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Abstract

Background: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of stroke survivors. Presence of pre-
existing vascular brain injury, in particular the extent of white matter hyperintensities (WMH), is associated with worse 
cognitive outcome after stroke, but the role of WMH location in this association is unclear.

Aims: We determined if WMH in strategic white matter tracts explain cognitive performance after stroke.

Methods: Individual patient data from nine ischemic stroke cohorts with magnetic resonance imaging (MRI) were 
harmonized through the Meta VCI Map consortium. The association between WMH volumes in strategic tracts and 
domain-specific cognitive functioning (attention and executive functioning, information processing speed, language and 
verbal memory) was assessed using linear mixed models and lasso regression. We used a hypothesis-driven design, pri-
marily addressing four white matter tracts known to be strategic in memory clinic patients: the left and right anterior 
thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus.

Results: The total study sample consisted of 1568 patients (39.9% female, mean age = 67.3 years). Total WMH volume 
was strongly related to cognitive performance on all four cognitive domains. WMH volume in the left anterior thalamic 
radiation was significantly associated with cognitive performance on attention and executive functioning and information 
processing speed and WMH volume in the forceps major with information processing speed. The multivariable lasso 
regression showed that these associations were independent of age, sex, education, and total infarct volume and had 
larger coefficients than total WMH volume.

Conclusion: These results show tract-specific relations between WMH volume and cognitive performance after isch-
emic stroke, independent of total WMH volume. This implies that the concept of strategic lesions in PSCI extends 
beyond acute infarcts and also involves pre-existing WMH.

Data access statement: The Meta VCI Map consortium is dedicated to data sharing, following our guidelines.
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Introduction

Post-stroke cognitive impairment (PSCI) occurs in up to 
50% of stroke survivors.1,2 Demographic factors, such as 
age and education, are known determinants for cognition 
after stroke. Features of the acute infarct, in particular size 
and location, are also key determinants of PSCI.3,4 In addi-
tion, recent evidence points toward an important contribu-
tion of pre-existing vascular brain injury to PSCI, for 
example, white matter hyperintensities (WMH) of pre-
sumed vascular origin, lacunes, and old infarcts, as well as 
brain atrophy.5

Most prior studies focused on the relationship of global 
WMH volume with post-stroke cognition.6–11 The question 
arises whether the concept of strategic lesion locations, 
that has been established for infarcts, is also relevant for 
WMH. There is converging evidence in memory clinic 
patients, patients with cerebral autosomal dominant arte-
riopathy with subcortical infarcts and leukoencephalopa-
thy (CADASIL) and community-dwelling individuals, that 
there are indeed several strategic white matter tracts where 
WMH impact cognition, but this concept has not been suf-
ficiently studied in the setting of stroke.12,13 In a previous 
large multicenter study in memory clinic patients,14 sepa-
rate from this study sample, we identified the left and right 
anterior thalamic radiation, the forceps major, and the left 
inferior fronto-occipital fasciculus as strategic white matter 
tracts, among 20 tracts that were evaluated.

Aims and hypothesis

The aim of this study is to test the hypothesis that WMH in 
these four strategic tracts are also inversely associated with 
cognitive outcome in patients with ischemic stroke, inde-
pendent of total WMH volume.

Methods

Study design and participants

We pooled and harmonized individual patient data from 
nine ischemic stroke cohorts: France (STROKDEM), 
Germany (DEDEMAS), the Netherlands (CASPER, 
CODECS, PROCRAS, USCOG), Singapore (COAST), and 
South Korea (Bundang VCI, Hallym VCI). Eligible cohorts 
were derived from two previously published Meta VCI 
Map projects.3,15 Individual patient data from these cohorts 
were included if magnetic resonance imaging (MRI) with 
fluid-attenuated inversion recovery (FLAIR) and T1 
sequences and detailed neuropsychological assessment 
within 15 months of the index stroke were available.

Central data processing and analysis were performed at 
the University Medical Center Utrecht (Utrecht, the 
Netherlands). For all participating cohorts, ethical and 
institutional approvals were obtained as required by local 
regulations, including informed consent, to allow data 
acquisition and data sharing. Background and organization 
of the Meta VCI Map consortium are described in the 
design paper15 and on the consortium website (https://
metavcimap.org).

Image processing

For eight cohorts, WMH segmentations were performed in 
Utrecht as part of the current project, using a semi-auto-
mated validated technique.16,17 For one cohort, CASPER, 
WMH segmentations were provided by the participating 
center. Details on WMH segmentation methods per cohort 
are provided in the Supplemental Material. WMH lesion 
maps were registered to the Montreal Neurological Institute 
(MNI)-152 brain template18 for spatial normalization using 
RegLSM.19 Acute infarct maps were subtracted from the 
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WMH lesion map to exclude the possible classification of 
an infarct as WMH. In addition, voxels located outside the 
white matter were removed from all individual WMH 
lesion maps using the MNI probabilistic white matter 
atlas20 (thresholded at 30%). All white matter tracts were 
defined according to the JHU atlas with a probability 
threshold of 10%.21

Acute infarct segmentations in MNI-152 space were 
available from previously published Meta VCI Map pro-
jects.3,15 More details on image processing are described in 
the Supplemental Material.

Neuropsychological data

Individual neuropsychological tests were assigned to four 
cognitive domains: (1) attention and executive functioning, 
(2) information processing speed, (3) language, and (4) ver-
bal memory. If a cognitive domain was represented by 
more than one neuropsychological test, the mean of the 
norm-referenced z-scores from the available neuropsycho-
logical tests was obtained. This was done on a per subject 
basis. Further details on the available neuropsychological 
tests and harmonization of the neuropsychological data are 
provided in the Supplemental Material.

Statistical analyses

In a region of interest (ROI)-based approach, the number of 
affected voxels with WMH per tract for each patient was 
related to cognitive performance at the domain level in lin-
ear mixed models with cognitive domain z-score as depend-
ent variable, correcting for study site (as random effects) 
and total WMH volume (as fixed effects). We chose this 
ROI-based approach because it has the advantage of con-
sidering cumulative lesion burden within a single tract 
(which may be more relevant than considering each punc-
tate lesion separately) and has higher statistical power com-
pared to voxel-based analyses.14 Our primary analyses 
considered four white matter tracts identified as strategic in 
earlier work14 in a memory clinic setting: the left anterior 
thalamic radiation, right anterior thalamic radiation, for-
ceps major, and the left inferior fronto-occipital fasciculus. 
In this hypothesis-driven design, we did not correct for 
multiple comparisons. In secondary analyses, the same 
models were run, stratified by infarct subtype. For large 
subcortical and cortical infarcts, we also corrected for 
infarct volume (as fixed effects). A p-value of <0.05 was 
considered as statistically significant. For all ROI-based 
analyses, patients with an acute infarct in one of the white 
matter tracts were excluded from the analysis of that spe-
cific white matter tract.

Second, a sensitivity analysis was performed includ-
ing all 20 white matter tracts from the JHU atlas, in order 
to assess whether relevant white matter tracts were 
missed in the primary analysis. As this analysis was not 

hypothesis-driven, a Bonferroni correction for 20 tests (i.e. 
20 ROIs for major white matter tracts) was applied, and a 
p-value < 0.0025 was considered statistically significant.

Third, a multivariable lasso regression model (using 
100-fold cross-validations) was used to study the signifi-
cant findings from the primary analysis in more detail, 
including WMH volume in strategic WMH tracts and total 
WMH volume, total infarct volume, as well as age, sex, and 
education as covariates. The lasso regression allows to 
assess the individual contribution of the white matter tracts 
in a multivariable model, thereby correcting for other deter-
minants of post-stroke cognition (i.e. WMH volume and 
infarct volume), also considering multicollinearity between 
the independent variables (i.e. total WMH volume, total 
infarct volume, the strategic WMH tracts). The model 
shrinks the regression coefficients down to zero if the vari-
able is redundant. The independent continuous variables 
were standardized and the model was corrected for study 
site. In this way, the individual contribution of each inde-
pendent variable to the cognitive domain scores could be 
determined.

All ROI-based analyses were performed using glmnet 
(v4.1.3) and lme4 (v1.1.26) in R (v4.1.2).

Results

Participants

A flowchart of patient selection from the participating 
cohorts is provided in Figure 1. The total study sample con-
sisted of 1568 patients (39.9% female) from 9 stroke 
cohorts, with a mean age of 67.3 years (standard deviation 
(SD) = 11.5). In the total study sample, the mean norm- 
referenced cognitive domain z-score for attention and exec-
utive functioning was −0.7 (SD = 1.0), information process-
ing speed −0.6 (SD = 1.2), language −0.7 (SD = 1.1), and 
verbal memory −0.9 (SD = 1.2). Of total, 517 (33.0%) 
patients had a small subcortical infarct, 759 (48.4%) 
patients had a large subcortical or cortical infarct, and 361 
(23.0%) patients had an infratentorial infarct. Median 
WMH volume was 7.1 mL (interquartile range (IQR) = 16.4). 
Baseline characteristics of the total study sample and per 
infarct subtype are shown in Table 1 and cohort-specific 
baseline characteristics in Supplemental Table S2. Lesion 
prevalence maps of the acute infarct and WMH per infarct 
subtype are shown in Figure 2.

WMH tract–based linear mixed models

In the primary analysis (see Table 2) including four prese-
lected white matter tracts, a significant negative correlation 
was found between WMH volume within the left anterior 
thalamic radiation and attention and executive functioning 
(coefficient = −0.175, standard error (SE) = 0.065, p = 0.007) 
and information processing speed (coefficient = −0.197, 
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Figure 1. Flowchart of patient selection. This figure shows the flowchart of patient selection for the nine participating cohorts. 
This figure was previously published in Stroke.11

Table 1. Baseline characteristics.

Characteristics

Infarct subtype

Total (n = 1568)
Small subcortical 
infarct (n = 517)

Large subcortical 
and cortical infarct 
(n = 759)

Infratentorial 
infarct (n = 361)

Female, n (%) 235 (45.5)* 290 (38.2)* 121 (33.5)* 626 (39.9)*

Age in years, mean (SD) 66.3 (11.7)* 67.7 (11.7)* 68.1 (11.4)* 67.3 (11.5)*

Education, n (%)

 Lower than secondary school 265 (51.3)* 398 (52.4)* 188 (52.1)* 816 (52.0)*

 Secondary school 122 (23.6)* 164 (21.6)* 71 (19.7)* 343 (21.9)*

 Technical school or college 57 (11.0)* 65 (8.6)* 33 (9.1)* 153 (9.8)*

 University or higher 73 (14.1)* 132 (17.4)* 69 (19.1)* 256 (16.3)*

Baseline NIHSS, mean (SD) 2.5 (2.5)# 4.3 (4.9)# 3.1 (3.6)# 3.5 (4.0)#

History of stroke and TIA, n (%) 64 (12.9)# 114 (15.0)# 51 (14.1)# 217 (14.4)#

Imaging characteristics

  Normalized acute infarct volume (mL), 
median (IQR)

1.1 (1.2)* 11.2 (22.2)* 1.7 (6.7)* 2.6 (11.4)*

(Continued)
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Characteristics

Infarct subtype

Total (n = 1568)
Small subcortical 
infarct (n = 517)

Large subcortical 
and cortical infarct 
(n = 759)

Infratentorial 
infarct (n = 361)

 Presence of an old infarct, n (%) 73 (14.1) 177 (23.3) 73 (20.2) 302 (19.3)

  Normalized WMH volume (mL), 
median (IQR)

8.3 (17.0)* 6.0 (15.4)* 8.6 (18.7)* 7.1 (16.4)*

Cognitive performance, mean (SD)

 MoCA 23.5 (4.0)* 22.3 (4.6)$ 23.5 (9.4)$ 23.0 (4.4)$

 Domain z-score

   Attention and executive functioning 
(n = 1470)

−0.6 (1.0)# −0.9 (1.1)# −0.6 (1.0)# −0.7 (1.0)#

   Information processing speed 
(n = 1467)

−0.5 (1.1)# −0.8 (1.2)# −0.5 (1.0)# −0.6 (1.2)#

  Language (n = 1537) −0.6 (1.0)# −0.9 (1.1)# −0.7 (1.0)# −0.7 (1.1)#

  Verbal memory (n = 1545) −0.8 (1.2)# −1.1 (1.3)# −0.9 (1.1)# −0.9 (1.2)#

SD: standard deviation; NIHSS: National Institutes of Health Stroke Scale; TIA: transient ischemic attack; IQR: interquartile range; WMH: white 
matter hyperintensity; MoCA: Montreal Cognitive Assessment.
Patients with multiple infarcts can be represented in more than one stroke category.
*Missing in < 1%.
#Missing in 1–10%.
$Missing in > 10%.

Table 1. (Continued)

SE = 0.071, p = 0.006) and between WMH volume within 
the forceps major and information processing speed (coef-
ficient = −0.132, SE = 0.054, p = 0.014), independent of total 
WMH volume and study site. No significant correlations 
were found between the right anterior thalamic radiation 
and left inferior fronto-occipital fasciculus and cognitive 
functioning.

In the sensitivity analyses, considering all 20 white mat-
ter tracts defined according to the JHU atlas, one additional 
significant inverse association was found, namely between 
WMH volume within the right inferior longitudinal fascic-
ulus and verbal memory (Supplemental Table S3).

Stratification of the main analysis according to infarct 
subtype showed consistent results with the overall analyses 
for cortical and large subcortical infarcts and small subcor-
tical infarcts, whereas for infratentorial infarcts, the rela-
tions between tract-specific WMH volume and cognition 
were attenuated (Supplemental Table S4).

Multivariable lasso regression models

Three multivariable lasso regression models were per-
formed on the significant results from the primary analysis. 
In these models (including age, sex, education, total infarct 
volume, total WMH volume, tract specific WMH volume, 
and study site as independent variables), WMH volume 

within the left anterior thalamic radiation had a larger coef-
ficient when assessing attention and executive functioning 
(−0.164) and information processing speed (−0.121) than 
total WMH volume (−0.012 and −0.073, respectively) and 
WMH volume within the forceps major had a larger coef-
ficient when assessing information processing speed 
(−0.126) than total WMH volume (−0.090) (Table 3).

Discussion

In this large multicenter study, we found that WMH in stra-
tegic white matter tracts was associated with domain- 
specific cognitive functioning in patients with ischemic 
stroke. Tract-based analyses showed that regional WMH 
volume within the left anterior thalamic radiation and the 
forceps major inversely correlated with attention and exec-
utive functioning and information processing speed. The 
effect sizes of individual white matter tracts—reflected in 
the coefficients of lasso regression—were larger than for 
total WMH volume and the tract-specific relations with 
cognition were independent of infarct volume, age, sex, 
and level of education. Stratification of the results accord-
ing to infarct subtype showed that these effects were con-
sistent in patients with large subcortical, cortical, and small 
subcortical infarcts and attenuated in patients with infraten-
torial infarcts.



Coenen et al. 921

International Journal of Stroke, 19(8)

Previous studies on WMH location in other clinical set-
tings, that is memory clinic patients (including vascular 
and/or Alzheimer disease), for example, Coenen et al.,14 
CADASIL,22,23 and community-dwelling individuals, for 
example, Lampe et al.24 and Biesbroek et al.25 already gen-
erated evidence that the cognitive impact of WMH depends 
on location. The anterior thalamic radiation and corpus cal-
losum have been identified most consistently in these stud-
ies.14,26,27 The anterior thalamic radiation connects the 
anterior and dorsomedial thalamic nuclei with the frontal 
and cingulate cortices. The forceps major connects the 
occipital lobes through the splenium of the corpus callo-
sum, which forms the main connection between the cere-
bral hemispheres.28 Thus, these tracts form part of large 
distributed brain networks, which adds plausibility to the 
finding that WMH in these tracts are associated with 

executive functioning and processing speed. In a previous 
large multicenter study including 3525 memory clinic 
patients,14 we identified four specific white matter tracts as 
strategic white matter tracts which were a determinant of 
domain-specific cognitive functioning. These four tracts 
were also included in this study.

For several reasons, it is important to address the ques-
tion of strategic WMH locations also specifically in the 
context of ischemic stroke. First, the etiology and distri-
bution of WMH may differ according to disease setting 
and that may affect the relation with cognition. For exam-
ple, particularly in memory clinic populations, common 
occurrence of amyloid pathology may affect WMH distri-
butions.29 Moreover, co-occurring pathologies differ in 
different disease settings and the impact of the acute 
infarct itself, for example, could in theory overshadow 

Figure 2. Infarct and WMH prevalence maps shown per infarct subtype. This figure shows how often each location in the brain 
was affected by an acute infarct or WMH. Blue voxels are damaged in one patient and red voxels in >40 patients. Results are 
presented per infarct subtype (i.e. small subcortical infarcts, large subcortical and cortical infarcts, and infratentorial infarcts). For 
each infarct subtype, the first row represents the infarct prevalence map and the second row represents the WMH prevalence 
map. Patients with multiple infarcts can be represented in more than one stroke category.
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Table 3. Lasso regression results.

Model Independent variables

Attention 
and executive 
functioning

Information 
processing 
speed

Coefficient Coefficient

1 Age −0.007 −0.083

Sex R R

Education R R

Total infarct volume −0.101 −0.205

Total WMH volume −0.012 −0.073

WMH volume anterior 
thalamic radiation L

−0.164 −0.121

2 Age −0.020

Sex R

Education 0.082

Total infarct volume −0.138

Total WMH volume −0.090

WMH volume forceps 
major

−0.126

WMH: white matter hyperintensity
A lasso regression model was used to relate total infarct volume, total 
WMH volume, tract-specific WMH volume (model 1: left anterior 
thalamic radiation, model 2: Forceps major), as well as age, sex (0: 
female, 1: male), and education to each of the four cognitive domains. 
Lasso regression corrects for multicollinearity between independent 
variables and reduces the coefficients to zero (indicated by R in the 
table) if the variable is redundant. Apart from sex, all independent 
variables are standardized, which means the reported coefficients 
correspond with the change in cognitive functioning (i.e. increase or 
decrease in z-score) associated with 1 SD change in the independent 
variable. The model is also corrected for the nine study sites by including 
these as dummy variables (coefficients of study sites are not shown).

effects of WMH location. So far, only two previous stud-
ies (with relatively small sample sizes of 7612 and 11813 
patients) investigated the concept of strategic WMH loca-
tion for cognition after ischemic stroke. Zhao et al.12 
found clusters of significant WMH voxels in the corpus 
callosum, corona radiata, and posterior thalamic radia-
tion. The study from Valdés Hernández et al.13 found that 
an increase of WMH from baseline to 1-year follow-up in 
the external capsule, intersection between the anterior 
limb of the internal and external capsules, and optical 
radiation, was associated with worse post-stroke cognitive 
functioning. Direct comparison between our results and 
these prior studies is complicated by the use of different 
anatomical parcellations and terminology for reporting 
strategic regions across studies, but based on a visual 
inspection of these prior results, the left anterior thalamic 
radiation and forceps major appear to be consistently 
identified as strategic white matter tracts.
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Strengths of this study are the large sample size. 
Inclusion of individual patient data from nine cohorts from 
multiple continents provides geographical and ethnical 
diversity. Due to the large sample size, we were also able to 
stratify for infarct subtype, an important aspect given that 
different infarct subtypes are differentially related to WMH 
and stroke outcomes. Second, using a previously validated 
image processing pipeline,19 we were able to harmonize 
data from different centers using different scanners and 
MRI acquisition protocols. Third, the availability of 
detailed neuropsychological data made it possible to assess 
post-stroke cognitive functioning on a continuous outcome 
scale on the level of four different cognitive domains. 
Fourth, we obtained a high statistical power of the primary 
analysis using a hypothesis-driven approach including four 
preselected white matter tracts. However, this approach 
assumes generalizability of the strategic white matter tracts 
from a memory clinic setting to patients with ischemic 
stroke. Therefore, we also performed sensitivity analyses, 
which demonstrated that we did not miss any tracts with 
particular relevance in the context of stroke. Several other 
limitations also need to be considered. Although patients 
with pre-stroke dementia were excluded by most participat-
ing cohorts, based on either the Informant Questionnaire 
for Cognitive Decline in the Elderly score or prehospital 
diagnosis, PSCI could have influenced our findings.3 
Unfortunately, we were not able to correct for global brain 
atrophy or medial temporal lobe atrophy in our analyses, 
because due to technical restraints, brain atrophy measures 
could not be obtained for a sufficient number of patients. It 
should also be noted that using a tract-based approach, we 
only included the 40% of the white matter which is consid-
ered in the JHU atlas. Also, the JHU atlas was derived using 
a simple tractography approach that largely neglects cross-
ing fibers and thus potentially limits anatomical precision. 
For all patients, the acute infarct maps were subtracted 
from the WMH maps which might have led to an underes-
timation of total WMH volume, especially in patients with 
cortical and large subcortical infarcts. In addition, it was 
not possible to correct for infarcts in specific white matter 
tracts; therefore, patients with infarcts in a specific white 
matter tract were excluded from analyses considering that 
specific tract. Finally, WMH is a less sensitive marker of 
white matter injury compared to, for example, Diffusion 
Tensor Imaging (DTI).30 Hence, future DTI studies might 
provide additional insights into strategic tracts for PSCI.

Implications of this study are that strategic WMH loca-
tions should be taken into account to optimally assess the 
effect of WMH on cognition after stroke at the level of an 
individual patient. Future studies could use these findings 
to develop multimodal prediction models that also include 
other determinants of post-stroke cognition, such as age, 
sex, and education, together with information on multiple 
lesion types and their locations, including the acute infarct, 
prior infarcts, and WMH.

In summary, we identified the left anterior thalamic radi-
ation and the forceps major as strategic white matter tracts 
related to domain-specific cognitive functioning in stroke 
patients. These results are in line with current pathophysio-
logical models of PSCI that include pre-existing brain resil-
ience and lesion burden as important determinants that may 
either protect against or predispose to cognitive impairment 
after stroke. As such, pre-existing strategic WMH may be 
relevant in explaining variation in cognitive outcomes after 
stroke, beyond what is already explained by total WMH vol-
ume and clinical and acute infarct characteristics.
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