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Summary
A novel algorithm, AlphaMissense, has been shown to have an improved ability to predict the pathogenicity of rare missense genetic

variants. However, it is not known whether AlphaMissense improves the ability of gene-based testing to identify disease-influencing

genes. Using whole-exome sequencing data from the UK Biobank, we compared gene-based association analysis strategies including

sets of deleterious variants: predicted loss-of-function (pLoF) variants only, pLoF plus AlphaMissense pathogenic variants, pLoF with

missense variants predicted to be deleterious by any of five commonly utilized annotation methods (Missense (1/5)) or only variants

predicted to be deleterious by all five methods (Missense (5/5)). We measured performance to identify 519 previously identified positive

control genes, which can lead to Mendelian diseases, or are the targets of successfully developed medicines. These strategies identified

0.85 million pLoF variants and 5 million deleterious missense variants, including 22,131 likely pathogenic missense variants identified

exclusively by AlphaMissense. The gene-based association tests found 608 significant gene associations (at p < 1.25 3 10�7) across 24

common traits and diseases. Compared with pLoFs plus Missense (5/5), tests using pLoFs and AlphaMissense variants found slightly

more significant gene-disease and gene-trait associations, albeit with a marginally lower proportion of positive control genes. Neverthe-

less, their overall performance was similar. Merging AlphaMissense withMissense (5/5), whether through their intersection or union, did

not yield any further enhancement in performance. In summary, employing AlphaMissense to select deleterious variants for gene-based

testing did not improve the ability to identify genes that are known to influence disease.
Rare genetic variants are important contributors to human

diseases. They contribute to most Mendelian disorders,

and their effect sizes upon common diseases are larger

than those attributed to common variants.1–4 Importantly,

associated rare genetic variants are often coding and can

therefore be directly attributed to a gene. Loss-of-function

rare variants can offer insights into the direction of genetic

effect on disease outcome. However, studying rare causal

variants is challenging since most of the genetic variation

in the genome is both rare and benign. Thus, gene-based

analysis is usually employed to improve statistical power

by aggregating multiple rare variants across a gene into

one test to improve statistical power to detect disease

associations.5

Previous gene-based multi-variant tests like exome-wide

association studies (ExWAS) have successfully identified

disease-influencing genes, like WNT1 [MIM: 164820] for

osteoporosis [MIM: 166710],6 and drug-targeting genes,

such as PCSK9 [MIM: 607786] for low-density lipoprotein

(LDL)-cholesterol levels.7 Nevertheless, the power of

ExWAS relies heavily on the prior identification of variants
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with a likely functional impact5 to reduce the number of

irrelevant genetic variants included in the tests. While pre-

dicted loss-of-function (pLoFs) rare variants are most likely

to contribute to gene-based tests, deleterious missense var-

iants can also increase statistical power as they tend to be

more common. However, to use deleterious missense vari-

ants, one must understand which of the missense variants

is most likely to influence protein function—a process

referred to as variant annotation. Moreover, all deleterious

missense variant annotation strategies must strike a bal-

ance between false positive and false negative identifica-

tion of such variants.8,9

Recent advances in missense variant effect prediction

have made progress toward resolving this problem.

AlphaMissense, a recently described method based on an

unsupervised language model, combines protein structural

context with evolutionary conservation and has claimed

to achieve over 90% precision when predicting the known

clinical impact of missense variants.9 Additionally, their

variant pathogenicity annotations improved the predic-

tion of gene essentiality for cell survival and fitness.
Lady Davis Institute, Jewish General Hospital, McGill University, Montréal,
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Figure 1. Overview of ExWAS analysis and comparison of variants annotations by different methods
(A) Strategy to obtain single p value for each gene.
(B) Overlap of annotated likely deleterious variants by different ExWAS mask settings. (C) Number of tested genes with different mask
settings.
However, it is not known whether the improvements

observed in AlphaMissense’s ability to predict the deleteri-

ousness of missense variants results in improved associa-

tion testing between genes and diseases. If this improve-

ment were striking, it could help to identify new causes

of disease and consequently drug targets for needed drug

development. Using the UK Biobank whole-exome

sequencing (WES) data,10,11 we tested the ability of

AlphaMissense variant annotation to improve the ability

to identify positive control genes (known to influence

disease)12,13 through collapsing gene-based tests on 12

continuous traits and 12 diseases. We compared its perfor-

mance to other leading algorithms. The results empirically

test the ability of AlphaMissense to improve the identifica-

tion of known disease-influencing genes. The information

for the tested diseases and traits can be found in Tables S1

and S2, and the list of positive control genes is in Table S3.

Starting with 19,606 genes, for every exon, we anno-

tated deleterious variants into four categories: pLoF,

AlphaMissense, Missense (5/5), and Missense (1/5). Then

we assembled four sets of predicted deleterious variants

(i.e., masks): (1) pLoF, (2) pLoF with AlphaMissense, (3)

pLoF with Missense (5/5), and (4) pLoF with Missense

(1/5). Each mask provided a list of variants for genes in

gene-based association analysis. Last, we retained the

smallest p values from the five different combinations of

alternative allele frequency and statistical test method for

the association between each gene and each tested trait

or disease under different masks (Figure 1A).

Of 26 million variants from UK Biobank WES data,

we identified 0.85 million pLoF variants and 5 million pre-
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dicted deleterious missense variants by AlphaMissense or

any of the five commonly used annotation methods

(i.e., SIFT,14 PolyPhen2 [HDIV],15 PolyPhen2 [HVAR],16

MutationTaster,17 and LRT18). Specifically, AlphaMissense

classified 1.4 million variants as ‘‘likely pathogenic,’’

including 22,131 identified exclusively by AlphaMissense.

Missense (1/5) captured over 98% of AlphaMissense

predicted ‘‘likely pathogenic’’ variants while Missense

(5/5) covered 48% of AlphaMissense predicted ‘‘likely

pathogenic’’ variants (Figure 1B). Moreover, our results

showed that among the masks evaluated, Missense (1/5)

labeled the highest number of deleterious variants per

gene on average (267 variants per gene), followed by

AlphaMissense (74variantspergene),Missense (5/5) (56var-

iants per gene), and pLoF (43 variants per gene) (Table S4).

Despite the considerable variance in the number of anno-

tated variants across different annotation categories, 99%

of genes were tested in all masks (Figure 1C).

In the exome-wide gene-based analysis, we first checked

the genomic inflation factors of the p values for each mask

and test method combination. In general, no strong

genomic inflation was observed (value range: 0.96–1.39)

except for standing height (value range: 1.11–1.94)

(Table S5). This is not surprising as height is a well-known

highly polygenic trait.19

In total, our gene-based association tests found 608 sig-

nificant gene associations (p < 1.25 3 10�7) across 24

common traits and diseases. We found that adding pre-

dicted deleterious missense variants to masks led to the

identification of at least 60% more significant gene-trait

associations and about 30% more positive control genes
024



Figure 2. Significant gene associations identified in exome-wide gene burden analysis across 12 traits and 12 diseases
The bars without outlines indicate the numbers of significant genes (p < 1.25 3 10�7) identified in each trait and disease by different
masks. The bars with outlines indicate the number of significant genes that are also positive control genes for each trait and disease iden-
tified by differentmasks. The inset figure shows the total number of significant genes and positive controls identified by eachmask across
21 tested traits and diseases that have at least one known positive control gene. eBMD, estimated bone mineral density; BMI, body mass
index; WHR, waist-hip circumference ratio; LDL, serum low-density lipoproteins; T2D, type 2 diabetes.
as compared with pLoF-only mask (Figures 2 and S1A;

Table S6). Despite different numbers of associations identi-

fied, 114 significant associations and 30 positive control

genes were captured using any of the masks, which ac-

counts for between 27% and 57% and 50% and 71% of

the findings, respectively, of each mask (Figures S1B and

S1C). Comparing across masks, pLoF with AlphaMissense

and pLoF with Missense (5/5) resulted in more significant

associations and positive control genes than the pLoF-

only mask. Meanwhile, these two masks also identified a

slightly higher proportion of positive control genes (18%

for pLoF with Missense (5/5), and 17.6% for pLoF with

AlphaMissense) than pLoF with Missense (1/5) mask

(14.7%). Between these two preferred masks, pLoF with

AlphaMissense identified largely similar or slightly higher

numbers of significant gene-trait and gene-disease associa-

tions compared with pLoF with Missense (5/5) (Figure 2).

The proportion of positive control genes identified using

pLoF with AlphaMissense was similar to pLoF with

Missense (5/5) when using variants <1% or 0.1%, and
Human
were in fact slightly better when using singletons only

(Figure S2; Table S7). Additionally, the pLoF with

AlphaMissense and pLoF withMissense (5/5) masks shared

245 (71% and 76%) significant association findings and 46

(77% and 81%) of identified positive control genes

(Figures S1B and S1C). Furthermore, to evaluate the impact

of including additional predicted deleterious variants on

the effect sizes for a specific mask, we compared the me-

dian absolute estimated effects per gene of the 114 signifi-

cant associations identified across all four masks. As shown

in Figure S3, these effects were closer to the null when

more variants were included across different alternative

allele frequency categories, with the greatest change occur-

ring in pLoF with Missense (1/5) (Table S8). The median ef-

fect sizes of pLoF with AlphaMissense and pLoF with

Missense (5/5) are similar, although both are smaller

than those observed in pLoF only.

Next, to evaluate whether different masks enhanced the

distinction between positive control genes and non-posi-

tive control genes by offering more divergent p values,
Genetics and Genomics Advances 5, 100344, October 10, 2024 3



Figure 3. Performance curves (ROC and PRC) for all four masks to identify positive controls genes across all 21 tested traits and dis-
eases with positive control genes. The 95% confidence interval (CI) was determined using 1,000 bootstrap replicates.
we evaluated the performance of using different masks

in classifying these genes by calculating the receiver oper-

ating characteristic curve (ROC) and precision-recall curve

(PRC). Upon comparison, we observed that all four masks

have statistically indistinguishable area under the receiver-

operator curves (AUROC) (Figure 3, left panel). However,

pLoF with Missense (5/5) and pLoF with AlphaMissense

have a higher estimated area under the precision-recall

curves (AUPRC) than the other two masks despite the

fact that all the 95% confidence intervals of AUPRCs over-

lapped (Figure 3, right panel). Similar AUROC and AUPRC

patterns can be observed across tested traits, but we did

observe that specific masks could perform better for certain

traits and diseases (Figure S4). Additionally, we tested

whether using different aggregating methods for counting

alleles, in burden tests, across genetic sites within genes

changed the mask performance. Using the maximum

number of alternative alleles across sites (the default

approach) and using the sum of the number of alternative

alleles in gene-based association analyses performed simi-

larly (Figure S5).

Considering that performance was better when pLoF

variants were combined with either Missense (5/5) or

AlphaMissense annotated deleterious variants, we further

investigated whether merging AlphaMissense and

Missense (5/5) annotations before combining with the

pLoF variants could improve their ability to classify

positive control genes. We tested two designs: using pLoF

variants and variants predicted to be deleterious by (1)

both AlphaMissense and Missense (5/5) or by (2) either

AlphaMissense or Missense (5/5). Utilizing deleterious var-

iants predicted by either method identified slightly more

significant associations (372 pairs), although the propor-
4 Human Genetics and Genomics Advances 5, 100344, October 10, 2
tion of positive control genes remained similar (17.7%)

(Table S9; Figure S6). In contrast, using the overlapping

predictions led to fewer significant associations (287 pairs)

but a marginally higher proportion of positive control

genes (18.5%). The AUROC and AUPRC of these two new

mask definitions are similar to other masks (Figure S7).

Overall, little improvement was observed by merging

Missense (5/5) with AlphaMissense.

Last, we compared the performance of AlphaMissense

vs. Missense (5/5) without any pLoF variants. As shown

in Figure S8, AlphaMissense predicted deleterious variants

identified slightly more significant genes and positive con-

trol genes than Missense (5/5) (42 vs. 37, respectively).

However, the proportion of positive control genes identi-

fied is similar (24% for Missense (5/5) vs. 22% for

AlphaMissense). Interestingly, 108 significant gene-disease

and gene-trait associations (70% for Missense (5/5) and

55% for AlphaMissense) and 28 (76% and 67%) of identi-

fied positive control genes overlapped, suggesting that

most findings were captured by both Missense (5/5) and

AlphaMissense (Table S10).

Gene-based tests offer an elegant way to study the effect

of rare coding variants on human traits by improving sta-

tistical power. However, the best way to combine genetic

variants into gene sets is still not fully determined, simply

because there are usually many irrelevant genetic variants

in each gene set that may dilute any signal from the set of

causal variants. Hence, such analyses usually rely on

algorithms to predict which variants are likely to be loss-

of-function or missense variants with deleterious effects.

As gene-based analyses are restricted to a likely deleterious

subset of variants to increase this signal to noise ratio,

the success of these analyses rests partially on the
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performance of the predictions. The emergence of a lan-

guage model-based variant effect prediction methods,

AlphaMissense, has been suggested to be able to improve

gene-based association. However, our results showed that

AlphaMissense did not importantly outperform the cur-

rent state-of-the-art masks in gene-based association ana-

lyses using whole-exome data.

There are multiple reasons why the inclusion of

‘‘likely pathogenic’’ missense variants, as annotated by

AlphaMissense, does not lead to significant improvements.

First, the masks used in our analysis always included pLoF

variants, which already contribute significantly to the

associations observed between genes and traits. Further-

more, the addition of AlphaMissense’s predicted patho-

genic missense variants expands the analyzed gene pool

by only 184 genes (when added to pLoFs) or 33 genes

(when added to pLoF and Missense (5/5)) beyond those

tested using pLoF-only masks. This modest increase in

the number of genes tested offers limited scope for

enhancing the performance of gene-based association

tests. Last, as noted earlier in this report, other missense

annotation methods largely capture the same ‘‘likely path-

ogenic’’ variants identified by AlphaMissense. Given that

all gene-based tests then summarize information across

all analyzed variants in a gene (in various ways), the small

number of different prediction variants may not render a

large difference in the associated genes.

AlphaMissense may provide useful and clarifying infor-

mation in scenarios where understanding single variant ef-

fects is crucial. For example, AlphaMissense could be

particularly helpful in pinpointing actionable genetic sites

within known disease-influencing genes. This may be

particularly useful for individuals with Mendelian diseases

without major structural disruptions in the genetic re-

gion.20,21 Additionally, since AlphaMissense integrates

protein structure context into its predictions of variant ef-

fects, it should be more effective when identifying delete-

rious variants for diseases where proteinmalfunction arises

from changes in protein conformation. AlphaMissense

could also be advantageous in predicting pharmacogenetic

effects that involve protein-drug interactions.22

We recognize that while pLoF and missense variant an-

notations should not be affected by genetic ancestry, we

only performed our analyses in European genetic ancestry

individuals from the UK Biobank, and we only examined

24 traits. Hence, these results will need replication in other

populations once sample sizes allow this. Second, the UK

Biobank cohort is a relatively healthy cohort. The number

of individuals with diseases is low, which can limit the sta-

tistical power to identify disease-related genes, which may

make it more difficult to compare the performance of

different masks in ExWAS. Third, using different masks re-

sulted in differing performance characteristics when iden-

tifying positive control genes across various traits. Further

analyses are needed to test whether a specific type of ge-

netic effect on disease can be better represented by one

of these annotation algorithms. Last, there are other anno-
Human
tation masks that we have not tested, and that may

perform differently. Nevertheless, we compared our results

to the best currently available annotations,10 and we have

established that any future work shouldmake comparisons

to AlphaMissense.

In summary, we found that most of the ‘‘likely patho-

genic’’ missense variants identified by AlphaMissense

were also generally predicted to be deleterious by at least

one of five commonly used variant annotation methods.

Using masks combining AlphaMissense with pLoF did

not outperform the state-of-the-art missense annotation

tools for gene-based studies.
Data and code availability

Individual-level genotype, exome sequencing, and phenotype

data are available to approved researchers via the UK Biobank.

The main ExWAS summary statistics generated during this study

are available at GWAS Catalog (GCST90446417-GCST90446464).

UK Biobank exome data were analyzed using Regenie 3.2.1. All

other data analysis was performed using R (v.4.1.2). Additional

codes are available at Github (https://github.com/richardslab/

ExWAS_using_AlphaMissense).
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