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Abstract 

No v el applications of language models in genomics promise to ha v e a large impact on the field. The megaDNA model is the first publicly available 
generativ e model f or creating synthetic viral genomes. To e v aluate megaDNA’s ability to recapitulate the nonrandom genome composition of 
viruses and assess whether synthetic genomes can be algorithmically detected, compositional metrics for 4969 natural bacteriophage genomes 
and 1002 de no v o synthetic bacteriophage genomes w ere compared. Transf ormer-generated sequences had varied but realistic genome lengths, 
and 58% were classified as viral by geNomad. However, the sequences demonstrated consistent differences in various compositional metrics 
when compared to natural bacteriophage genomes by rank-sum tests and principal component analyses. A simple neural network trained to 
detect transformer-generated sequences on global compositional metrics alone displayed a median sensitivity of 93.0% and specificity of 97.9% 

( n = 12 independent models). Overall, these results demonstrate that megaDNA does not yet generate bacteriophage genomes with realistic 
compositional biases and that genome composition is a reliable method for detecting sequences generated by this model. While the results are 
specific to the megaDNA model, the e v aluated frame w ork described here could be applied to an y generativ e model f or genomic sequences. 
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he widespread development and application of language
odels has expanded their impact beyond traditional appli-

ation in natural language processing. Transformer models,
hich leverage self-attention mechanisms and deep neural net-
orks, are able to learn the intricate patterns and implicit

ules of language. Genomics is essentially a form of language,
ith nucleotide (and protein) sequences encoding biological

nformation based on the content and order of characters.
ransformer-based genomic language models have proven to
e particularly adept at identifying ‘missing’ annotations for
ucleotide sequence data, including for promoters, splice sites,
nhancers, chromatin accessibility, transcription factor bind-
ng sites and more ( 1–5 ). Less common, however, has been the
pplication of transformer-based models for generating novel
ucleotide sequences. 
In December 2023, Shao published the first version of

heir language model ‘megaDNA’ for the generation of de
ovo synthetic bacteriophage genomes ( 6 ). The megaDNA
odel leverages the architecture underlying the MEGABYTE
odel from Meta AI, which is specifically designed for long

nput sequences ( 7 ). In the preprint, Shao used a random
our-base pair (bp) primer to generate 1024 sequences longer
han 1 kilobase (kb) and demonstrated that a portion of
hese sequences can be classified as viruses by an artifi-
ial intelligence / machine learning (AI / ML)-based classifica-
ion framework, showing realistic gene lengths and distribu-
ions, and encode potentially functional 5 

′ untranslated re-
ions, genes and promoters. 

Genome composition is the reduction of nucleotide se-
uences into quantitative descriptions of the frequency of
pecific patterns. These measures can be used to assess the
onrandom distribution of nucleotides in a genome, includ-
eceived: May 21, 2024. Revised: August 3, 2024. Editorial Decision: September
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ing measures such as guanine and cytosine (GC) content, di-
and trinucleotide odds ratios, codon pair bias and secondary
structure elements, among others. RNA viruses have been ex-
tensively studied for compositional biases, showing family-
and host-dependent patterns ( 8 ,9 ). While less thoroughly stud-
ied, bacteriophages have also shown diversity in GC content
and select dinucleotide ratios ( 10 ). These biases, manifest-
ing in genome-level measurements, were hypothesized to be
an appropriate benchmark for megaDNA’s ability to recapit-
ulate higher-order relationships. Identification of a compu-
tational method to discriminate transformer-generated from
natural sequences would have broad applicability to synthetic
biology, biosecurity and future applications of AI / ML to
genomics. 

Here, compositional biases in sequences generated by
megaDNA were compared to those of natural bacteriophage
sequences from the NCBI RefSeq database. Using a variety
of approaches, these sequences are shown to be composition-
ally distinct from the natural sequences upon which they were
trained. A variety of methods of varying complexity, from sin-
gle metric rank-sum tests to 19-feature neural networks, dif-
ferentiate the two populations with high accuracy on the basis
of quantitative compositional metrics alone. 

Materials and methods 

Creation of transformer-generated sequences 

Transformer-generated sequences were produced using the
model and model inference codes from ( 6 ), as of 27 December
2023: https:// github.com/ lingxusb/ megaDNA . The inference
code was modified to encapsulate the model.generate()
call within a with torch.no_grad() statement to reduce
 3, 2024. Accepted: September 6, 2024 
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memory consumption. Model inference was performed on an
NVIDIA V100. 

Identification of natural bacteriophage genomes 

Shao ( 6 ) does not list the accession numbers for all sequences
used to train the transformer model described in the preprint.
To ensure that only high-confidence and high-quality se-
quences of real bacteriophages were used for comparison, n
= 4984 RefSeq sequences containing ‘phage’ within the or-
ganism’s name were identified from the NCBI virus database
in December 2023. There is a high likelihood these sequences
are present within the training set used by Shao ( 6 ). It is cur-
rently unknown whether the training data used by megaDNA
are as or more diverse than the sequences used in this study, al-
though this information may become available with revisions
to the megaDNA manuscript. GenBank files for each acces-
sion number were downloaded from NCBI using the Entrez
API available via Biopython ( 11 ). 

Sequence compositional analysis 

Sequence composition analysis was performed using cus-
tom Python scripts. GC content and dinucleotide odds ra-
tios were calculated for whole genomes. Structural metrics
[minimum free energy (MFE) and minimum free energy differ-
ence (MFED)] were calculated for overlapping subsequences
for each genome from which median values were extracted.
Briefly, a sequence was exploded into overlapping k -mers of
prespecified length and step size and stored in a numpy array
( 12 ). Metrics were calculated for each k -mer and values as-
signed to the index of the midpoint nucleotide of the k -mer in
the original sequence. For this study, a k -mer size of 120 bp
and a step size of 10 bp were used. 

GC content 
GC content was calculated as the sum of guanine and cytosine
bases in the sequence divided by the length of the sequence. 

Dinucleotide odds ratios 
Dinucleotide odds ratios were calculated based on the expec-
tation of a random assortment of mononucleotides of fixed
frequencies. Therefore, ratios of observed versus expected din-
ucleotide frequencies can be derived for any sequence with a
known mononucleotide frequency. Odds ratios < 1 one repre-
sent suppression, while ratios > 1 indicate overexpression. 

Formally, the dinucleotide ratio for any two nucleotides, X
and Y, can be calculated as 

Observed 

Expected 

= 

f (XpY ) 
f (X) ∗ f (Y ) 

, 

where f (XpY) is the observed frequency of dinucleotide
XpY, f (X) is the observed mononucleotide frequency for
mononucleotide X and f (Y) is the observed mononucleotide
frequency of Y. 

Minimum free energy 
MFE values were calculated using the RNA.fold() function
from the Vienna RNA Python package ( 13 ). While designed
for single-stranded (ss) RNA, these algorithms were applied
equally to ss and double-stranded (ds) RNA and DNA se-
quences. See the next section for a disclaimer about deriving
structural metrics for dsDNA genomes. 
Minimum free energy difference 
MFED values were calculated as the percentage difference be- 
tween the MFE of a sequence and those of a selection of per- 
muted controls, as performed elsewhere ( 14 ). There are mul- 
tiple approaches for creating permuted controls that can lead 

to inconsistent conclusions ( 15 ). For every 120-bp oligomer,
a dinucleotide shuffling algorithm was used to generate a 
set of 105 permuted controls against which the MFE of the 
oligomer was compared (see Supplementary Methods and 

Supplementary Figure S6 ). Z scores for MFED values were 
calculated by comparing the observed MFE value ( X ) to the 
mean ( μ) and standard deviation ( σ ) of MFE values of the 
permuted controls: 

Z = 

X − μ

σ
. 

Of note, Shao describes 98% of the sequences used in the 
model training dataset as being members of the Caudovirales 
class of dsDNA phages. As these are expected to be fully base 
paired, it is reasonable to question the use of MFE or MFED 

values to describe their composition. However, the natural 
genome sequences used in this study, when treated as ssRNA,
were consistently more structured than would be expected by 
chance (97.6% with median values > 0 ( n = 4850 / 4969); P 

< 2.2e −308, binomial distribution). This result confirms that 
MFE and MFED results can be used as measurements of the 
nonrandomness of bacteriophage base composition even if 
their contribution to nucleic acid binding dynamics is unclear.

Dinucleotide-shuffled sequence generation 

Dinucleotide shuffling is a method of shuffling sequences in 

a manner that conserves the nonrandom distribution of dinu- 
cleotide frequencies of the input sequences. Here, dinucleotide 
shuffling was conducted using an open-source implementa- 
tion of the Altschul–Erikson algorithm written in Python ( 16 ): 
https:// github.com/ wassermanlab/ BiasAway/ . 

Gene prediction 

Putative genes were identified from transformer-generated and 

natural sequences using PHANOT A TE v1.5.0 ( 17 ). PHANO- 
T A TE was preferred over other gene callers as it is tuned to 

the challenges of gene prediction in bacteriophage genomes. 

Virus score prediction 

All sequences were processed using geNomad v1.7.4 with the 
– relaxed parameter and the MMseqs2 release 15-6f452 

( 18 ,19 ). 

Principal component analysis 

Principal component analysis (PCA) was conducted on scaled 

compositional metrics using the prcomp function in R ver- 
sion 4.2.0 ( 20 ). Group centroids were calculated as the mean 

value of each PC and expressed as a matrix of coordinates.
The ‘distance’ between points or group centroids in the 19- 
dimensional space was calculated as a Euclidean distance mea- 
sure weighed based on the square of each principal compo- 
nent’ s (PC) eigenvalue. W eighed Euclidean distance was used 

in place of downselecting PCs using the Kaiser criterion or 
a scree plot due to criticism of the two methods being arbi- 
trary or subjective ( 21 ,22 ). Further, Euclidean distance was 
preferred to Mahalanobis distance as the raw data were scaled 

to unit variance before the PCA was performed. As the square 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://github.com/wassermanlab/BiasAway/
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f the eigenvalue is equivalent to the proportion of variance
xplained by each PC, distance measures are dominated by the
Cs that explain the greatest proportion of the total variance.
Nearest neighbors for individual points were identified us-

ng function get.knn from the FNN package. The null hy-
othesis of random association predicts that the frequency of
 nearest neighbor being from the same family of a given point
s equal to 

N f 

N 

, 

where N f is the total number of points for family f and N
s the total number of points in the dataset. 

redictive neural network 

o create a predictive neural network in Python, composi-
ional metric data were loaded into a pandas DataFrame,
nd all features were scaled using StandardScaler() from
cikit-learn ( 23 ). Sequence provenance (natural versus
ransformer) was encoded as 0 or 1, respectively, and an 80:20
raining:test split was used. The neural network architecture
sed the Sequential() model from the TensorFlow Keras
PI ( 24 ). The model consisted of two hidden layers with 32
nd 16 neurons, respectively, both with rectified linear unit
ctivation functions, and an output layer with 1 neuron and
 sigmoid activation function. The model was compiled using
inary cross-entropy loss and the Adam optimizer and trained
sing 10 epochs and a batch size of 32. Model performance
n the testing data was expressed as total accuracy, sensitivity
or transformer-generated sequences and specificity for natu-
al sequences. The training:test split was not altered during
odel evaluation or the predictive feature selection—that is,

o say, identical sequences were labeled as training or test data
or each iteration of model training and evaluation. 

redictive feature selection 

redictive feature evaluation was performed iteratively to
aximize (or minimize) the predictive capability of models
ith limited features. This iterative approach began with a
aseline model containing no features. During each step, each
f the remaining features was added to the existing set of fea-
ures and used to train 12 independent models. Following the
valuation of each feature, the metric whose addition resulted
n the highest (or lowest) average increase in accuracy was
elected and incorporated into the model. This partial model
as used to continue the iterative process until all features had
een selected. 

tatistical analysis 

etween-group comparisons were made using two-tailed
ann–Whitney tests. Binomial distributions were used in in-

tances where binary outcomes could be derived (e.g., k -
earest neighbor analysis of family clustering, order of rela-
ionships within geNomad, etc.). 

esults 

 ransformer -generated sequence composition is 

enerally dissimilar to that of natural sequences 

o compare the composition of natural and transformer-
enerated bacteriophage genomes, 4969 RefSeq bacterio-
hage genomes were downloaded from NCBI and 1095 syn-
thetic genomes were produced using the megaDNA model
with a random 4-bp primer. These synthetic sequences are
referred to as ‘transformer-generated’. Consistent with ( 6 ),
analyses were limited to the 1002 transformer-generated se-
quences that were greater than 1 kb in length. In contrast
to ( 6 ), however, natural sequences with lengths greater than
96 kb were not removed. These longer sequences ( n = 721)
represent 14.4% of the natural composition dataset. 

Natural sequences had a median length of 46 kb, with noted
peaks around 6, 40 and 170 kb (Figure 1 A). Transformer-
generated sequences were on average shorter (median length
of 23.7 kb) and displayed a much smoother probability dis-
tribution. Length distributions were significantly different
( P < 2.2e −308, two-tailed Kolmogorov–Smirnov test). The
smooth distribution of the transformer-generated sequences is
not unexpected, as the predictive approach of megaDNA can
infer that the random 4-bp primer sequence is located at any
position in a theoretical genome. Thus, the sequence output
can essentially be thought of as fragments that always extend
to the 3 

′ end of the genome. 
geNomad, an AI / ML-enabled taxonomic classification

framework, was used to assess the ability of megaDNA
to produce sequences classified as viral by non- k -mer ap-
proaches ( 18 ). As expected, transformer-generated sequences
produced significantly lower virus scores than the natural se-
quences (Figure 1 B; median values of 0.72 and 0.98, respec-
tively, P < 2.2e −308, two-tailed Mann–Whitney U test). Only
22 transformer-generated sequences had predicted taxonomy,
all of which were Caudoviricetes . Based on geNomad virus
scores, transformer-generated sequences were split into low
(virus score < 0.7; n = 418), medium (virus score ≥0.7 and
< 0.8; n = 281) and high quality (virus score ≥0.8; n = 303). In
this study, geNomad was executed with the – relaxed qual-
ity parameter to ensure scores were reported for all sequences.
This explains the on average higher geNomad score results re-
ported in ( 6 ), where geNomad was almost certainly executed
with default quality parameters. The cause of the much lower
classification efficiency in this study compared to ( 6 ) is un-
clear but could be due to using different versions of geNomad
or MMSeqs2. The version numbers were not specified in ( 6 ). 

Nineteen compositional metrics were analyzed. These in-
cluded GC content, odds ratios for all 16 dinucleotides, me-
dian MFE values for overlapping 120-bp subsequences and
MFED values calculated against dinucleotide-shuffled con-
trols. Of the 19 compositional metrics considered, the distri-
butions for natural versus transformer-generated were signif-
icantly different for 18 of the metrics after a Bonferroni cor-
rection (examples in Figure 1 C–E; Supplementary Figure S1 ).
For dinucleotide odds ratios, absolute differences in medi-
ans ranged from 0.0003 (ApA) to 0.194 (GpC). Transformer-
generated sequences were consistently more GC-poor (median
values of 39.2% versus 49.9%), had lower folding energy (me-
dian MFE values of −19.7 versus −32.2) and had MFED val-
ues much closer to the null expectation (0.005 versus 0.0324)
than natural sequences. Differences in MFED values were
particularly stark, as only 3% of transformer-generated se-
quences displayed MFED values as high as the median nat-
ural sequence (Figure 1 D). The median standard deviation
for MFED values from transformer-generated sequences was
slightly but significantly higher than that for natural sequences
(medians of 0.172 versus 0.150, P = 8.78e-43), suggesting
that the variability in MFED values for transformer-generated
sequences may contain some information regarding how this

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
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Figure 1. Characteristics of natural and transformer-generated sequences. For all violin plots, the black horizontal bar displays the median value. ( A ) 
Sequence length for natural sequences and all transformer-generated sequences ≥10 0 0 bp. Probability distributions significantly different ( P < 

2.2e −308, t wo-t ailed K olmogoro v–Smirno v test). ( B ) geNomad virus score results. Quality cutoffs of 0.7 and 0.8 are based on parameters described 
within the software documentation. ( C–E ) Differences between select metrics; all distributions significantly different by t wo-t ailed Mann–Whitney U 

tests ( P < 0.0026). ( F–H ) Differences between select metrics with transformer-generated sequences grouped according to geNomad virus quality; GC 

content and TpT ratio significantly different between natural and high-quality sequences ( P < 0.0026). ( I, J ) Characteristics of genes predicted by 
PHANOT A TE. Both distributions are significantly different by t wo-t ailed Mann–Whitney U tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model has ‘learned’ interactions in near-adjacent bases. For
both natural and transformer-generated sequences, there are
short segments with sustained levels of higher MFED values
( Supplementary Figure S2 A and B). The selection of 120 bp as
the subsequence window size may be slightly fortuitous, as the
degree of structure compared to chance (measured by Z score)
was significantly lower for both natural and transformer-
generated sequences when Z scores were calculated using 85
bp (median values of −0.29 versus −0.19 and −0.036 ver-
sus −0.0045, respectively, P < 2.2e −308 and P = 2.09e −74,
paired Mann–Whitney U tests; Supplementary Figure S2 C
and D). 

The neural network classification module in geNomad uses
4-mer encoded subsequences, which may lead to scores re-
flecting compositional differences. Supporting this, 72% of
comparisons of composition metrics between low-, medium-
and high-quality transformer-generated sequences were sig- 
nificantly different ( Supplementary Table S1 ). If the geNo- 
mad scores were implicitly detecting composition bias toward 

natural sequences, it would be expected that high-quality se- 
quences would be most similar to natural, low quality would 

be the most different and medium quality would be some- 
where in the middle (as in Figure 1 F). Indeed, this pattern 

was observed for 36.8% of compositional metrics, signifi- 
cantly more frequently than would be expected by chance 
( P = 7.6e −5, binomial distribution). However, these high- 
quality transformer-generated sequences still had significantly 
different composition metric distributions than natural se- 
quences for 17 of the 19 measured metrics (Figure 1 F–H; 
Supplementary Table S1 ). 

Differences in nucleotide composition may also present as 
variation in encoded information. To assess any differences 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
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n gene content, PHANOT A TE was used to predict genes in
oth natural and transformer-generated sequences. PHANO-
 A TE has advantages over other gene prediction algorithms

or this project as it is designed for phage genomes, including
llowing for multiple start codons and limiting strand switch-
ng ( 17 ). Using PHANOT A TE outputs, transformer-generated
equences had a significantly higher number of predicted genes
er kb than natural sequences (median values of 2.10 and
.68, P = 7.28e −185, two-tailed Mann–Whitney U test; Fig-
re 1 I). Predicted genes for transformer-generated sequences
ere also slightly but significantly shorter (median values of
00 and 113, P < 2.2e −308, two-tailed Mann–Whitney U
est; Figure 1 J). As these metrics were derived from a predic-
ive algorithm for which this project did not seek to perform
alidation, they were not incorporated into downstream PCA
r neural network analysis. Minor functional characterization
f predicted genes is described in the Supplementary Results . 
Overall, the transformer-generated sequences display sig-

ificantly altered composition metrics when compared to the
opulation of RefSeq sequences identified from NCBI, which
ay or may not reflect the true diversity included in the
egaDNA training data. Additionally, a portion of the se-
uences are classified as viral by geNomad, and there is some
vidence of a relationship between virus score and ‘natural-
ike’ composition. 

acteriophage sequences cluster based on 

rovenance and taxonomic relationships 

t is generally observed that genome composition varies be-
ween viral families ( 9 ). Without knowledge as to the spe-
ific sequences used to train megaDNA, it is possible that
he training sequences were biased toward an individual fam-
ly, and, as such, comparisons against a population of bac-
eriophage sequences that do not reflect the same bias—as
one in the previous section—are unfair and harsh. To evalu-
te whether transformer-generated sequences are simply many
embers of a specific viral family to which the model is over-
tting, PCA of the compositional metrics was performed. PCA
as preferred to the use of raw metrics as the nature of
inucleotide ratios leads to many correlations between them
 Supplementary Figure S3 ). 

PCA was performed using data for all sequences. For cluster
nd distance analysis and visualization, however, the compar-
sons were limited to only transformer-generated sequences
nd those bacteriophage genomes whose GenBank file spec-
fied the viral family ( n = 2080) (Figure 2 ). To determine
n individual point’s location in the 19-dimensional space re-
urned by the PCA, the raw PC values were weighted accord-
ng to the square of their respective eigenvalues (colloquially,
he percent of variance explained by that PC). To evaluate
he extent of clustering for the 28 families with ≥10 mem-
ers in the dataset (including transformer-generated as a fam-
ly), the frequency with which a data point’s nearest neigh-
or in the weighted 19-dimensional space was a member of
he same family was compared to expectations from random
ssociations. For all families, individual members were more
ikely to be ‘close’ to other members of the same family than
andom sequences in the dataset ( Supplementary Table S2 ).

hile all significant by binomial distributions ( P < 0.002), the
trength of clustering varied between families. For Blumeviri-
ae , only 5 of 34 members clustered. For Demerecviridae ,
all 84 members of the family clustered with another mem-
ber of that family, likely due to a combination of the fam-
ily’s low CpG and high TpA ratios compared to all other
sequences (0.82 versus 1.00 and 0.96 versus 0.77, respec-
tively, P = 6.89e −20 and P = 1.99e −41, two-tailed Mann–
Whitney U tests). Transformer-generated sequences clustered
at a rate of 95.2% ( n = 954 / 1002). This result was also
demonstrated in a PCA that only included dinucleotide ratios
and GC content ( Supplementary Figure S4 ). There were no
differences in cluster rate between low-, medium- and high-
quality transformer-generated sequences (93.1%, 96.4% and
97.0%, respectively). These results confirmed that PCA ex-
tracted family-specific compositional traits from the natural
sequences. 

To assess which viral family transformer-generated se-
quences were most similar, a weighted Euclidean distance
was calculated between centroids of each viral family that
contained ≥25 members. The unitless distance measures
from the centroid of the transformer-generated family ranged
from 0.24 ( Straboviridae ) to 1.40 ( Steitzviridae ) (Table 1 ).
Of important note, the ‘closeness’ of Straboviridae and De-
merecviridae to the transformer-generated sequences in the
19-dimensional space is especially surprising, as these partic-
ular sequences from these families should not be present in
the training set used for megaDNA as they are globally longer
than the stated 96-kb size exclusion threshold. Further, there
were still significant differences between Straboviridae and
transformer-generated sequences for 12 of the 19 metrics ( P <

0.0026, two-tailed Mann–Whitney U test), strongly suggest-
ing that transformer-generated sequences are not simply gen-
erating sequences with the same compositional bias as their
most similar family. Transformer-generated sequences were
no more distinct from natural phage families as other natural
families were to each other (Table 1 ). For the 48 transformer-
generated sequences for which another transformer-generated
sequence was not the nearest neighbor, both Drexlerviridae
( n = 10) and Casjensviridae ( n = 4) were over-represented as
nearest neighbors ( P = 6.19e −5 and P = 0.002, respectively,
binomial distribution). These families are generally, however,
not tightly clustered based on distribution statistics from their
family centroid (Table 1 ), increasing the likelihood that these
associations are due to spurious chance rather than genuine
biological phenomena. Casjensviridae were additionally one
of the more distinct families within the PCA as measured by
the cumulative distance to other centroids (Table 1 ), having
the second largest value of all families with 25 or more mem-
bers ( n = 21). 

Altogether, the PCA results suggest transformer-generated
sequences occupy an independent compositional niche. This
niche likely reflects the average of the compositional biases
of the sequences within the training set and suggests that se-
quences produced by megaDNA revert to their compositional
mean rather than reflecting the compositional bias of a single
sequence or family in the training set. This hypothesis could
be further assessed by priming megaDNA with fragments of
sequences of known taxonomy and assessing the degree to
which the produced sequence diverges from the ground truth
fragment not seen by the model. By intentionally using se-
quence fragments directly upstream of classes of genes of in-
terest, there may also be an opportunity to evaluate whether
megaDNA can more readily recapitulate well-conserved genes
than ones subject to host selection. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
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Figure 2. PCA of compositional metrics. Two-dimensional projections of PCs 1 and 2 limited to sequences from families with ≥25 members, colored by 
tax onom y. T he v alues f or this projection ha v e not been w eighted according to the square of the eigen v alues, although the y are f or an y distance 
calculations. Percentages in x -axis and y -axis titles indicate percentage of variance explained by given PC. Kindly note that the two-dimensional 
projection can be misleading as to the true location of a data point in the 19-dimensional space created by the PCA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A simple neural network differentiates 

transformer-generated and natural sequences with 

very high accuracy 

If transformer-generated sequences truly occupied an isolated
compositional niche, then they should be able to be identi-
fied on the basis of compositional metrics alone. To test this
hypothesis, a neural network with a relatively simple architec-
ture of two hidden layers was trained to differentiate natural
and transformer-generated sequences based on compositional
metrics. Twelve models were generated on an identical 80:20
train:test population using all 19 compositional metrics. These
‘total’ models displayed a median overall accuracy of 97.0%
(sensitivity = 93.0%, specificity 97.9%). The consistent train-
ing:test split enabled interrogation of whether the frequency
with which a transformer-generated sequence was predicted
to be natural was related to its geNomad virus score. In con-
trast to the trend implied by Figure 1 F–H, there was no rela-
tionship between misidentification rate and virus score by sim-
ple linear regression ( P = 0.30), nor were the distributions of
those with ≥1 misidentification ( n = 32) significantly different
than those that were classified correctly all 13 times ( n = 176;
P = 0.44, two-tailed Mann–Whitney U test). Importantly,
the neural network input dataset reflected the natural ver-
sus transformer-generated sequence imbalance seen through-
out this study. This asymmetry leads to a ZeroR benchmark,
where all inputs are labeled the most common classification 

(in this case, ‘natural’) with no processing, of 82.6% over- 
all accuracy. That the neural networks trained compositional 
features routinely far exceed the ZeroR benchmark confirms 
their ability to differentiate natural and transformer-generated 

sequences. 
To determine whether the neural network classification per- 

formance was dependent on the number of total metrics or 
a specific metric—potentially limiting its generalizability be- 
yond megaDNA—new models were trained on random fea- 
ture subsets. For each total feature count from 1 to 18, 12 

models were trained using a random selection of features (216 

models total). Accuracy for these ‘incomplete’ models was as- 
sessed using the same test population as for the ‘total’ models.
Overall performance was seemingly dependent on the near- 
full breadth of features, with model performance only reach- 
ing 95% of its maximum median accuracy (a threshold of 
96.6%) after 16 features were present (Figure 3 A). 

There was stark variability in the performance of the ‘in- 
complete’ models that must be explained by which features 
were included. For example, a model with only five random 

features displayed an accuracy level of 96.5%, which outper- 
formed exactly half of the models with 14 random features.
To determine which metrics were the most and least predic- 
tive, new features were iteratively added to baseline models by 
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Table 1. Euclidean ‘distance’ measurements from group centroids Table limited to families with ≥25 members. Centroids derived as described in 
methods. Distance from transformer-generated centroid calculated from centroid of family while distribution of distances from within-family centroids 
calculated using individual genomes. Cumulative distance from other centroids is the sum of distances to centroids of all other families 

Family 
Total 

members Euclidean ‘distance’ from centroid of 
Cumulative 
‘distance’ 

Transformer- 
generated Within-family 

from other 
centroids 

value 10th percentile Median 90th percentile 

Ackermannviridae 50 0.64 0.14 0.14 0.41 14.37 
Aliceevansviridae 93 0.41 0.04 0.06 0.10 13.37 
Autographiviridae 352 1.11 0.24 0.45 0.79 16.86 
Blumeviridae 34 1.28 0.11 0.25 0.46 19.08 
Casjensviridae 53 1.12 0.21 0.34 0.67 21.69 
Chaseviridae 30 0.71 0.09 0.34 0.49 13.99 
Demerecviridae 84 0.70 0.13 0.20 0.34 15.65 
Drexlerviridae 108 0.65 0.23 0.33 0.65 20.68 
Herelleviridae 95 1.17 0.24 0.39 0.53 21.55 
Inoviridae 55 0.71 0.40 0.54 0.72 17.44 
Kyanoviridae 37 1.00 0.07 0.16 0.49 16.13 
Microviridae 30 0.49 0.16 0.30 0.51 13.87 
Peduoviridae 92 0.87 0.12 0.36 1.24 22.16 
Rountreeviridae 38 0.44 0.25 0.32 0.38 14.94 
Salasmaviridae 29 0.61 0.20 0.30 0.40 14.56 
Schitoviridae 94 0.98 0.29 0.51 0.77 15.34 
Steitzviridae 412 1.40 0.14 0.24 0.40 20.88 
Straboviridae 154 0.24 0.14 0.20 0.53 14.16 
Suoliviridae 36 1.01 0.16 0.23 0.42 19.73 
Transformer-generated 1002 0.20 0.44 0.85 16.67 
Vilmaviridae 28 1.14 0.18 0.24 0.59 17.82 a 

a Table limited to families with ≥25 members. Centroids derived as described in the ‘Materials and methods’ section. Distance from transformer-generated 
centroid calculated from centroid of family, while distribution of distances from within-family centroids calculated using individual genomes. Cumulative 
distance from other centroids is the sum of distances to centroids of all other families. 

Figure 3. Discrimination of transformer-generated sequences with neural networks trained on varied numbers of features. ( A ) Overall classification 
accuracy for models built with a random selection of features. Boxplot displays distribution statistics for n = 12 replicates. ( B ) Results from predictive 
feature e v aluation (described in detail in the ‘Materials and methods ’ section). F eature order f or maximal and minimal models a v ailable in 
Supplementary Figure S5 . Line displa y s LOESS regression for random features using the R stats package. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
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testing and selecting the metric that led to the greatest—
or least—increase in accuracy (Figure 3 B; Supplementary 
Figure S5 ). Akin to a greedy algorithm, this method selects
the locally optimal solution at each step, which may not re-
flect the ‘true’ global order of feature addition for maximal
accuracy. 

The results of the predictive feature evaluation were un-
ambiguous as to the importance of MFED in discriminating
natural and transformer-generated sequences. Not only was
MFED the most predictive single metric (supported by Fig-
ure 1 D), but its exclusion led to an 18-feature model display-
ing lower median accuracy than that of a model that only in-
cluded MFED and GpT, CpC and ApC ratios. Interestingly,
for the maximum accuracy feature evaluation, 95% of the im-
provement from ZeroR to the total model is achieved through
the addition of only 8 features (compared to 16 for the ran-
dom selection). Combined with the significant drop in perfor-
mance of models not including MFED, this result is sugges-
tive that the performance contribution of dinucleotide ratios
is saturated quickly, potentially due to the high correlation
rates between dinucleotide ratios ( Supplementary Figure S3 ).
Future studies may need to investigate compositional metrics
beyond dinucleotide ratios, MFE and MFED values to achieve
higher accuracy discrimination. 

Discussion 

Effectively leveraging generative AI to overcome problems in
biology could lead to breakthroughs across multiple domains.
While generative approaches have seen impact in fields such
as drug discovery, protein folding and designing functional ri-
bozymes ( 25–27 ), the use of transformer models specifically is
nascent. In a future state, iterative design pipelines could har-
ness the power of transformer models for generation, com-
plemented by encoder models for functional prediction and
evaluation. Therefore, establishing methods to rapidly eval-
uate the outputs of these early models in silico and enable
refinement of their architecture and training approaches will
advance the development of the field. 

As generative AI continues to proliferate, there are legiti-
mate concerns over its misuse. While much of the commen-
tary has focused on using large language models (LLMs)
for knowledge discovery and synthesis ( 28 ,29 ), other authors
have identified the risk of language models for accelerating
the design of biological weapons (BWs) ( 30 ). As described by
Sandbrink (2023) ( 30 ), these ‘biological design tools’ may en-
able circumvention of known biosecurity measures or BW de-
tection methodologies. While important, discussions around
the appropriate oversight of the development of generative
AI models for biology are outside the scope of this paper. In
general, this author is of the opinion that the risks poised by
models that can learn currently unknown functional proper-
ties that influence pathogenicity, toxicity and transmissibility
of viruses are higher than those of transformer models that
can generate new sequences from noise. Studies of the former
would be akin to the concerns raised by the experiments con-
ducted by Herfst et al., (2012), where determinants of H5N1
influenza virus airborne transmissibility could be inserted into
the backbone of an existing influenza virus ( 31 ). This conclu-
sion is also partly informed by the specialist knowledge and
equipment as well as the large amount of capital required to
synthesize and evaluate a transformer-generated virus in a lab-
oratory setting. 
While the notion of transformer-generated pathogens is 
somewhat fantastical (and the analysis in this paper demon- 
strates that those capabilities are not available in the near 
term), there are minor risks of the sequences themselves being 
used maliciously. For example, fully synthetic sequences could 

be used to intentionally poison public sequence databases. It 
is therefore pertinent to be able to discern machine-generated 

sequences—those that have been manufactured through hu- 
man intervention—from those arising from natural processes.
Similar to the large number of tools available to detect Chat- 
GPT generated text ( 32 ), the development of methods that can 

discern ‘fingerprints’ of transformer models in sequence data 
should be prioritized. 

This paper has demonstrated that these markers exist, at 
least in the circumstances where labeled data are available.
The megaDNA-generated sequences are clearly composition- 
ally distinct from natural bacteriophage genomes, with this 
finding being consistent regardless of the tested metric (dinu- 
cleotide ratios, GC content and secondary structure). Overall,
the findings point to two classes of compositional shortcom- 
ings in the megaDNA outputs: 

1. The distinctness of the megaDNA dinucleotide ratios 
and GC content (calculated across whole sequences) 
are suggestive that the model overgeneralizes the dis- 
tinct compositional biases of its training sequences 
( Supplementary Figure S4 ). Rather than generating se- 
quences closely resembling specific families represented 

in the training set, the model’s outputs appear to be a 
weighted average of all experienced compositional pres- 
sures of its training sequences. It is possible, albeit un- 
likely, that this issue can be overcome with additional 
training data. It does, however, suggest that a path for- 
ward for the generation of whole genomes that resemble 
members of existing virus families may require the de- 
velopment of family-specific models. This may also be 
achieved by prepending taxonomic labels to sequences 
in the training dataset, as done elsewhere ( 33 ). However,
the low data availability for the vast majority of viral 
families will challenge their development in the short 
term. 

2. The dramatic difference in MFED values strongly sup- 
ports a failure of megaDNA to learn associations be- 
tween neighboring bases that govern secondary struc- 
ture (and other nonrandom base distributions). This is- 
sue may arise due to MEGABYTE’s impressive long- 
context capabilities that allow it to reconstruct the spa- 
tial organization of a bacteriophage genome [e.g. pro- 
moters and genes, as seen in ( 6 )], which also result in it 
paying less attention to the finer, more localized inter- 
actions that underlie these relationships. Resolving this 
particular issue may require migrating to a different ar- 
chitecture than MEGABYTE. 

While this paper was in its final preparations, Zhao 

et al. (2024) preprinted a paper describing GenerRNA,
their transformer-based model for the generation of syn- 
thetic RNA ( 34 ). Based on a configuration similar to the 
OpenAI GPT-2 architecture, the authors demonstrate that 
their approach generates short RNAs with realistic secondary 
structure profiles and protein-binding characteristics. A rapid 

analysis using natural and generated sequences deposited to 

their GitHub repository ( https:// github.com/ pfnet-research/ 
GenerRNA ) demonstrated that GenerRNA was substantially 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae129#supplementary-data
https://github.com/pfnet-research/GenerRNA
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ore similar to its training data than megaDNA sequences,
ith only two composition metrics having significant differ-

nces ( Supplementary Figures S7 and S8 ). Importantly, while
enerRNA sequences did display significantly lower MFED
alues than their training sequences (as seen for megaDNA),
he magnitude of difference was minor (0.070 versus 0.078).
he raw MFED value being much greater than 0 is highly
uggestive that, unlike megaDNA, the architecture used by
enerRNA has successfully ‘learned’ to maintain the local se-
uence relationships that underpin RNA secondary structure.
his result is suggestive that token-based approaches, which
ay not be at the single nucleotide resolution, are not in-
erently flawed at maintaining local context features. Lastly,
hile the authors do not clarify the token limit of GenerRNA,

he 1024 token limit of GPT-2 would be unlikely to recapitu-
ate the genome organization that megaDNA excelled at, so
uture applications of generating whole genomes will need
o balance the pros and cons of each architecture or explore
ovel methods for combining the two approaches. 
The intent of this research was to perform a fair and un-

iased assessment of the megaDNA model. While the re-
ults focus on potential shortcomings of the current ver-
ion of the model, its remarkable success in other aspects—
uch as generating potentially functional promoters and main-
aining realistic genome organization—should be celebrated.
in Shao, the creator of megaDNA, should also be recog-
ized for his willingness to open-source an in-development
odel. 
The findings presented herein are specific to the megaDNA
odel weights retrieved in late December 2023 and are un-

ikely to generalize broadly. Increasing the classification per-
ormance for these approaches may be achieved by expand-
ng the nucleotide compositional metrics under study to more
omplex patterns (e.g., trinucleotide ratios), including metrics
f amino acid composition for predicted gene products (ac-
nowledging megaDNA is not, at its core, a protein language
odel), and considering the variability of metrics within com-
onent subsequences rather than relying on global metrics
s done here. There may also be opportunities to investigate
hether transformer-based models are better poised to pro-
uce well-conserved proteins across viral species present in
raining data than those that are under host selection. For fu-
ure research, the methods and approach described here can
e used as a general framework to assess the ability of gener-
tive AI to recapitulate the compositional biases inherent to
NA and DNA sequences. 

ata availability 

ll data for this study are available at
oi:10.5281 / zenodo.11225564. This includes fasta files
or the natural and transformer-generated sequences under
nvestigation and cleaned datasets for each figure panel. Natu-
al sequences include their NCBI GenBank accession number.
oftware to produce the transformer-generated sequences is
vailable at https:// github.com/ lingxusb/ megaDNA . 
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