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ABSTRACT
Introduction  Preterm birth (PTB) is strongly associated 
with encephalopathy of prematurity (EoP) and 
neurocognitive impairment. The biological axes linking PTB 
with atypical brain development are uncertain. We aim to 
elucidate the roles of neuroendocrine stress activation and 
immune dysregulation in linking PTB with EoP.
Methods and analysis  PRENCOG (PREterm birth as 
a determinant of Neurodevelopment and COGnition in 
children: mechanisms and causal evidence) is an exposure-
based cohort study at the University of Edinburgh. Three 
hundred mother–infant dyads comprising 200 preterm 
births (gestational age, GA <32 weeks, exposed) and 100 
term births (GA >37 weeks, non-exposed), will be recruited 
between January 2023 and December 2027. We will collect 
parental and infant medical, demographic, socioeconomic 
characteristics and biological data which include placental 
tissue, umbilical cord blood, maternal and infant hair, 
infant saliva, infant dried blood spots, faecal material, and 
structural and diffusion MRI. Infant biosamples will be 
collected between birth and 44 weeks GA.
EoP will be characterised by MRI using morphometric 
similarity networks (MSNs), hierarchical complexity (HC) 
and magnetisation transfer saturation imaging (MTsat). 
We will conduct: first, multivariable regressions and 
statistical association assessments to test how PTB-
associated risk factors (PTB-RFs) relate to MSNs, HC 
and or MTsat; second, structural equation modelling to 
investigate neuroendocrine stress activation and immune 
dysregulation as mediators of PTB-RFs on features of EoP. 
PTB-RF selection will be informed by the variables that 
predict real-world educational outcomes, ascertained by 
linking the UK National Neonatal Research Database with 
the National Pupil Database.
Ethics and dissemination  A favourable ethical opinion 
has been given by the South East Scotland Research 
Ethics Committee 02 (23/SS/0067) and NHS Lothian 
Research and Development (2023/0150). Results will be 
reported to the Medical Research Council, in scientific 
media, via stakeholder partners and on a website in 
accessible language (https://www.ed.ac.uk/centre-​
reproductive-health/prencog).

INTRODUCTION
Background
Globally, preterm birth (PTB) is estimated to 
affect 13.4 million pregnancies per annum.1 
Over the past two decades, the survival rate of 
children born preterm has improved due to 
advances in perinatal medicine, but outcomes 
remain challenging: 10%–15% of children 
born very preterm (<32 weeks) develop cere-
bral palsy, 30%–50% develop an intellectual 
disability, and this population is at increased 
risk of problems with socialisation, behaviour, 
language, low educational attainment, autism 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ The PRENCOG study includes a new cohort of neo-
nates enriched for preterm birth (PTB) with detailed 
phenotyping of the hypothalamic–pituitary–adrenal 
axis, the epigenome, neuroanatomy (brain MRI), the 
social graph, demographic and medical characteris-
tics, consent for longer-term follow-up.

	⇒ PRENCOG will determine the weighted contributions 
of multidimensional PTB-associated risk factors 
(PTB-RFs) to neurodevelopmental outcomes and 
real-world educational performance of children 
born preterm by linking the UK National Neonatal 
Research Database and the National Pupil Database.

	⇒ Neuroinformatic approaches will identify the bio-
logical axes that embed important PTB-RFs in child 
brain development and determine targets within 
neuroendocrine stress and immune pathways that 
lead to atypical brain development.

	⇒ Parents and survivors of PTB are involved in de-
signing, delivering and disseminating the PRENCOG 
study and have co-created participant-facing study 
materials.

	⇒ A limitation is that PRENCOG is in a high-income 
setting, so the generalisability of results to low and 
middle income country (LMIC) settings is uncertain.
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and attention deficit hyperactivity disorder.2 Adults who 
were born preterm are more likely to experience a mood 
disorder, age-related cognitive impairment, schizophrenia 
and cardiometabolic disease.3 PTB accounts for one of 
the highest numbers of disability-adjusted life-years of any 
single childhood condition.4 There are no effective treat-
ments for improving brain health after PTB, which brings 
into sharp focus the need to identify protective factors 
and intervention targets.

The neurobiological basis for adverse neurological, 
cognitive and psychiatric outcomes following PTB is 
related to cerebral white matter injury and subsequent 
dysmaturational processes in white matter and neuroax-
onal structures collectively termed the ‘encephalopathy 
of prematurity’ (EoP).2 MRI is sensitive to features of EoP 
and so has become an important assessment modality for 
investigating determinants of brain health in preterm 
infants.5 6

Our premise, based on studies showing that adverse 
outcomes following PTB are not inevitable,3 7 is that it 
is not PTB per se that has a deleterious effect on brain 
development, but rather, it is multiple, often interacting 
PTB-associated risk factors (PTB-RFs). These are biolog-
ical, psychosocial and social/infrastructural and can affect 
parent or child, or be shared, for instance, maternal/
infant stress, infection/inflammation, suboptimal infant 
nutrition, comorbidities of PTB and socioeconomic 
deprivation (figure 1).

Rationale for study
To intervene against the harmful effects of PTB and 
support child development requires a quantitative under-
standing of PTB as a complex multidimensional risk 
exposure and new knowledge about how PTB-RFs modify 
brain development.

The perinatal stress environment and outcomes after PTB
Prenatal exposure to maternal stress affects 10%–35% 
of children worldwide and is associated with adverse 
neuropsychiatric outcomes.8 Adaptation of the maternal 
hypothalamic–pituitary–adrenal (HPA) axis with conse-
quent variation in the transfer of glucocorticoids to the 
developing fetus appears to be a key mechanism linking 
maternal stress to offspring neurodevelopment.9–11

Our recent studies suggest this could be an important 
axis for embedding PTB-RFs in brain development. First, 
maternal hair cortisol concentrations during pregnancy 
are associated with newborn amygdala architecture across 
the whole gestational age (GA) range, indicating that HPA 
axis activation links the prenatal stress environment to a 
key neural substrate of socioemotional development in 
childhood.12 Second, alterations in placental expression 
of genes regulating cortisol regeneration and placental 
transfer consistent with increased fetal glucocorticoid 
exposure occur in association with lower maternal socio-
economic status.13 Third, maternal consumption of glycyr-
rhizin (a potent inhibitor of placental 11β-hydroxysteroid 

Figure 1  PTB-RFs linked with altered cognition in children, proposed biological pathways that transmit risk to atypical brain 
development/outcome, and image biomarkers for delineating upstream pathways and predicting risk and resilience. BMI, body 
mass index; PTB-RFs, preterm birth-associated risk factors.
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dehydrogenase type 2, the ‘barrier’ to maternal glucocor-
ticoids) is associated with adverse neurodevelopmental 
and neuropsychiatric outcomes in children.14 Fourth, 
extremely preterm infants (<28 weeks) tend to have 
blunted cortisol reactivity to vaccination at 4 months, 
suggesting low GA (or a coexposure such as repeated 
painful experiences during neonatal intensive care) 
programmes HPA axis adaptation. Fifth, neonatal hair 
glucocorticoids are a marker of both prenatal and post-
natal physiological stressors in preterm infants.15 Finally, 
chronic HPA axis activation is a plausible mechanistic link 
between early life stress, altered brain morphology and 
major depression in adulthood.16 Based on these studies, 
we propose that atypical HPA axis activity is triggered by 
PTB-RFs and is an axis through which multidimensional 
exposures become embedded in the brain development 
of preterm infants.

Systemic inflammation and EoP
Early studies revealed that neurodevelopmental outcomes 
are worse if infants are exposed to comorbidities of PTB 
characterised by systemic inflammation, for example, 
chorioamnionitis, bloodstream infection and necrotising 
enterocolitis.17 18 This is because inflammation alters oligo-
dendrocyte precursor responses, increases proliferation 
and death and impairs maturation into myelin-forming 
oligodendrocytes.19 The consequent hypomyelination 
deprives axons of metabolic/trophic support and insula-
tion for electrical impulse conduction, resulting in EoP.

Emerging evidence indicates that PTB is associated 
with sustained inflammation.20 21 Specific mediators 
of the adaptive and immune responses to PTB and its 
comorbidities have been linked to MRI features of EoP22; 
however, there are inconsistencies in the broader litera-
ture associating inflammation with neurodevelopment, 
in part because of the absence of standard peripheral 
biomarkers of low-level systemic, chronic inflammation 
in neonates and partly because study designs have relied 
on a single (or low frequency) measurement of selected 
proteins that are highly phasic, maturation-dependent 
and subject to swift and rapid concentration changes in 
plasma.

DNA methylation (DNAm) is an epigenetic mechanism 
that links environmental factors to regulation of gene 
expression. We propose that epigenetic scores, EpiS-
cores, act as proxies for plasma protein levels and may 
provide a more accurate reflection of inflammatory expo-
sure.23 24 EpiScores have been linked to major incident 
disease outcomes across the lifecourse23 25 26; they predict 
levels of inflammatory proteins and neuroinflammation-
related outcomes, including brain structure and cogni-
tion in children and adults.27–31 and DNAm proxies have 
greater longitudinal stability and stronger associations 
with cognition than serum measures.25 32 These observa-
tions are of particular interest because age-related and 
birth weight-related differences in DNAm are present 
across a large number of CpGs.33–35 Recently, we have 
shown that PTB is associated with profound and widely 

distributed changes in the methylome (saliva) that are 
linked to MRI markers of white matter microstructure,36 
and the EpiScore for C-reactive protein (DNAmCRP) 
captures the allostatic load of inflammatory burden in 
preterm infants and associates with EoP.26

Aim
To identify the biological axes underlying abnormal brain 
development in preterm infants. We will characterise 
brain dysmaturation associated with PTB using neonatal 
MRI and use this to investigate the relationship between 
(1) HPA axis activity and (2) systemic inflammation 
indexed by DNAm and brain development.

Hypotheses
	► Atypical activation of the HPA axis leads to EoP, 

indexed on MRI by dysmaturity (altered chronolog-
ical brain age), reduced connectome complexity and 
markers of hypomyelination.

	► DNAm proxies of systemic inflammation are present 
in preterm infants at term equivalent age and are asso-
ciated with MRI features of EoP.

	► The effect of PTB-RFs on brain development is medi-
ated by alterations in the neonatal HPA axis and or 
chronic systemic inflammation.

METHODS AND ANALYSIS
Study design
This is an exposure-based cohort study between January 
2023 and December 2027.

Study setting
Participants are recruited from the women’s and chil-
dren’s services of the Royal Infirmary of Edinburgh 
(RIE), NHS (National Health Service) Lothian. The RIE 
provides maternity and newborn services for residents 
of the City of Edinburgh and the Lothians. It receives 
7000 deliveries annually and is the regional centre for all 
neonatal intensive care in South East Scotland. Approxi-
mately 100 infants with a birth weight of <1500 g receive 
intensive care at the RIE per annum.

Study population
We plan to recruit 300 mother–infant dyads: 200 preterm 
deliveries with GA <32 weeks (exposed cases) and 100 
term deliveries with GA >37 weeks (non-exposed compar-
ators). GA is determined by the first trimester ultrasound 
scan. Preterm infants are included if a mother booked 
her pregnancy and delivered at the RIE (study centre) or 
if a mother booked her pregnancy at a hospital outside 
the study centre but was transferred to it with her baby in 
utero due to planned or expected birth <32 weeks.

Exclusion criteria: (1) Preterm infants who are trans-
ferred to the study centre postnatally for intensive care; 
(2) Infants with congenital anomalies: structural or func-
tional anomalies (eg, metabolic disorders) that occur 
during intrauterine life and can be identified prenatally, 
at birth or later in life (WHO definition) and (3) Infants 
with a contraindication to MRI at 3Tesla determined by 
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the Edinburgh Imaging safety policy, which is developed 
in accordance with UK Medicines and Healthcare Prod-
ucts Regulatory Agency safety guidelines.

Participant selection and enrolment
Women who present to the RIE with threatened preterm 
labour and for whom delivery is planned or expected 
at less than 32 weeks GA. The comparator group (non-
exposed term infants) are born to women who attend the 
RIE for antenatal care or delivery at >37 weeks GA. Poten-
tial participants are identified using NHS systems: mater-
nity TRAK and the neonatal electronic patient record. As 
with prior work,37 this will result in a sampling distribu-
tion with fewer GA values between 32 and 37 weeks but 
will maximise sampling at important ends of the distribu-
tion within practical funding and recruitment constraints. 
Our analytical strategy, outlined below, will therefore 
benefit from a relative increase in power under consid-
eration of important assumptions which apply for some 
but not all variables, including that a linear dose-response 
effect is present across the GA continuum between term 
and preterm.38 39

Consent to enter the study is sought from each partici-
pant after a full explanation has been given, an informa-
tion leaflet offered and time allowed for consideration. 
Signed participant consent is obtained in two stages for 
the preterm group: first, for data collection from the ante-
natal period to the first week of postnatal life, and second, 
for data and samples over the rest of the neonatal period 
to the end of the study. Signed participant consent for all 
aspects of the study will be obtained in one stage for the 
comparator group. Consent to recontact for follow-on 
studies subject to additional funding is sought.

Outcomes
Identification of targets in neuroendocrine stress and 
immune pathways that lead to atypical brain development 
in preterm infants indexed using 3 MRI markers of EoP: 
morphometric similarity networks (MSNs),40 hierarchical 
complexity (HC)41 and magnetisation transfer saturation 
imaging (MTsat).42 Table  1 summarises the assessment 
schedule, data collection methods, sample type/domain 
and the test or task. Data from cases and comparators are 
collected using the same data collection instruments.

Questionnaire and records
Demographic and clinical information is extracted from 
the maternal and infant records. The tools to assess cogni-
tion, behaviour, well-being and family circumstances are 
listed in table 1.

Neuroimaging
Participants are scanned using a Siemens MAGNETOM 
Prisma 3T MRI clinical scanner (Siemens Healthcare, 
Erlangen, Germany). For those at term-equivalent 
age, a 16-channel phased-array paediatric head receive 
coil is used to acquire sagittal three-dimensional (3D) 
T2-weighted (T2w) sampling perfection with application-
optimised contrasts by using flip angle evolution (SPACE; 

1 mm isotropic resolution, echo time (TE)=409 ms, repe-
tition time (TR)=3200 ms), axial spin-echo echo-planar 
imaging multishell diffusion MRI (dMRI; 2 mm isotropic; 
3×b=0 with reverse phase encoding, 16×b=0, 3×b=200, 
6×b=500, 64×b=750, 64×b=2500 s/mm2 with optimal 
angular coverage43; TR/TE=3500/78 ms), sagittal 3D 
T1-weighted (T1w) magnetisation-prepared rapid acqui-
sition with gradient echo (MPRAGE; 1 mm isotropic, TR/
TE=1970/4.69 ms, inversion time (TI)=1100 ms, flip angle 
(FA)=9°) and B1

+ field mapping (2.59×2.59×3.00 mm) 
scans. Magnetisation transfer (MT) saturation (MTSat) 
imaging is acquired, comprising three sagittal multiecho 
spoiled gradient echo scans (1.6 mm isotropic, TE=2.21, 
6.31, 10.41 ms): (1) with gaussian MT preparation pulse 
(offset 1200 Hz, duration 9.984 ms, FA=500°; TR=75 ms, 
FA=5°); (2) proton-density weighted (PDw; TR=75 ms, 
FA=5°) and (3) T1w (TR=15 ms, FA=14°); an additional 8 
echoes are acquired during the PDw scan to facilitate T2* 
and quantitative susceptibility mapping (TE=15.00, 20.00, 
25.00, 30.00, 35.00, 40.00, 45.00, 50.00 ms).

If the infant stays settled, axial 3D susceptibility-weighted 
(0.75×0.75×3.0 mm, TR/TE=28/20 ms) and axial 2D 
fluid-attenuated inversion-recovery (FLAIR) BLADE 
(0.94×0.94×3.0 mm, TR/TE/TI=10 000/130/2606 ms) 
scans are acquired. Tissue heating and acoustic noise 
exposure are limited through active noise cancella-
tion and by appropriately setting the gradient slew rate 
and other pulse sequence parameters. Participants are 
scanned in normal mode with respect to tissue heating 
and peripheral nerve stimulation. Further details of the 
protocol are provided in online supplemental file 1.

Conventional images are reported by a paediatric 
radiologist using a structured system.44 45 We use estab-
lished methods to derive three markers of EoP: MSNs,40 
HC41 and MTsat.42 Images are processed to derive features 
for secondary analyses, including but not limited to tract 
segmentations46 47 and structural regions of interest.48

HPA axis activity (umbilical cord blood and maternal and 
neonatal hair)
Laboratory analyses of corticosteroids and their precursors 
and metabolites in plasma (2 mL) and hair (>0.3 cm 2 cm 
from neonates, up to 3 cm from mothers) are conducted 
at the University of Edinburgh Clinical Research Facility 
Mass Spectrometry Core. We have developed a robust 
method for steroid extraction from plasma (100 µL) and 
tissues,49 with quantification of cortisol and related corti-
costeroids, including cortisone, as well as dexamethasone 
and its metabolites, simultaneously by liquid chromatog-
raphy tandem mass spectrometry, using a Sciex QTRAP 
6500 (Warrington, UK) operated in positive ion elec-
trospray ionisation with a Waters Acquity UPLC system 
(Manchester, UK).50

DNAm (saliva)
DNA from saliva is extracted using prepIT.L2P reagent 
(DNA Genotek, Ontario, Canada). DNA will be bisulfite 
converted and methylation measured using Illumina 

https://dx.doi.org/10.1136/bmjopen-2024-085365
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HumanMethylationEPIC BeadChip (Illumina, San Diego, 
California, USA) at the Edinburgh Clinical Research 
Facility Genetics Core, Edinburgh, UK. The epigenetic 
measures of immune function, EpiScores, are calculated 
for each participant.29

Dried blood spots (umbilical cord blood and neonatal dried 
blood spot)
Blood spots will be collected using Schleicher and Schuell 
903 filter paper (6×3.2 mm spots per subject). Cards are 
stored at −20°C in the Centre for Reproductive Health 
and analysed in batch, subject to funding.21 22 37

Placenta
Samples are stored at −80°C in the Edinburgh Repro-
ductive Tissue BioBank for future analyses subject to 
approvals.

Gut microbiome (faeces)
The gut microbiome plays a role in human health and 
disease, including child development,51 and is modified 
by age at birth, sex, mode of delivery, antibiotic exposure 
and feed type.52–55 The microbiome may mediate inter-
actions of the preterm gut–brain axis.56–58 Three faecal 
samples are collected from cases during NICU care, and 
one from comparators within 2 weeks of birth. Maternal 
faecal samples will be collected. Samples will be processed 
and stored at −80°C for later analyses, subject to funding.

Outcomes measurement
Samples and data will be collected at three time points in 
the perinatal period (table 1).

Data analysis
Image processing is carried out at the University of Edin-
burgh using established pipelines for MSNs,40 HC41 and 
MTsat.42 There are two statistical approaches. In the first, 
multivariable regressions in a predictive framework are 
used to test whether PTB-RFs are associated with MSNs 
(brain age), HC (connectome architecture) and MTsat 
(a marker of myelination). For this, we will use stan-
dard statistical approaches (hypothesis testing, statistical 
association computations) and also machine learning 
methods ranging from feature selection to statistical 
mapping using widely used tools such as random forests 
and support vector machines.59–61 In the second, medi-
ation analyses within a structural equation modelling 
framework are used to investigate the role of neuroen-
docrine stress activation and chronic inflammation as 
mediators of PTB-RFs on features of EoP.29 This simulta-
neously characterises associations among HPA axis activa-
tion/DNAm, PTB-RFs, and brain features and specifically 
tests the hypothesis that stress and/or chronic inflamma-
tion partly and significantly mediate associations between 
PTB-RFs and brain development.

PTB-risk factor selection
PTB-RF selection is informed by the results of a national 
population-based cohort study that is a part of the 

PRENCOG programme. In summary, the weighted 
contributions of multidimensional PTB-RFs to neuro-
developmental outcomes and the real-world educa-
tional performance of children born preterm will be 
determined by linking the electronic health records of 
>100 000 infants born in England and held in the National 
Neonatal Research Database (NNRD) to the National 
Pupil Database (NPD). The NNRD is a Health Research 
Authority-approved National Information Asset that 
contains detailed, quality-assured data (Neonatal Data 
Set; NHS Information Standard DAPB1595) extracted 
from Electronic Patient Records.62 63 The NPD is a key 
Department for Education data store covering attainment 
for learners in England. Ethical and regulatory approvals 
for this record linkage and analysis are granted to CB64 
(REC reference 21/EM/0130).

Sample size
The sample size for groupwise comparisons of image data 
using biological variables is based on properties of the 
chosen EoP image phenotypes,40 41 and term and preterm 
differences we have observed in predictor variables (1) 
hair cortisol concentrations15: 401 pg/mg (262–615) vs 
82 pg/mg (55–169), respectively and (2) group differ-
ences in DNAmCRP EpiScores.26

To maximise reproducibility, we will use (1) open-
access neuroimaging protocols and standard operating 
procedures (SOPs) for sampling and analysis of biosam-
ples, (2) behavioural assessment with clinical, dimen-
sional and trait measures, multiple informants, direct 
observation and biometric data, (3) recommended 
reporting standards for neuroimaging, HPA axis activity 
and DNAm, (4) prespecified blind data processing, (5) 
analysis preregistration and (6) source code and data 
sharing. All manuscripts will be posted on preprint sites 
to facilitate another layer of peer review including critical 
insights into methodology.

Patient and public involvement
The research questions were informed by parent prior-
ities for research about childhood outcomes following 
PTB,65 attitudes of longitudinal cohort participants 
towards recent opportunities and controversies within 
health data science66 and stakeholders. The stakeholder 
groups are the Adult Preemie Advocacy Network (APAN, 
a network of adults who were born preterm, coauthor 
LI) and an eight-member parent advisory group. Stake-
holders codesigned the research questions, reviewed the 
content of all participant-facing materials, including the 
participant information sheet and graphics (figures  2 
and 3), and informed our dissemination strategy. 
We commissioned a graphical design artist to create 
the PRENCOG study logo, a participant-facing info-
graphic and a video animation to support recruitment 
(https://media.ed.ac.uk/media/Prencog_Neonatal/1_​
9llqdgsd).

https://media.ed.ac.uk/media/Prencog_Neonatal/1_9llqdgsd
https://media.ed.ac.uk/media/Prencog_Neonatal/1_9llqdgsd
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Related work
Children born preterm and term comparators enrolled 
in a separate longitudinal study (Theirworld Edinburgh 
Birth Cohort, TEBC) are invited for behavioural assess-
ments at age five, as described in the TEBC protocol.37 
With funding from the PRENCOG programme, MRI 
data are acquired at this time point. We have added the 
following behavioural tasks to those listed in the TEBC 
protocol: Theory of Mind booklet task,67 executive func-
tions (Early Childhood Inhibitory Touchscreen Task,68 
CORSI block tapping task69 and prohibited toy task),70 
exploratory play (Novel toy task) and reading (from the 
Woodcock-Johnson IV subscales).

The goal is to define the functional and structural 
neural substrates of critical cognitive functions in preterm 
children and, using perinatal data, characterise factors 
that shape neurocognitive development at 5 years of age.

Five-year-old participants are scanned using a 
32-channel phased-array adult head receive coil to acquire 
sagittal 3D T1w MPRAGE (1 mm isotropic, TR/TE/
TI=2500/4.69/1180 ms, FA=7°), sagittal 3D T2w SPACE 
(0.9 mm isotropic, TR/TE=3200/407 ms), axial 2D T2w 
FLAIR (0.94×0.94×3.0 mm, TR/TE/TI=9500/124/2556 
ms) and axial spin-echo echo-planar imaging multishell 
dMRI (2 mm isotropic; 3×b=0 with reverse phase encoding, 
15×b=0, 3×b=200, 6×b=500, 64×b=1000, 64×b=2000 s/
mm2 with optimal angular coverage43; TR/TE=2800/82 
ms) scans. MTsat imaging is acquired, comprising three 
sagittal multiecho spoiled gradient echo scans (1.6 mm 
isotropic, TE=2.29, 6.33, 10.37 ms): (1) with MT prepa-
ration pulse as above (TR=35 ms, FA=5°), (2) PDw 
(TR=35 ms, FA=5°) and (3) T1w (TR=15 ms, FA=18°). 
B0 field mapping (2.3 mm isotropic) is acquired prior to 
three functional MRI scans, which are acquired using 2D 
gradient echo echo-planar imaging (2.3 mm isotropic, 
TR/TE=1000/30 ms, FA=60°). During the functional 
MRI scans, children view selected movies that are age 
appropriate, engaging and enable characterising neural 
correlates of several cognitive functions. Further details 
of the protocol are provided in online supplemental file 
2.

We use an information booklet, an animation (https://​
media.ed.ac.uk/media/PRENCOG_5YEAROLDAP-
POINTMENT_ANIMATION/1_akzmmsc4) and a mock 
scan to acclimate 5-year-old participants to the MRI envi-
ronment and to train them to stay very still (ie, <2 mm 

motion).71 The children use in-ear headphones to listen 
to the soundtrack of movies and for communication with 
the researchers operating the scan in the control room. 
The researchers communicate with children approxi-
mately every 5 min during the scan; children respond by 
speaking aloud. The in-ear headphones reduce the MRI 
noise to safe levels; soft pads offer additional hearing 
protection and help to stabilise children’s heads. An 
additional member of the research team stands near the 
child’s feet and the bore of the scanner to monitor the 
child during the scan. If the child moves, this researcher 
pats the child’s leg as a reminder to stay still.

We will use functional, structural and diffusion MRI data 
to investigate differences in brain structure and function 
as a function of GA, in 5-year-old children. Our analyses 
will include focused studies of responses in specific func-
tional networks that underly particular cognitive domains 
(eg, social cognition, attention, language, reading), as 
well as whole-brain studies characterising distributed 
impacts of PTB (eg, on white matter tract integrity, MTsat, 
network architecture and cortical morphology). These 
data also enable longitudinal studies of brain structure, 
given that participants completed structural and diffu-
sion MRI scans as neonates. This line of work will build 
directly on evidence from the neonatal scans by testing 
for sustained impacts of GA on brain development at 
age 5 years.40–42 As described above, we will also investi-
gate the relative roles of other risk and protective factors 
(eg, SES,48 maternal stress,12 infant nutrition72 and early 
linguistic environment73) on neurocognitive develop-
ment in children born preterm.

Ethics and dissemination
Ethical favourable opinion for all neonatal studies has 
been obtained from the South East Scotland Research 
Ethics Committee 02 (23/SS/0067) and NHS Lothian 
Research and Development (2023/0150). A favourable 
ethical opinion for data collection and analyses in related 
work on 5 years has been provided by the South East Scot-
land Research Ethics Committee 01 (16/SS/0154).

Statistical analysis plans for the main analyses will be 
published on Open Science Framework.

Results will be reported to the UKRI Medical Research 
Council. They will be presented at national and inter-
national scientific conferences and summarised on a 
study-specific website in lay form and via a newsletter 

Figure 2  Codesigned PRENCOG logo, available in black and white.

https://dx.doi.org/10.1136/bmjopen-2024-085365
https://dx.doi.org/10.1136/bmjopen-2024-085365
https://media.ed.ac.uk/media/PRENCOG_5%20YEAR%20OLD%20APPOINTMENT_ANIMATION/1_akzmmsc4
https://media.ed.ac.uk/media/PRENCOG_5%20YEAR%20OLD%20APPOINTMENT_ANIMATION/1_akzmmsc4
https://media.ed.ac.uk/media/PRENCOG_5%20YEAR%20OLD%20APPOINTMENT_ANIMATION/1_akzmmsc4
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Figure 3  Codesigned participant-facing infographic.
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for families (https://www.ed.ac.uk/centre-reproductive-​
health/prencog). They will be published on preprint 
servers and in peer-reviewed publications. At the end 
of the programme of work, we will cocreate with stake-
holders a scientific animation to illustrate the research 
insights and offer accessible and digestible information to 
families. Stakeholders (APAN) will disseminate the main 
findings via their social media channels and website. We 
will engage with the University of Edinburgh public rela-
tions and media office to ensure maximum publicity and 
benefit.

Safety considerations
We do not anticipate risk from any of the biosample 
collections or questionnaires.

The MRI scanner generates loud acoustic noise, so 
flexible earplugs and earmuffs are used to prevent noise 
discomfort and to encourage infants to sleep. We use 
established procedures described ensuring infant safety 
and physiological stability during imaging.37 The infant 
has continuous monitoring of vital signs (heart rate 
and oxygen saturation) with an MR conditional patient 
monitor. The attending clinical practitioner will record 
observations every 5 min until 1 hour after the infant has 
woken up, and the scan will be stopped if there are any 
abnormalities in monitoring. Full neonatal resuscitation 
facilities are available on site. SOPs for ensuring safety 
in the MRI environment are in place at the Edinburgh 
Imaging facility.
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