL NLR as the independent variable was used to identify
prenatal predictors. For causal mediation analysis, we used lead CpG
for each tested gene promoter, neutrophil counts, and DOL, in
regression models to estimate the total effect and the effect of lead
CpG as a mediator variable. Non-parametric bootstrapping with
1000 simulations was used to derive the estimates and confidence
intervals using the mediate package in R (v4.5.0). For GWAS, linear
regression of variants using NLR scores at DOL0 as a predictor was
conducted under an additive genetic model adjusted for sex and the
top five principal components from genetic ancestry analysis using a

standardized covariance structure and adjusted for genomic control
implemented in the PLINK2 software53. SNPs were genome-wide
significant at a threshold of P ≤ 5 × 10−8. We used the FUMA GWAS
tool (v1.5.4) using a position mapping window size of 10 kb (AFR
reference population 1KG/Phase3) for functional annotation of SNP
associations. Heritability estimation was performed on the GWAS
summary statistics using the LD score regression implemented in the
LDSC package54, incorporating the UK BioBank African population
LD scores. DNA methylation analysis was performed using the fol-
lowing Bioconductor packages: EpiDISH (v2.10.0) for cell-type
deconvolution, Limma (v3.50.3) for differential methylation analy-
sis, mixOmics (v6.18.1) for within-subject variance estimation,
DMRcate (v2.8.5) for identification of differentially methylated
regions, MissMethyl (v1.28.0) for imputation of missing methylation
values, mCSEA (v1.14) for methylation enrichment analysis, and
methylclock (v1.0.1) for estimating epigenetic age acceleration. The
tidyverse suite of packages (v2.0.0) was employed for data manip-
ulation and visualization. Genetic association analyses were con-
ducted using FUMA GWAS (v1.5.4) for functional mapping and
annotation of GWAS results, PLINK2 (v2.00) for data management
and statistical analysis, and LDSC (v1.0.1) for estimating genetic
heritability. Preprocessing of Illumina methylation array data was
performed usingMinfi (v1.40.0). Mediation analyses were performed
using the mediation package (v4.5.0), and linear mixed-effects
models were fitted using lmerTest (v3.1-3).

Data management and quality assurance
Data Management, governance, and quality assurance were managed
by a dedicated Data Management Core (DMC) team at Boston Chil-
dren’s Hospital. DMC oversaw the curation of raw datasets generated
by core assay labs and the production of their canonical forms within
the EPIC-HIPC network. A typical assay core-generated rawdataset was
comprised of [1] a “Features” matrix of samples (as rows) and assay
features (as columns) values and [2] a “Metadata”matrix of the sample
identifiers and assay-specific processing and quality control features
for each sample in the “Features’matrix. Each EPIC-HIPC sample had a
unique global sample identifier associated with the subject and bio-
sample extraction time. Sample identifiers were checked for con-
cordance between “Features,” “Metadata,” and the central EPIC-HIPC
database of sample identifiers, clinical, and assay core processing
parameters. Second, the sample-wise distributions of the feature
values were qualitatively investigated for technical anomalies. For
genetic association testing, the sex and kinship of the participants
derived from their sample feature variables were compared with their
clinical records.

SAGER guidelines
Subject sex was recorded in clinical notes and determined by
genetic inference from whole blood samples. In cases where
recorded sex differed from genetically inferred sex, subjects were
excluded from analysis (QC details in Supplementary Data 6).
Regression modeling was adjusted for sex such that findings are
generalizable to both sexes.

Inclusion and Ethics
This researchwas conducted inpartnershipwith local researcherswho
were involved in the design, data collection, analysis, and reporting of
the study. The research is locally relevant and the study protocol was
acceptable to parents and local IRB. The design of this study was
considerate and intentionally minimized invasive sampling or any
changes to routine care.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Methylation data files generated in this study have been deposited in
the Gene Expression Omnibus (GEO) under accession number
GSE272800. The SNP array data files are available under restricted
access for participant confidentiality at the following link (https://
www.immport.org/shared/study/SDY1538), and access requests
should be directed to the corresponding author. Source data are
provided in this paper.

Code availability
Analysis scripts have been deposited at Gihub: (https://github.com/
pvpdmac/epichipc/tree/main/Epigenetics) and are publicly available
as of the date of publication.
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