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Abstract 

A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral 
sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early 
changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease 
phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/
FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all 
three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral 
organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abun-
dance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons 
and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology 
detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE 
carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, 
as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these 
results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely 
constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset 
neurodegenerative disease characterized by the progres-
sive loss of lower and upper motor neurons resulting in 
muscle weakness and atrophy [33]. Median survival is 
3–5 years after symptom onset and treatment options 
are limited for ALS patients. More effective therapies 
are needed, but their development requires a better 
understanding of the pathogenic mechanisms underly-
ing ALS. The disease has a strong genetic contribution 
and an intronic hexanucleotide repeat expansion (HRE) 
in C9ORF72 is the most common genetic cause of ALS. 
C9ORF72-HREs (C9-HRE) are also a frequent cause of 
frontotemporal dementia (FTD) and occur in patients 
that suffer from both ALS and FTD [29, 92]. Mechanis-
tically, C9-HRE results in C9ORF72 haploinsufficiency, 
formation of RNA foci and dipeptide repeat proteins 
(DPRs), and TDP-43 pathology [7, 111, 112] leading to 
incompletely understood downstream molecular and cel-
lular defects.

Although the pathogenic effects of C9-HRE on spinal 
motor neurons are studied intensely, how other types of 
neurons, e.g. in the motor or frontal cortex, are affected is 
less well understood. This is in part due to the paucity of 
protocols for generating human cortical motor neurons 
and the lack of mouse models that faithfully recapitulate 
C9-HRE pathogenesis. However, multiple observations 
indicate prominent changes in the cortex and other brain 
regions in C9-ALS/FTD. These include human imaging 
studies showing for example cortical thinning, altered 
connectivity and cortical hyperexcitability, even at early 
presymptomatic stages [13, 16, 41, 63, 64, 76, 77, 113, 
120]. Further, transcriptomic and proteomic analyses of 
human post-mortem brain tissue identify specific molec-
ular changes, including in vulnerable cell types such 
as deep layer cortical neurons (e.g. [17, 45, 66, 86, 100, 
109]). Thus, while changes in brain structure and connec-
tivity are a hallmark of C9-ALS/FTD, our understanding 
of the molecular and cellular deficits that lead to these 
phenotypes in humans is rather rudimentary.

ALS patients usually develop symptoms between 51 
and 66 years of age [67], but accumulating evidence 
supports the idea that ALS, and other adult-onset 
neurodegenerative diseases such as for example Hun-
tington’s disease [5, 8], are caused by a sequence of 
pathogenic events some of which may have a devel-
opmental origin and occur far in advance of the onset 
of first symptoms. For example, the toxic products 
of C9-HRE can be detected at early presymptomatic 
stages in ALS/FTD and impair neurogenesis at embry-
onic stages in human stem cell cultures and in vivo in 
mice [48, 88, 111]. In addition, multiple human imag-
ing studies report structural changes in the brain of 

C9-HRE carriers, such as cortical thinning and altered 
gyrification, decades before the average age of disease 
onset [11, 13, 18, 35, 64, 93, 113]. The slope of decline 
with age of these structural changes, e.g. cortical thick-
ness, is similar for C9-HRE carriers and non-carriers, 
supporting an early, perhaps developmental, origin of 
the initial pathogenic events [64, 113]. This is in line 
with C9ORF72 expression patterns at embryonic and 
postnatal stages [6, 34, 65]. Although these observa-
tions hint at early, developmental effects of C9-HRE 
leading to detrimental structural and connectivity 
changes in the adult, the cellular defects that under-
lie these phenotypes in the complex environment of 
human brain tissue remain largely unknown.

Here, we generate and use unguided  neural organoid 
models (referred to as cerebral organoids [60]) derived 
from induced pluripotent stem cells (iPSCs) of C9-ALS/
FTD patients and healthy controls to study changes in 
cellular architecture and connectivity. The resemblance 
of cerebral organoids to the three-dimensional charac-
ter and composition of human brain tissue provides a 
unique opportunity to investigate the spatiotemporal 
mechanisms that dictate human brain development and 
disease [3, 23, 61, 84, 110, 114, 116]. We combined single-
cell RNA sequencing, molecular and cellular approaches, 
and patch-clamp electrophysiology to detect all three 
C9-HRE pathological hallmarks and developmental 
changes in growth, cellular composition, and synapses. 
Specifically, a reduction in the number of deep layer neu-
rons was found concomitant with molecular, structural, 
and functional changes in excitatory synapses.

Previous work shows that presymptomatic C9-HRE 
carriers display several (e.g. altered brain structure, cryp-
tic exon inclusion) but not all (e.g. elevated serum Nf-L) 
of the phenotypes found in C9-ALS/FTD cases [31, 52, 
69, 73, 97, 119]. The penetrance of the C9-HRE is incom-
plete and age of onset varies from 40 to 90 years of age 
[81, 121]. It is therefore difficult to predict if or when 
C9-HRE carriers will display clinical symptoms. To 
explore whether cerebral organoids can help to dissect 
presymptomatic disease mechanisms or act as a plat-
form for (personalized) therapy development, we also 
generated cerebral organoids from four presymptomatic 
C9-HRE carriers. Intriguingly, organoids from all C9-car-
riers showed C9-HRE pathology but the extent to which 
other cellular and synaptic changes were observed varied 
for different C9-carriers. Thus, by exploiting a C9-ALS/
FTD neural organoid model, that reliably recapitulates 
C9-HRE molecular pathology, we unveil early changes 
in cellular architecture and synaptic dysfunction in 
C9-ALS/FTD that provide a framework for further defin-
ing initial disease mechanisms and for designing novel 
therapeutic strategies for ALS/FTD patients.
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Methods
iPSC reprogramming and culture
The different iPSC lines used in this study (generated 
in the University Medical Center Utrecht or obtained 
through others) were reprogrammed from skin fibro-
blasts and blood lymphocytes using Lentiviral, Sendai 
virus, or episomal plasmid-dependent reprogramming 
methods [28, 47, 48, 51, 83, 98, 101]. The medical ethi-
cal approval committee (METC) of University Medical 
Center Utrecht granted approval for iPSC line genera-
tion through biobank protocol 16–436. Donors gave 
written informed consent. Patients were diagnosed 
according to the diagnostic criteria for ALS (revised El 
Escorial). Details of human subjects and iPSC lines can 
be found in Supplementary Table 1.

For generating iPSCs at University Medical Center 
Utrecht, human dermal fibroblasts were obtained 
from skin biopsies and cultured in Dulbecco’s modi-
fied Eagles Medium (DMEM; Thermo Fisher Scien-
tific; 41,965,039) supplemented with 10% foetal bovine 
serum (FBS; Sigma; F7524), 2 mM L-Glu (Gibco; 
25,030,024), 100 U/mL penicillin/streptomycin (p/s; 
Gibco; 15,140,122). Fibroblasts were reprogrammed 
using the CytoTune-iPS 2.0 Sendai kit (Invitrogen; 
A16517). Sendai virus was added to the fibroblasts. 
On day 7 after transduction, cells were plated on MEF-
coated culture dishes. After two weeks, ten colonies 
were picked from each transduction and each clone was 
expanded separately. From passage 5 onwards, iPSCs 
were cultured without MEFs. Clones were examined 
over time and tested for organoid growth potential. The 
iPSC clones used in this study were extensively charac-
terized using the methods described below.

iPSCs were maintained in StemFlex™ (Life Technolo-
gies; A3349401) on Geltrex™ (Gibco; A1413202) coated 
dishes. iPSCs were passaged once a week using 0.5 mM 
EDTA. StemFlex was supplemented with 5 μM Y 27632 
dihydrochloride (Axon Medchem; 1683) for 24h after 
passaging to prevent Rho-Kinase-mediated apoptosis. 
All lines were frequently tested for mycoplasma infection 
using the MycoAlert kit (Lonza Bioscience, LT07-318).

iPSC characterization
Karyotyping
For karyotyping, 2 million iPSCs (~ passage number 10) 
were plated with 1: Y-27632 dihydrochloride (Tocris, 
1254) in StemFlex™ (Life Technologies; A3349401) on 
GelTrex™ (Gibco; A1413202)-coated dishes. Cells were 
treated with Colcemid/KCL and fixed. Karyograms of 20 
nuclei in metaphase were analysed per iPSC line. GTG 
(i.e. G-bands by trypsin using Giemsa) was used as a 
banding method.

Germ layer differentiation
Differentiation of iPSCs into all three germ layers (ecto-
derm, mesoderm, and endoderm) was performed using 
STEMdiff™ Trilineage Differentiation Kit (Stem Cell 
Technologies; 05230), following the manufacturer’s 
guidelines.

Immunocytochemistry
Coverslips were blocked with PBSGT for 30 min at RT 
and incubated with primary antibodies in blocking buffer 
overnight at 4  °C. iPSCs: Expression of SOX2, OCT4, 
TRA1-81, TRA1-60, SSEA4, and NANOG was used to 
confirm the presence of stem cell markers in iPSCs with 
StemLight kit (Cell Signalling, 9656S). Differentiated 
cells: to check pluripotency potential into three germ 
layers: Brachyury/CD56 for the mesodermal lineage, 
CXCR4/SOX17 for the endodermal lineage, and PAX6/
Nestin for ectodermal lineage (for specific antibodies, see 
Supplementary Table  5). The next day, coverslips were 
washed three times with PBS containing 0.5% Triton-
X100 and incubated for one hour at RT in secondary anti-
body dilution (1:750) in blocking buffer. Subsequently, 
coverslips were incubated with DAPI in PBS (1:1000) for 
10 min. Sections were mounted in FluorSave™ Reagent 
(Millipore, 345789) or Mowiol and stored at 4  °C after 
drying for one day at RT. Images were obtained with an 
epifluorescence microscope (Zeiss Axioscope A1) with 
20 × air objective (NA = 0.5).

Short tandem repeat analysis
iPSCs were harvested as single cells and total double-
stranded DNA was extracted using the QuickGene™ 
DNA kit (Kurabo; DT-S). In short, cells were washed 
with PBS, lysed in a mix of RNase A (Invitrogen; 12091), 
Proteinase K and the kit’s lysis buffer. After precipita-
tion with 100% ethanol, the lysate was loaded on col-
umns and washed three times. Finally, DNA was eluted 
and measured on the Qubit™ using the dsDNA BR assay 
(Invitrogen; Q33266). To amplify the DNA for 9 STR 
loci (targeting CSF1PO, vWA, TH01, D5S818, D16S539, 
TPOX, D7S820, D13S317, Amelogenin), the AmpFL-
STR™ Identifiler™ PCR amplification kit (Thermo Fisher 
Scientific; 4365489) was used. Samples were loaded in a 
3730 Genetic Analyzer. Per locus, one or two peaks were 
identified. iPSCs were matched to their parental fibro-
blast line.

C9 HRE length measurement
Three million iPSCs were harvested as single cells 
and total double-stranded DNA was extracted using 
the QuickGene™ DNA kit (Kurabo; DT-S). In short, 
cells were washed with PBS, lysed in a mix of RNase A 
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(Invitrogen; 12091), Proteinase K and the kit’s lysis buffer. 
After precipitation with 100% ethanol, the lysate was 
loaded on columns and washed three times. Finally, DNA 
was eluted and measured in the Qubit™ using the dsDNA 
BR assay (Invitrogen; Q33266).

RP‑PCR
The presence of C9-HRE was confirmed in C9 iPSCs by 
repeat-primed PCR (RP-PCR) with the following prim-
ers: C9ORF72_RP_PCR_F1: [6FAM]-AGT​CGC​TAG​
AGG​CGA​AAG​C, C9ORF72_RP_PCR_R: TAC​GCA​TCC​
CAG​TTT​GAG​ACG​GGG​GCCGG-GGC​CGG​GGC​CGG​
GG, C9ORF72_RP_PCR_anchor: TAC​GCA​TCC​CAG​
TTT​GAG​ACG.

The RP-PCR assay was performed in a mix contain-
ing 6.25% genomic DNA (concentration between 61 
and 206  ng/µL), FastStart mix (Roche; 4710452001), 
875 mM betaine (Sigma; B0300-5VL), 6.25% DMSO 
(MP Bio; 190186), 1 mM MgCL2 (Bioline; BIO-37026), 
187.5  µM 7-deaza-dGTP (Merck; 10988537001), 0.625 
µM C9ORF72_RP_PCR_F1 and anchor primer, 0.3125 
µM C9ORF72_RP_PCR_R primer in dH20. During PCR, 
the annealing temperature was gradually decreased from 
70 to 56  °C in 2  °C increments with one extra cycle per 
decrease. After a 15-min incubation at 95  °C, reactions 
were subjected to 2 to 8 cycles of denaturation at 94  °C 
for 1 min, 70 °C to 56 °C for 1 min, 72 °C for 3 min, fol-
lowed by 10 min extension at 72 °C. PCR products were 
stored at −  20  °C and afterward used for genetic analy-
sis. 1 µL PCR product was combined with 0.1 µL GeneS-
can™ 500 ROX™ dye Size Standard (Applied Biosystems; 
15829716) in 18  µL Hi-Di™ Formamide (Applied Bio-
systems; 4311320). Fragment length analysis was per-
formed with Peak Scanner v1.0 (Life Technologies) 
followed by electrophoresis on an automatic sequencer 
(DNA Analyzer 3730 or 3730XL; Applied Biosystems). 
A characteristic stutter amplification pattern on the elec-
tropherogram was considered diagnostic of a pathogenic 
repeat expansion.

VNTR‑PCR
Repeat length below 30 repeats was determined by vari-
able number tandem repeat PCR (VNTR-PCR). The for-
ward primer was the same as used for RP-PCR, but the 
reverse primer was different: GCA​GGC​ACC​GCA​ACC​
GCA​G. The assay mix contained 50 ng genomic DNA, 
FastStart mix, 962 mM betaine, 3.85% DMSO, 385  µM 
7-deaza-dGTP, 0.24 µM forward and reverse primer in 
dH20. After a 10 min incubation at 95  °C, samples were 
subjected to 33 PCR cycles with the following settings: 
95  °C for 1 min, 60  °C for 1 min, 72  °C for 1 min. This 
was followed by a 4 min extension at 72  °C. Afterward, 
samples were kept at 10  °C or stored at −  20  °C and 

subsequently used for genetic analysis as described for 
RP-PCR. Repeat length was calculated as the number 
of bps above 116 bp, divided by the length of the repeat, 
which is 6. So a peak at 128 bps represents two repeats.

Nanopore sequencing
For measurement of the length of the expanded repeat, 
high-molecular-weight (HMW) DNA was extracted 
from three million iPSCs using the Monarch® HMW 
DNA Extraction Kit for Cells and Blood (New England 
Biolabs® Inc.; #T3050L) according to the manufacturer’s 
instructions with lysis agitation at 1400 rpm. To decrease 
viscosity, needle shearing was performed 10 × with a 25G 
needle and 5 × with a 30G needle. DNA concentration 
was measured on the Qubit™ using the dsDNA BR assay 
(Invitrogen; Q33266). DNA integrity was checked with 
the Agilent 2200 TapeStation System (Agilent; G2964AA) 
using Genomic DNA ScreenTape (Agilent; 5067–5365) 
and Genomic DNA Reagents (Agilent; 5067–5366). 
Depending on the original sample concentration, 2.1–
3.3 μg per sample was used for library preparation with 
the Nanopore Cas9 sequencing kit (Oxford Nanopore 
Technologies; SQK-CS9109). Three sample preps, each 
cut with a different pool of four crRNAs (Supplemen-
tary Table  5), were pooled before the adapter ligation 
step and sequenced for 48–72 h on a FLO-MIN106 flow 
cell (Oxford Nanopore Technologies) with MinKNOW 
v22.12.5. Fast5 output files were basecalled and mapped 
to GRCh38 with Guppy v6.1.2, using the Super accu-
rate (SUP) basecalling model. Sequencing reads of mul-
tiplexed samples were bioinformatically separated with 
a custom-made python script. In this step, reads were 
assigned to a sample based on their mapped start and 
end positions that correspond to the cut sites of each 
specific crRNA pool. Repeat length per read was called 
by STRique v0.4.2 and repeat length of the expanded 
repeat allele (> 30 repeat units) was visualized in R v4.0. 
Below 30 repeats was considered a readout of the non-
expanded allele.

Cerebral organoid culture
The cerebral organoid protocol used was based on Lan-
caster & Knoblich (2014) [60]. Small alterations were 
described previously in Ormel et al. (2018) [83]. Briefly, 
iPSC colonies were dissociated to single cells using 
Accutase (Innovative Cell Technologies, Inc.; AT104), 
cells were counted and seeded in a ULA 96wp (Corn-
ing; 7007) at a density of 9k cells per EB in HuES medium 
(20% KOSR (Gibco; 10828028, 3% FBS (Sigma-Aldrich; 
F7524), 2mM L-Glu (Gibco; 25030024), 1 × MEM-NEAA 
(Gibco; 11140035), 3.5  μl/100 mM 2-mercaptoetha-
nol (2ME) in DMEM/F-12) supplemented with 50 μM 
Y-27632 dihydrochloride (Axon Medchem; 1683) and 4 
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ng/mL bFGF (Pepro-Tech; 100-18B). The number of live 
cells was determined using Trypan blue and an auto-
mated cell counter. Media was changed every other day, 
and on day 4 differentiation was started by removing 
bFGF and ROCK inhibitor. Neural induction started at 
day 6 with a switch to medium consisting of DMEM/F-12 
(Gibco; 11320074) supplemented with 1 × N2 supple-
ment (Gibco; 17502001), 2 mM L-Glu (Gibco; 25030024), 
1 × MEM-NEAA (Gibco; 11140035) and 1  μl/mL hepa-
rin (Sigma-Aldrich; H3149). Medium was replaced 
every other day until pseudostratified epithelium was 
visible (13 days after seeding). Next, aggregates were 
transferred to matrigel droplets (Corning; 356234) in 60 
mm petri-dishes, as described previously [60]. Media 
was changed to cerebral differentiation medium consist-
ing of equal parts DMEM/F-12 and Neurobasal (Gibco; 
21103,049) medium supplemented with 0.5 × N2 sup-
plement, 0,025% human insulin (Sigma; I9278), 2 mM 
L-Glu (Gibco; 25030024), 0.5 × MEM-NEAA, 100 U/mL 
penicillin/streptomycin (p/s; Gibco; 15140122), 50 mM 
2ME and 1 × B27 supplement without vitamin A (Gibco, 
12587010). After this transfer, aggregates were cultured 
statically for 4 days to aid the expansion of the neuroepi-
thelium. After two days, medium was replaced with cer-
ebral differentiation medium with 1 × B27 supplement 
(Gibco; 17504044) with vitamin A and dishes were moved 
to an orbital shaker at 55 rpm. The medium was changed 
three times a week. At selected time points, organoids 
were washed with 1 × PBS (Thermo Fisher Scientific) and 
fixed with 4% formaldehyde (Pierce; 11586711) for at 
least 1 h at 4  °C. After fixation and several PBS washes, 
organoids were placed in 30% sucrose at 4 °C overnight. 
Organoids were embedded using O.C.T. compound 
(Sakura) and stored at − 80 °C until sectioning.

Brightfield image size measurement
Images were taken with an Invitrogen EVOS5000 bright-
field microscope. For every organoid batch at least 12 
images were taken for every iPSC line at each timepoint 
(i.e. day 2, 6, and 10). Images were analysed in ImageJ. To 
determine the EB/organoid area, images were automati-
cally quantified using the Default threshold, which is pro-
vided by the software. For statistical analysis, the main 
effect of disease condition on EB size was determined 
after a qualitative check for individual cell line and orga-
noid batch effects.

Images of day 90 organoids were taken of organoid 
dishes placed on graph paper. The organoids were traced 
manually and the conversion to mm2 was calculated 
by dividing with the average value of three squares of 
1 × 1cm of the graph paper.

Size is displayed as a relative measure, where the aver-
age of healthy control (HC) is set to 100%.

Immunohistochemistry
Frozen organoid blocks embedded in O.C.T. compound 
were equilibrated at − 20 °C for 1 h before cryosection-
ing (Leica Biosystems; CM1950), after which 20 μm 
serial sections were captured on Superfrost + glasses. 
Slides were air-dried at RT for at least 1 h and stored 
at –  80  °C for long-term storage. Sections were washed 
once with PBS for 10 min before blocking them for 1 h 
with blocking buffer (10% normal donkey serum (Jack-
son IR; 017-000-121), 3% BSA (Sigma-Aldrich; A4503), 
1% TritonX100 in PBS). Sections were then incubated 
in primary antibody dilution (for specific antibodies, see 
Supplementary Table  5) in blocking buffer overnight at 
4 °C. The next day, sections were washed three times with 
PBS and incubated for 1 h at RT in secondary antibody 
dilution (1:750) in blocking buffer. Subsequently, they 
were incubated with DAPI in PBS (1:1000) for 15 min. 
Sections were mounted in FluorSave™ Reagent (Milli-
pore, 345789) or Mowiol and stored at 4 °C after drying 
for one day at RT. Images were obtained with a confocal 
microscope (Olympus LS FV1000) using the UPlanSApo 
100 × oil objective (NA = 1.40) and Z-stack step size of 
0.34 μm for the RNA foci staining. MAP2/KI67 images 
were obtained with an epifluorescence microscope (Zeiss 
Axioscope A1) with 20 × air objective (NA = 0.5).

Quantitative real‑time PCR
Organoids were lysed in QIAzol reagent (Qiagen; 
79306) and mechanically dissociated using an Ultra-
Turrax (IKA; T10). Chloroform (1:6, Riedel-de Haën, 
32211) was added to the tubes, before being rotated a 
few times and incubated at RT for 3 min. Samples were 
then centrifuged at 12,000 g, and the aqueous phase was 
used for RNA extraction. Total RNA was isolated using 
the RNeasy mini kit (Qiagen; 74104). RNA quality and 
purity were analyzed in the NanoDrop™ 2000. Total RNA 
(500 ng) was used for cDNA synthesis using the Super-
script IV kit (Invitrogen; 18090200) according to manu-
facturer’s instructions. RT-qPCR with the SYBR™ green 
(Roche) dye as a detection system was carried out in the 
Quantstudio™ 6 Flex Real-Time PCR system (Applied 
Biosystems) with the following temperature settings: 
50  °C for 2  min, 95  °C for 10 min, then 40 cycles of 15 
s at 95  °C and 60  s at 60  °C. Sense and antisense prim-
ers (designed or checked for specificity with the online 
primer BLAST design tool, NCBI) were combined to 
make the primer mixes (for primer sequences see Supple-
mentary Table 5). Samples were tested in duplicates. RPII 
and TBP were used as reference genes to standardize 
the measured expression level. Relative expression was 
calculated using the ΔΔCT method. Melt curves of the 
PCR product were inspected for the presence of primer 
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dimers. For statistical analysis, we corrected for multiple 
testing. Each sample contained at least 3 organoids.

Western blot analysis
Relative C9ORF72 protein levels in C9 organoids and 
healthy controls were determined. Samples consisting 
of three organoids (day 45) were lysed-homogenized in 
RIPA buffer (300 μl TBS with 1% NP40, 1% sodium deox-
ycholate, 0.1% SDS) with cOmplete™ protease inhibitor 
(Roche, 11836170001) using Ultra-Turrax® (IKA, T10). 
Lysates were run through a syringe (25G) to break down 
DNA. They were then placed in a rotor for 20 min and 
centrifuged at 13.200 RPM for 20 min at 4 °C. The super-
natant (soluble phase protein) was collected and stored at 
− 80 °C. Before gel loading, protein samples were diluted 
in loading buffer (2% SDS, cOmplete™ protease inhibitor) 
and an equal volume of each sample was added to a lane 
on each of two 10% polyacrylamide gels. The gel was run 
at 90V for 30 min to facilitate proper stacking of the pro-
tein, after which the voltage was increased to 120V until 
the protein arrived at the bottom of the gel. The proteins 
were then transferred to a Protran® 0.45um nitrocellulose 
membrane (Cytiva™, 10600002) by wet blotting at 100V 
for 60 min. Next, the blot was incubated in blocking mix 
(0.25% gelatine in 0.5% TBS-Triton X-100, pH 7.4) for 10 
min and incubated with a mouse α-C9ORF72 primary 
antibody (1:1000, GeneTex, GTX632041) and a chicken 
α-GAPDH primary antibody (1:1000, Abcam, ab14247) 
or a rabbit α-GAPDH primary antibody (1:1000, Abcam, 
ab9485) overnight at 4 °C on a shaker. The next day, blots 
were washed with 0.05% TBS-Tween 20 (TBS-T), and 
incubated with α-mouse IRDye 800 secondary antibody 
(1:2500) and α-chicken or α-rabbit Alexa Fluor™ 647 
secondary antibody (1:1000). Then, after washing with 
TBS-T, blots were scanned with the Odyssey® CLx imag-
ing system (LI-COR Biosciences) at 700 nm and 800 nm. 
Quantification of C9ORF72 and GAPDH protein expres-
sion was done using Image Studio Lite v5.2 (LI-COR 
Biosciences) and FIJI (ImageJ). C9ORF72 expression 
was normalized to GAPDH expression in the same lane. 
These values were additionally normalized to the average 
C9ORF72 expression of three healthy control organoid 
samples Statistical analysis was performed in GraphPad 
Prism 8.4.2. with an One-tailed t-test.

LNA‑FISH
Locked nucleic acid (LNA) fluorescence in  situ hybridi-
zation (FISH) was performed as described [53]. Briefly, 
fresh-frozen or PFA-fixed organoids were cut into 20 
µm thin sections on a Leica Cryostat. Glass slides were 
stored at − 80 °C until use. After pre-fixation (4% PFA for 
10 min at RT), sections were acetylated (10 min at RT) 
and permeabilized with proteinase K (5 µg/ml for 5 min 

at RT). Prehybridization with hybridisation buffer for 1 h 
at RT was followed by the hybridization with 40 nM of a 
custom-made 3′ and 5′ DIG-labelled probe against the 
sense C9ORF72-HRE (Sequence: CCC​GGC​CCC​GGC​
CCC, Qiagen) or a Scrambled control (Qiagen), over-
night (ON) at 45  °C. Before hybridization, probes were 
denatured for 30 min at 65 °C in hybridization buffer and 
quickly placed on ice. The next day, tissue slides were 
washed once with 5 × SSC for 5 min and incubated in 
0.2 × SSC for 1.5 h at 50 °C, followed up with eight washes 
for 10 min each in B1 solution (0.1 M Tris, pH 7.5, 0.15 M 
NaCl) supplemented with Tween (0.0005%). For immu-
nohistochemistry and ISH, slides were blocked in 10% 
FBS in B1 buffer with Tween (0,0005%) for 1 h at RT 
and subsequently incubated with anti-DIG-POD (1:500; 
Roche Diagnostics; 11207733910) and chicken anti-
MAP2 (1:1000; Abcam; ab92434) antibodies in 1% BSA, 
0.3% Triton-X-100 in 1 × PBS ON at 4°C. The next day, 
tissue slides were washed three times with B1 solution for 
5 min each, followed by incubating with TSA™ Cyanine 
3 reagent (1:50 in amplification diluent; AKOYA Bio-
sciences; SAT704A001EA) for 10 min at RT. Then washed 
four times for 5 min each in B1 buffer supplemented with 
20% Tween followed by incubation with secondary anti-
body donkey-anti-chicken-Alexa Fluor™ 488 (1:750; Inv-
itrogen) in 1 × PBS for 1 h at RT. Finally, tissue slides were 
washed twice for 5 min each with 1 × PBS, incubated with 
1 × DAPI for 10 min at RT to stain the nuclei, and washed 
once for 5 min with 1 × PBS. Slides were mounted with 
FluorSave™ reagent (Millipore) and images were acquired 
on a confocal microscope (Zeiss) with image acquisition 
software (Zen 3.3, Zeiss).

MSD immunoassay
A poly(GP) and poly(GA) Meso Scale Discovery (MSD) 
immunoassay was performed on brain organoids after 
lysis in RIPA buffer containing 2% SDS (Fisher Biorea-
gents, BP166-100) and 2 × cOmplete Protease Inhibitor 
Cocktail (Roche, 11836170001) and mechanical dissocia-
tion using an UltraTurrax (IKA; T10). Samples were then 
sonicated (3 × 5 s) at 4  °C and centrifuged at 17,000×g 
for 20 min at 16  °C. Supernatant was collected and fro-
zen at − 80  °C. An aliquot was taken from each sample 
before freezing to perform a Pierce™ BCA Protein Assay 
(Thermo Fisher Scientific, 23227).

MSD immunoassay was performed in single-plex using 
96-well SECTOR plates to quantify endogenous poly(GP) 
and poly(GA) expression levels in the brain organoids, as 
previously described [103]. For poly(GP) immunoassays, 
samples were loaded at 45 µg protein per well, while for 
poly(GA), 27 µg protein was loaded. Prior to analysis, the 
average reading from a calibrator containing no peptide 
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was subtracted from each reading. See Supplementary 
Table 5 for reagents and antibodies used.

scRNA sequencing
Organoid dissociation to single‑cell suspension
After washing with PBS, eight organoids were cut into 
small pieces. Then, papain (Worthington; LK003178) 
and DNAse I (Worthington; LK003172) were mixed in 
DMEM/F-12, added to the organoids, and then this mix 
was put on an orbital shaker at 50 rpm to incubate for 25 
min in total at 37  ⁰C. Every 10 min, the cell suspension 
was vigorously pipetted up and down. Afterwards, the 
reaction was quenched with DMEM/F-12 supplemented 
with 2% FBS. Doublets and clumps were removed with 
cell strainers: first with those containing 100  µm pores 
and then 70  µm pores. Finally, the cell suspension was 
centrifuged for 5 min at 300 rcf and resuspended in 
250  μl mix of DMEM/F-12 with 40% FBS, counted and 
checked for cell viability, and then frozen in DMEM/F-12 
with 40% FBS and 15% DMSO.

Library preparation and sequencing platform
Cells were sequenced by Single Cell Discoveries (Utrecht, 
The Netherlands) according to the 10X Genomics single 
cell 3’ gel bead kit version 3 (Chromium Next GEM Sin-
gle Cell 3’ GEM, Library & Gel Bead Kit v3). In short, cell 
suspensions were thawed, and the cells were washed and 
filtered one more time to ensure single cells. Cells were 
put on a Chromium single cell 3’ chip, where single cells 
were linked to a Single cell 3’ v3 gel bead and were sepa-
rated from other cells by oil. Then, beads were dissolved, 
primers were released and the cell was lysed. The beads 
were coated with strands containing an Illumina TruSeq 
read 1, a 16 nucleotide (nt) 10X barcode, a 12 nt unique 
molecular identifier (UMI), and a 30 nt poly(dT)VN tail. 
The poly-A tails of the mRNA molecules aligned with the 
poly-T tails. The barcode diversity was 3.5 million. There 
was a different barcode per cell and a different UMI per 
mRNA molecule. The DNA primer was elongated to 
match the mRNA molecule by reverse transcription fol-
lowed by template switch oligo priming and mRNA tran-
script extension. Then, single-cell partitions were pooled 
again. Silane magnetic beads were used to extract the 
first-strand cDNA and the barcoded cDNA was ampli-
fied by PCR to complete the library preparation. P5, 
P7, a sample index, and TruSeq Read 2 (read 2 primer 
sequence) were added via End Repair, A-tailing, Adap-
tor Ligation, and PCR. The final libraries contained the 
P5 and P7 primers used in Illumina bridge amplification. 
The 16 bp 10 × Barcode and 12 bp UMI were encoded in 
Read 1, while Read 2 was used to sequence the cDNA 
fragment. Sequencing was performed on Illumina 

NextSeq 2000. Sequencing depth was set at 50,000 reads 
per cell for 5,000 cells per sample.

Mapping, read alignment, data filtering, and normalization
Only reads containing a barcode and UMI were consid-
ered. The barcodes gave a number of unique molecular 
identifiers (UMIs) per cell, which constitutes the read 
count per cell. The counts contain both spliced, mRNA 
molecules with a poly-A tail, as well as unspliced, pre-
RNA molecules with a poly-A stretch in their introns, 
RNA reads. The reads were aligned to the human genome 
(Ensemble GRCh38) using the cellranger (v4.0.0) pipe-
line. The count files were used as input for the Scanpy 
(v1.8.1) pipeline [117, 118, 122].

Data filtering
Before processing, 31.420 cells and 36.601 genes were 
identified. After removal of mitochondrial genes, cells 
had a median of around 1460 genes and 2315 UMIs per 
cell. A threshold was set to include cells that contained 
more than 100k reads, 20% mitochondrial counts, and 
50% ribosomal counts. We also filtered for minimal1000 
genes per cell and only genes that were expressed by at 
least 0.1% of cells. After filtering, 25.126 cells remained.

Normalization
Normalization was performed using sc.pp.normalize_
total() whereby each cell had the same total count. Then 
the data matrix was logarithmized using sc.pp.log1p(). 
Highly variable genes were annotated using sc.pp.highly_
variable_genes() using default settings. Non-variable 
genes were removed and 21.113 cells and 31.989 genes 
were retained in the dataset.

Principle component analysis
Principle components were computed using sc.tl.pca() 
with svd_solver = ’arpack’. The k nearest neighbors was 
calculated with default settings and used to plot UMAPs 
[75].

Cell type annotation
Leiden (v0.8.4) clusters were calculated with default 
parameters [108], which yielded 28 clusters. Data were 
loaded from E-MTAB-7552 [56]. The top 100 genes that 
characterized each cluster by the Wilcoxon-rank-sum 
test were extracted using the sc.tl.rank_genes_groups() 
function in Scanpy on the cl_FullLineage parameter 
from their metadata. ScoreCT (https://​github.​com/​
Lucas​ESBS/​score​CT) was used to transfer labels from 
the Kanton cell types to our Leiden clusters. The Wil-
coxon method was used to rank genes of the Leiden clus-
ters. Labels were checked and label names were refined 
based on the top 100 genes defining that cluster. Similar 

https://github.com/LucasESBS/scoreCT
https://github.com/LucasESBS/scoreCT
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clusters were grouped for higher analysis power, e.g. 
radial glia 1 and 2 were merged. Supplementary Table 2 
recorded this annotation process from Leiden clusters to 
final annotation.

Composition analysis
scCODA (v0.1.4) was used to visualize and analyse the 
composition of our samples [22]. Line and condition 
were given as covariates.

Differential gene expression
Gene expression was compared between C9 and HC 
organoids within cell-type clusters with the Wilcoxon-
rank-sum test using the sc.tl.rank_genes_groups() func-
tion in Scanpy. A cutoff of p_adjusted < 0.01 was used, 
but no cut-off for the log fold change. This yielded a list 
of differentially expressed genes (DEGs) that were up- or 
downregulated per cluster. The genes can be retrieved in 
Supplementary Table 3.

Gene set enrichment analysis
DEGs were analysed for gene set enrichment using Enri-
chR in the gseapy (v0.10.5). DEGs were compared to the 
human KEGG 2021 database [54, 55]. Unique genes in 
the current dataset were used as the background for the 
analysis. The complete dataset of KEGG terms up- or 
downregulated in C9 per cell type can be found in Sup-
plementary Table 4.

Gene expression omnibus
The scRNA-seq  data discussed in this publication have 
been deposited in NCBI’s Gene Expression Omnibus [32] 
and are accessible through GEO Series accession number 
GS264012 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​
cgi?​acc=​GSE26​4012).

Other software packages and versions
Python =  = 3.8.8, anndata =  = 0.7.6, matplotlib =  = 3.4.3, 
numpy =  = 1.21.2, pandas =  = 1.3.3, psutil =  = 5.8.0, 
scipy =  = 1.7.1, tables =  = 3.6.1.

3D fluorescent light sheet microscopy
At least three brain organoids per iPSC line were fixed 
in 4% PFA for 1-3h at 4 °C and washed multiple times in 
PBS. The iDISCO clearing procedure was performed as 
described [90, 91]. Brain organoids were immersed for 
24h in permeabilization solution (2.3% m/vol glycine, 
20% DMSO, 0.2% TritonX-100 in PBS) at 37 °C. Then the 
solution was exchanged for blocking solution (6% normal 
donkey serum, 10% DMSO, 0.2% TritonX-100 in PBS) for 
24 h at 37 °C. Next, organoids were incubated for 4 days 
at 37 °C with primary antibodies (Supplementary Table 5) 
in PBS with 3% normal donkey serum, 5% DMSO, 0.2% 

Tween-20, and 10  μg/mL Heparin. Then, samples were 
extensively washed in PBS with 0.2% Tween-20 and 
10  μg/mL Heparin. They were incubated for 3 days at 
37  °C with the secondary antibodies (Supplementary 
Table 5) in PBS with 3% Donkey serum, 0.2% Tween-20, 
and 10 μg/mL Heparin. The solution with secondary anti-
bodies was filtered with a 0.22 μm filter before use. To-
Pro3 (Topro3) nuclear fluorescent dye (1:5000; Thermo 
Fisher Scientific, T3605) was used to stain nuclei. The 
next day, samples were washed extensively with PBS con-
taining 0.2% Tween-20 and 10 μg/mL Heparin.

For tissue clearing, samples were embedded in 1% aga-
rose in TAE and subsequently dehydrated in a methanol/
H2O series at RT. Then samples were incubated ON in a 
mix of 66% dichloromethane (DCM; Sigma, 270997) and 
33% Methanol at RT. Afterward, samples were incubated 
twice in 100% DCM for 15 min. Finally, samples were put 
in dibenzylether (DBE; Sigma, 108014) for at least one 
day.

Brain organoids were imaged with an Ultramicro-
scope II (LaVision BioTec) fluorescent light sheet 
microscope equipped with an MVX-10 Zoom Body 
(Olympus), MVPLAPO 2 × Objective lens (Olympus), 
Neo sCMOS camera (Andor) (2560 × 2160 pixels. Pixel 
size: 6.5 × 6.5  μm2) and Imspector software (version 
5.0285.0) (LaVision BioTec). Samples were scanned with 
single-sided illumination, a sheet NA of 0.148348 (results 
in a 4 μm thick sheet) and a step-size of 2.5  μm using 
the horizontal focusing light sheet scanning method 
with 6 steps combined with the blend algorithm. A dip-
ping cap correction lens (LV OM DCC20) was included 
in the object lens (working distance = 5.7  mm). This 
resulted in an effective magnification of 3.44 × (= Zoom 
Body・Objective + Dipping lens = 1.6 × ・2.152 ×). For 
imaging the following laser filter combinations were 
applied: Coherent OBIS 488–50 LX Laser with 525/50 
nm filter, Coherent OBIS 561-100 LS laser with 615/40 
nm filter, Coherent OBIS 647-120 LX laser with a 676/29 
nm emission filter and Coherent OBIS 730-30 LX Laser 
with a 775/50 nm emission filter.

Stem cell pool quantification in Imaris
SOX2-positive ventricle-like structures were analysed in 
Imaris 9.8.2. using the surface analysis feature. Through-
out the 3D-tissue of the sample, approximately 1000 
slices could be made. Every 5 steps, the ventricle-like 
structures were manually traced by following the Topro3-
positive areas, as the signal was more distinguishable 
than SOX2. However, it was always checked whether 
SOX2 was present. The presence of ZO-1 signal was also 
used, as this is a marker for the lumen edge of the ventri-
cle. The inside of the ventricle (lumen) was not taken into 
consideration, so both the outside of the structures was 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE264012
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE264012
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traced as well as the ZO-1 signal to create a 3D-blob of 
only the SOX2-positive cells. The total volume of these 
3D-volumes was summated for each organoid to create 
a total volume of SOX2-positive ventricle-like structures. 
The total volume of the organoids was also measured in 
Imaris 9.8.2. with an automatic surface analysis in the 
autofluorescence channel. After this, a ratio could be 
made of the ventricle-like structures compared to the 
total size of the organoid. The total volume of the orga-
noids was compared between lines, as well as the SOX2% 
of the entire volume and the SOX2% of the three largest 
ventricles per organoid.

Synapse quantification
Confocal data were analyzed for synaptic puncta with the 
ImageJ ComDet v.0.5.5. plugin specialized in the detec-
tion of particles [57]. Values for parameters, such as 
particle size, intensity threshold, and the colocalization 
distances, were based on literature [40]. Values for the 
number of puncta and the size of the puncta were pro-
vided by the plugin. For the non-synaptic measurements, 
the analysis pipeline is displayed in Supplementary 
Fig. 7b. In short, the number of puncta was normalized 
against the area of MAP2 in the image, which is indica-
tive of the density of the dendritic network. MAP2 sig-
nal and the puncta were manually thresholded in ImageJ. 
The intensity of the signal was measured inside these two 
selection areas in their respective channels. Next, puncta 
were omitted from the image. Afterward, the SYP and 
SHANK2 intensity was measured inside the MAP2-selec-
tion. The background signal, i.e. the signal area outside 
the MAP2 selection, was subtracted. This resulted in a 
non-synaptic measurement of SYP and SHANK2. Results 
were compared with an Unpaired T-test in GraphPad 
Prism 8.4.2 to test for significant differences between 
groups, or a Mann–Whitney Test if required assump-
tions for normality and/or homogeneity of variance were 
not met. Said assumptions were checked with a QQ-plot, 
a homoscedasticity plot, and a residual plot.

Whole‑cell patch‑clamp recordings in ALI‑COs
Whole-cell patch-clamp recordings were conducted on 
air–liquid interface (ALI) cerebral organoids (COs). ALI-
COs were obtained from day 55 cerebral organoids, as 
previously described [44] using a VT1000S vibratome 
(Leica). At 105 ± 15 days, ALI-COs were transferred to 
a recording chamber filled with artificial cerebrospinal 
fluid (aCSF) containing (in mM, 300 mOsm, pH adjusted 
7.35) 124 NaCl, 2.5 KCl, 1 NaH2PO4, 26 NaHCO3, 2.5 
CaCl2, 1.3 MgCl2, 5 HEPES, and 11 Glucose at 37 ± 1 °C. 
An upright microscope (SliceScope Pro 6000, Scientifica) 
with oblique illumination and a 40 × water immersion 

objective was used to visualize cells. Cells were patched 
using borosilicate glass (Science Products) electrodes 
(3—5 MΩ) containing (in mM, 300 mOsm, pH adjusted 
7.3) 139 K-Gluconate, 5 KCl, 10 HEPES, 10 Phosphocre-
atine, 2 MgCl2, 4 Na-ATP, 0.3 Na-GTP and 0.2 EGTA. 
0.5% biocytin was additionally added to the pipette solu-
tion to facilitate visualization of recorded cells after-
ward. Cells were patched near the ALI-CO border at 
-60 mV resting membrane potential in voltage-clamp 
(vc) configuration. After break-in, the resting membrane 
potential was assessed in current-clamp (cc) configura-
tion. Cells with a resting membrane potential > − 20 mV 
were excluded from analysis. Cells were then allowed to 
rest for 2 min in vc configuration to ensure stability of 
the recording. Spontaneous excitatory postsynaptic cur-
rents (sEPSCs) were recorded at a membrane potential 
of − 60 mV for 10 min. The excitability was determined 
in cc configuration. Current injections were used to 
evoke action potential firing (500 ms pulses, − 20 to + 60 
pA, + 5 pA increments). Recordings were performed in 
this same order for all cells. Series resistance was moni-
tored throughout the recording and cells with a series 
resistance of > 25  MΩ were excluded from analysis. All 
obtained recordings were amplified and low-pass filtered 
at 5  kHz using an Axopatch 200B amplifier (Molecu-
lar Devices). Recordings were digitized (Axon Digidata 
1550B, Molecular Devices) and stored using pClamp 10.6 
software (Molecular Devices). Data were analyzed using 
Clampfit 10.6 (Molecular Devices). The recording aCSF 
was continuously perfused with 95% O2 and 5% CO2.

Cell cycle phase analysis
The cell cycle profile was analysed as previously described 
[99]. Following manufacturer’s instructions of the Click-
iT™ EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit 
(Invitrogen, C10424), iPSCs were incubated with 10μ M 
EdU for 45 min at 37  °C and 5% CO2. Cells were then 
washed with PBS, incubated with Accutase for 2 min, 
and suspended in HuES medium. Samples were then 
washed in 1% BSA in PBS. Cells were fixed for 10–15 min 
by adding Click-iT fixative at RT followed by washing 
with 1% BSA in PBS and permeabilization with saponin 
for 15–30 min at RT. Cells were incubated with Click-iT 
reaction cocktail (2% CuSO4, 0.5% Fluorescent dye azide, 
10% Reaction buffer additive, in PBS) for 30 min at RT in 
the dark followed by a wash with Click-iT saponin-based 
permeabilization and wash reagent. Samples were then 
stained with DAPI 30 min at RT. Afterward, the cell cycle 
was analysed using fluorescence activated cell sorting 
(FACS; BD FACSCanto II) for 10,000 events per cell line. 
Cell cycles were assigned after filtering for live cells based 
on the FSC/SSC in the BD FACSDiva software.
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Results
C9‑ALS/FTD cerebral organoids show all three C9‑HRE 
pathological hallmarks.
Repeat-primed PCR and nanopore sequencing confirmed 
that, as expected, healthy control (HC) and C9-isogenic 
cells had < 30 HRE repeats on both alleles, while C9-ALS/
FTD (C9) iPSCs had an expanded repeat on one allele 
with a median length between 809 and 1175 repeats 
(Fig.  1a, Supplementary Table  1). Next, organoids were 
generated as reported previously (Fig. 1b, Supplementary 
Fig.  1a) [60, 83]. At day 45, HC and C9 organoids dis-
played ventricular-like zones (VLZs) with KI67+ prolifer-
ative cells surrounded by MAP2+ neural regions (Fig. 1c, 
Supplementary Fig. 1b). Interestingly, while in HC orga-
noids KI67+ cells were mostly confined to the inner part 
of the VLZ, these cells were more broadly distributed in 
C9 organoids. Quantitative PCR (qPCR) showed compa-
rable expression for the neuronal cytoskeleton marker 
TUBB3 and early born neuron marker DCX (Fig.  1d; 
Unpaired two-tailed t-test, TUBB3: t(29) = 0.03452, 
p = 0.9727; DCX: t(29) = 1.818, p = 0.0795). Thus, while at 
day 45 the overall cytoarchitecture of HC and C9 orga-
noids was similar and in line with previous studies (e.g. 
[60, 83]), the distribution of KI67+ cells was more wide-
spread in C9 conditions.

To further characterize the C9 organoid model, we 
examined the different types of molecular pathology 
associated with C9-HRE [72]. First, Western blot analysis 
showed a ~ 30% reduction in C9ORF72 expression in C9 
versus HC organoids at day 45 (Fig. 1e; One-tailed t-test, 
t(18) = 4.141, p = 0.0003). Second, MSD-ELISA assays 
confirmed the presence of glycine-proline (GP) and gly-
cine-alanine (GA) DPRs in day 90 C9 but not HC orga-
noids (Fig. 1f ). Poly(GP) and poly(GA) are most abundant 
in C9 brain tissue and the only DPRs that can be quanti-
fied using this assay [7, 71, 80]. Third, LNA-FISH using 
a probe targeting the sense repeat (GGG​GCC​) identi-
fied sense RNA foci in some but not all cells in day 90 
C9 organoids, in line with previous observations in other 
tissues [7]. No RNA foci were observed in HC organoids 
and no signal was found in C9 organoids incubated with 
a scrambled probe (Fig. 1g, Supplementary Fig. 1c). Thus, 
while previous work reported poly(GA) in matured (day 
150) organoid slices [107] our experiments show all three 
reported molecular pathologies associated with C9-HRE, 
including multiple DPRs, at earlier stages of C9 cerebral 
organoid development.

C9‑HRE causes early accelerated cerebral organoid growth
Having established the presence of molecular pathology 
in C9-ALS/FTD cerebral organoids, we next explored 
the effect of C9-HRE at different stages of organoid 

development. First, early stages were assessed, as 
C9-HRE was reported to affect early developmental 
processes, such as stem cell proliferation, in cultured 
cells and mice [48]. Analysis of organoid (embryoid 
body) size at day 2, 6, or 10 after iPSC seeding revealed 
a significant increase in the cross-sectional area of C9 
versus HC organoids at day 6 and 10 (Fig.  2a, b, two-
way ANOVA with Šídák’s correction for multiple test-
ing, F(1,1725) = 77.91, p < 0.0001; Supplementary 
Fig.  2a). To determine whether this change is C9-spe-
cific or represents a more general ALS/FTD phenotype, 
cerebral organoids were generated from 1) matching 
C9 isogenic control (C9-iso) lines, or 2) from iPSCs 
carrying other ALS mutations (TDP43-ALS, carrying 
M337V or I383T mutations, and ATXN2-ALS, carrying 
an intermediate CAG repeat expansion; Supplementary 
Table 1).

PCR confirmed lack of C9-HRE in C9-iso lines (Sup-
plementary Table  1), and immunohistochemistry and 
qPCR showed an overall cytoarchitecture and marker 
expression in C9-iso organoids that resembled HC 
(Supplementary Fig.  2b–e). Comparison of the size of 
HC, C9, and C9-iso organoids showed significant dif-
ferences between the groups at day 10 (Fig.  2c, d, 
one-way ANOVA with Dunn’s correction for multiple 
testing, F(2,732) = 51.54, p < 0.001). C9 organoids were 
larger than HC (padj < 0.001) and C9-iso (padj = 0.012), 
while C9-iso organoids were only slightly, but sig-
nificantly, larger than HC (padj = 0.019). Size measure-
ments of organoids with different genetic backgrounds 
showed significant differences at day 10 (one-way 
ANOVA with Tukey’s correction for multiple testing, 
F(3,633) = 42.41, p < 0.001). C9 organoids were signifi-
cantly larger than ATXN2-ALS (padj < 0.001), TDP43-
ALS (padj < 0.001), and HC (padj < 0.001) organoids. The 
size of ATXN2-ALS, TDP43-ALS and HC organoids 
was similar (ATXN2-TDP43: padj = 0.443; ATXN2-
HC: padj = 0.858; TDP43-HC: padj = 0.065; Fig.  2e, f ). 
Thus, the early accelerated growth of C9 organoids is 
at least partially caused by HRE and is not observed in 
several other genetic ALS backgrounds (TDP-43-ALS, 
ATXN2-ALS). Finally, organoid size was determined at 
a later stage of organoid development, at day 90, which 
relates to a developmental stage at which various neu-
ronal subtypes and astrocytes are present [14, 25, 110]. 
In contrast to early stages, C9 organoids were signifi-
cantly smaller as compared to HC at day 90 (Fig. 2g, h, 
Mann–Whitney t-test, U = 2.402, p < 0.0001), a pheno-
type that was not observed in C9-iso organoids (data 
not shown).

Together, these data reveal opposite size phenotypes 
in C9 organoids at different developmental stages.
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Fig. 1  C9-ALS/FTD cerebral organoids show all three C9ORF72-HRE pathological hallmarks. a Nanopore sequencing of iPSCs from different 
C9-ALS/FTD patients (C9-ALS-1-4, Supplementary Table 1) to determine GGG​GCC​ repeat count. Dots represent individual reads, on which the box 
and whiskers plot is based. Red-dotted line indicates the 30-read cut-off used to separate the reads of the expanded and non-expanded allele. b 
Schematic illustration of the cerebral organoid culture method [60, 83]. c Representative image of immunohistochemistry on cryosections of day 45 
cerebral organoids from a healthy control (HC) and C9 patient for MAP2 (green; neuronal part) and KI67 (red; ventricular-like zone) in combination 
with DAPI to mark nuclei. d Quantitative PCR for the neuronal cytoskeleton marker TUBB3 and early-born neuron marker DCX in day 45 C9 and HC 
organoids. Expression is normalized to TBP and RPII. Data are shown as the mean ± SEM, symbols indicate specific lines and dots represent ≥ 3 
pooled organoids. 2–6 independent organoid differentiations were performed per iPSC line, every data point is the average of two technical 
replicates. Unpaired two-tailed t-test, TUBB3: t(29) = 0.03452, p = 0.9727; DCX: t(29) = 1.818, p = 0.0795. e Example of Western blot analysis of C9ORF72 
expression in day 45 C9 and HC organoids. Data in graph indicate the mean ± SEM (normalized to GAPDH), symbols indicate specific lines and dots 
represent individual Western blot measurements of ≥ 3 pooled organoids. 1–2 independent organoid differentiations were performed per iPSC line 
with 2 technical replicates per sample. Unpaired one-tailed t-test, t(18) = 4.141, p = 0.0003. f Poly(GP) and poly(GA) levels were measured in day 90 
organoids from HC and C9 patients. Data are shown as the mean ± SEM, symbols indicate specific lines and data points represent individual MSD 
measurements of ≥ 3 organoids pooled per experiment after background subtraction. g Representative images showing LNA-FISH for sense RNA 
foci (red) in cryosections of day 90 HC and C9 organoids. DAPI (blue) marks nuclei (n = 1 HC, n = 2 C9 lines). Scrambled control probes did not show 
signal (Supplementary Fig. 1c). Scale bars: c 100 µm, g 10 µm. *** = p < 0.001
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C9‑HRE causes a reduction of deep layer neurons 
and disorganized radial glia
The reduced size of C9 organoids at day 90 may reflect 
changes in specific cell populations. Therefore, to 
study the cell types present at day 90 single-cell RNA 
sequencing (scRNA-seq) was performed on HC (n = 3 
lines) and C9 (n = 3 lines) organoids (Fig.  3a). After 
quality control, 21.113 cells expressing 31.989 genes 
were retained (Supplementary Fig.  3a–f ). Principle 
component analysis (PCA) was performed followed 
by a computation of nearest neighbours and visuali-
zation using UMAP. Cells from HC and C9 organoids 
were mixed between batches and lines (Supplementary 
Fig. 3g–h). To identify cell types, PCA data was used as 
input for the Leiden algorithm [108] function in Scanpy 
[117, 118, 122], which yielded 28 clusters (Fig. 3b). No 
obvious differences in the distribution of HC and C9 
cells over clusters were identified (Fig. 3c). To aid unbi-
ased annotation of 28 clusters identified through our 
computational pipeline (Fig.  3b, see Methods), data 
were compared to a large scRNA-seq cerebral organoid 
dataset covering stages up to day 120 [56]. Cell types 
in day 90 HC and C9 organoids ranged from radial glia 
and neurons to choroid plexus, endothelial cells, and 
oligodendrocyte precursors (Fig.  3d–f, Supplemen-
tary Fig.  3i). Clusters that belonged to the same cell 
type were grouped, e.g. radial glia 1 and 2 were merged 
(Supplementary Table  2). One C9 sample contained 
retinal pigment epithelial cells. These cells infrequently 
form [60] and were excluded from the grouped com-
positional analysis (Fig.  3d, g). Differences in cell type 
abundance in HC and C9 organoids were found at day 
90, although these changes were not statistically sig-
nificant. Nevertheless, overall changes in the contri-
bution of specific cell types were observed, including 
a relatively larger contribution of (upper layer) neu-
rons, glia/astrocytes, a smaller contribution of deep 

layer neurons, and changes in radial glia clusters in C9 
as compared to HC organoids (Fig. 3g, Supplementary 
Fig. 3j).

The identification of the same cell types in both HC and 
C9 samples allowed us to compare differences in gene 
expression within each cell type. Significantly up- and 
down-regulated genes in C9 as compared to HC sam-
ples were subjected to pathway analysis (Supplementary 
Table  3). This revealed enrichment of specific KEGG 
pathways in distinct cell types (Fig. 3h). Several of these 
pathways had previously been linked to ALS, e.g. nicotine 
addiction, axon guidance, glutamate synapse, ALS, oxi-
dative phosphorylation, and regulation of actin cytoskel-
eton (Supplementary Table  4). Overall, these results 
suggest changes in the abundance or distribution of spe-
cific cell types in day 90 C9 organoids together with cell 
type-specific changes in gene expression.

To confirm and follow up on the scRNA-seq data, deep 
layer neurons were assessed using immunohistochemis-
try. C9 organoids showed a reduced contribution of deep 
layer neurons (Fig. 3g, Supplementary Fig. 3k), which are 
a known vulnerable population in ALS/FTD and include 
upper MNs [4, 70, 78, 79, 96, 102]. CTIP2 marks excita-
tory deep layer neurons and is important for the speciali-
zation of subcerebral projection neurons, which give rise 
to upper MNs (also called corticospinal MNs) and cor-
ticotectal projection neurons [70]. Day 90 HC organoids 
displayed highly organized VLZs, surrounded by a dense 
MAP2+ neuronal network and many CTIP2+ deep layer 
neurons. In contrast, in C9, but not C9-iso, organoids 
the number of CTIP2+ neurons were drastically lower 
(Fig. 4a,). Moreover, qPCR analysis of day 90 HC and C9 
organoids from multiple inductions independent of the 
scRNA-seq experiment confirmed a decrease in CTIP2 
mRNA (Fig. 4b, Mann–Whitney t-test, U = 7, p = 0.0005). 
This reduction likely arises at early developmental stages 
as CTIP2 mRNA was already decreased at day 45 in C9, 

(See figure on next page.)
Fig. 2  C9-HRE causes stage-dependent changes in organoid size. a Representative brightfield images of healthy control (HC) and C9-ALS/FTD 
(C9) cerebral organoids at day 2, 6, and 10. b Quantification of the cross-sectional area of HC and C9 organoids at day 2, 6, and 10 based on images 
as in a. Size normalized to the HC average. Graph shows mean ± SEM, n = 12 organoids per timepoint from 3 to 6 independent differentiations 
per iPSC line (n = 3 HC, n = 4 C9 lines), two-way ANOVA with Šídák’s correction for multiple testing, F(1,1725) = 77.91, padj < 0.0001. c Representative 
brightfield images of HC, C9, and corresponding C9-isogenic control (C9-iso) organoids at day 10. d Quantification of the cross-sectional area 
of HC, C9, and C9-iso organoids at day 10 based on images as in (c). Size normalized to the HC average. Graph shows mean ± SEM, n = 12 organoids 
from 3 to 6 independent differentiations per iPSC line (n = 3 HC, n = 4 C9, n = 3 C9-iso lines), one-way ANOVA with Dunn’s correction for multiple 
testing, F(2,732) = 51.54, padj < 0.001. e Representative brightfield images of C9, ATXN2-ALS (ATXN2) and TDP43-ALS (TDP43) organoids at day 10. 
f Quantification of the cross-sectional area of HC, C9, ATXN2, and TDP43 organoids at day 10 based on images as in e. Size normalized to the HC 
average. Graph shows mean ± SEM, n = 12 organoids from 3–6 independent differentiations per iPSC line (n = 3 HC, n = 4 C9, n = 5 ATXN2-ALS, 
n = 2 TDP43-ALS lines), one-way ANOVA with Tukey’s correction for multiple testing, F(3,633) = 42.41, padj < 0.001. Non-significant comparisons are 
not displayed in the graph. g Representative brightfield images of HC and C9 organoids at day 90. h Quantification of the cross-sectional area of HC 
and C9 at day 90 based on images as in g. Size normalized to the HC average. Graphs show, mean ± SEM, measurements from 3–6 independent 
differentiations per iPSC line. n = 3 HC, n = 4 C9 lines, Mann–Whitney t-test, U = 2.402, p < 0.0001. Scale bars: a, c, e 500 µm, g, on millimetre paper. 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001. **** = p < 0.0001
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but not C9-iso, organoids (Fig.  4c, One-way ANOVA, 
Holm–Sidak’s multiple comparisons test, F(2,42) = 4.389, 
p = 0.019; HC-C9: padj = 0.04, C9-C9-iso: padj = 0.02). In 
addition to CTIP2+ neurons, radial glia cells were exam-
ined using immunohistochemistry for SOX2. ScRNA-
seq analysis revealed changes in radial glia populations 
(Fig. 3g) and KI67 immunostaining hinted at changes in 
the organization of radial glia cells in VLZ (Fig.  1c). In 
day 90 HC organoids, most SOX2+ radial glia resided in 
the VLZs and only a few were found in the MAP2+ neu-
ronal region. In contrast, in C9 organoids SOX2 labelling 
of the VLZ was more diffuse and many SOX2+ cells were 
found in MAP2+ parts of the organoid (Fig. 4d, Supple-
mentary Fig. 4a). To further examine the VLZ in C9 orga-
noids, whole-mount immunostaining of day 90 organoids 
was performed for ZO-1 (end feet marker RGC) and 
SOX2 (nuclear marker RGC), to mark lumen and VLZ 
structures, followed by tissue clearing and fluorescent 
light sheet microscopy (FLSM;  Supplementary Fig.  4b). 
This revealed a decrease in the total volume of SOX2+ 
VLZ structures and in the size of individual SOX2+ VLZ 
structures in C9 versus HC organoids (Fig.  4e, Supple-
mentary Fig. 4c–e).

In all, these data show that C9-HRE leads to a reduc-
tion of CTIP2+ deep layer neurons and an abnormal 
organization of SOX2+ radial glia cells.

Changes in the pre‑synapse and synaptic proteins 
in C9‑ALS/FTD
In addition to changes in deep layer neurons and radial 
glia, our analysis revealed cell type-specific gene expres-
sion changes, including reduced expression of differ-
ent glutamatergic synaptic genes in different neuronal 
clusters (Fig.  3, 5a). This is in line with observations in 
human post-mortem tissue and animal models [24, 27]. 

However, the development of these changes and their 
functional consequences in complex human brain tis-
sue remain largely unknown. The cellular and structural 
complexity of neural organoid models, which resembles 
the multicellular human brain environment and pro-
motes neuronal maturation, provide a unique tool for 
further dissecting these C9-ALS/FTD-associated phe-
notypes. Therefore, glutamatergic synapses were visual-
ized using immunostaining for synaptophysin (SYP) and 
SHANK2 to label the pre- and post-synapse, respec-
tively, in organoid sections. MAP2 served as a marker 
for neuronal dendrites. SHANK2 but not SYP expres-
sion was decreased in the scRNA-seq data (Supplemen-
tary Table  3). Analysis of SHANK2 and SYP expression 
revealed numerous synaptic structures and abundant 
co-localization in day 90 HC and C9 organoids (Sup-
plementary Fig.  5a). Automated quantification revealed 
fewer SYP (Unpaired t-test, t(66) = 4.275, p < 0.0001), but 
not SHANK2 puncta (Mann–Whitney t-test, U = 452, 
p = 0.1816), in C9 as compared to HC organoids (Fig. 5b). 
Colocalization was reduced in C9 samples, but this effect 
was not statistically significant (Fig.  5c; Mann–Whitney 
t-test, U = 449, p = 0.1687). Further, SYP puncta were 
approximately 10% smaller in size in C9 as compared 
to HC organoids (Fig.  5d; Unpaired t-test, t(66) = 3.469, 
p = 0.0009) and the frequency of smaller puncta was 
higher in C9. SHANK2 puncta size was similar between 
conditions (Supplementary Fig.  5b; Unpaired t-test, 
t(66) = 0.2443, p = 0.8078). Next, the signal intensity of 
puncta was measured as a readout of protein expression 
at synaptic terminals. The intensity of the SYP puncta 
was ~ 12% reduced in C9 organoids (Fig.  5e; Unpaired 
t-test, t(66) = 2.456, p = 0.0167), while the intensity of 
SHANK2 puncta was unchanged (Fig.  5e; Unpaired 
t-test, t(66) = 0.4488, p = 0.6551). In addition to synaptic, 

Fig. 3  Single-cell RNA sequencing of day 90 control and C9-ALS/FTD cerebral organoids. a Schematic representation of the single-cell RNA 
sequencing (scRNA-seq) approach. Day 90 organoids from healthy control (HC; HC-1, HC-2 and HC-3) and C9-ALS/FTD (C9-ALS-1, C9-ALS-2, 
C9-ALS-4) were dissociated, sequenced using a 10X Genomics platform, and analysed. N = 8 organoids per line were used. After quality control, 
21.113 cells were detected which expressed 31.989 genes. b Uniform manifold approximation and projection (UMAP) plot of the filtered 
and normalized scRNAseq data showing 28 color-coded clusters as detected by the Leiden algorithm. c UMAP plot showing the RNA-seq data 
color-coded by disease condition. d Seventeen cell types were identified in day 90 cerebral organoids regardless of disease condition. Cell types 
are shown in a color-coded UMAP plot and a dendrogram. Clusters that belonged to the same cell type were grouped, e.g. radial glia 1 and 2. 
One C9 sample contained retinal pigment epithelial cells, which were omitted from the analysis. e UMAP plot showing expression of marker 
genes for the annotated cell types; MAP2—neural soma and dendrites; TUBB3—neuronal cytoskeleton; BCL11B (CTIP2)—deep layer neurons; 
GAD1—GABAergic neurons; SHANK2—postsynapse; SYP—presynapses; GRIA1 (GluR1)—postsynapse; FABP7 (BLBP)—radial glia. f Dot plot showing 
the scaled and normalized expression of 1–3 genes per annotated cluster on left side. The genes were selected from literature to mark specific cell 
types as indicated on the top row. Number of cells per cell type is indicated on the right. g Cell type composition analysis of the scRNA-seq data. 
Number of cells per cell type relative to total cell number for C9 and HC. Cell types are ordered by percentual change between conditions. Cell type 
colors are the same as in d. h Differentially expressed genes (DEGs) in C9 (as compared to HC) organoids within each cell type were analyzed using 
KEGG pathway analysis. Size of the circle represents the number of cell type comparisons where this pathway was significantly altered. For a full 
overview of DEGs and KEGG pathway results, see Supplementary Table 3 and 4. ULN, (upper layer) neuron; gliogenic, non-neuronal2; RG/eN, radial 
glia/early neuron; astrocyte, glia/astrocyte

(See figure on next page.)
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non-synaptic expression of SYP and SHANK2 in MAP2+ 
dendrites outside the puncta was quantified (Supple-
mentary Fig.  5c). This revealed a 30% decrease in the 
dendritic expression of both SYP and SHANK2 (Fig. 5f; 
Unpaired t-test, SYP: t(66) = 2.519, p = 0.0142; SHANK2: 
t(66) = 3.221, p = 0.0020), in line with overall reduced 
expression in the scRNAseq-data. Finally, a larger set of 
glutamatergic synaptic genes was studied by qPCR in 
day 90 HC and C9 organoids. Candidates included genes 
downregulated in the scRNAseq data (Fig. 5a) and genes 
coding for a few major synaptic components (Synapsins 
(SYN2 and SYN3), Bassoon (BSN), and PSD95). The 
expression of 8 genes was significantly reduced in C9 as 
compared to HC organoids, while expression of PSD95 
was not different between C9 and HC (Fig.  5g–k, Sup-
plementary Fig. 5d–g, Mann–Whitney two-tailed t-test, 
BSN: U (19) = 0, p < 0.0001; EAAT2: U (19) = 7, p = 0.0005; 
PSD95: U (18) = 25, p = 0.1288; SLC17A7 (vGlut1): U 
(17) = 0, p < 0.0001; SYN2: U (19) = 7, p = 0.0005).

Together, these data unveil prominent pre-synaptic 
changes and reduced expression or altered distribution of 
several pre- and post-synaptic proteins and mRNA tran-
scripts in C9 organoids.

Reduced synaptic transmission in C9‑ALS/FTD cerebral 
organoids
Cerebral organoids have been shown to contain elec-
trophysiologically active neuronal networks [61, 62, 95]. 
Therefore, to assess whether the observed changes at the 
pre-synapse and in the expression or distribution of dif-
ferent synaptic proteins lead to changes in synaptic trans-
mission and neuronal function, we adapted a cerebral 
organoid slice model [44] for electrophysiological patch-
clamp experiments. This for the first allowed high-reso-
lution analysis of synaptic connectivity of C9 neurons in 
three-dimensional human brain tissue. Organoids were 
sliced at day 55 and measured between day 90 and 120 
(Fig. 6a). Per line, 5 slices were obtained from 4 organoids 
which were cultured in a trans-well system. Cells were 

filled with biocytin afterwards to verify that recorded 
cells were neurons (Fig. 6b). Electrophysiological compar-
ison of neurons in C9 and HC organoids did not detect 
differences in passive membrane properties (Fig.  6c–e; 
Unpaired two-tailed t-tests, c) Analysis of series resist-
ance (Rs). t(49) = 0.4167, p = 0.6787. d) Analysis of mem-
brane resistance (Rm). t(49) = 0.8120, p = 0.4207. e) 
Analysis of membrane capacitance (Cm). t(49) = 1.382, 
p = 0.1733)). However, resting membrane potential was 
significantly depolarized in C9 neurons, which sug-
gests decreased synaptic maturity (Fig.  6f; t(46) = 2.543, 
p = 0.0144). Further, the frequency of spontaneous excita-
tory post synaptic currents (sEPSCs) was decreased in C9 
neurons, while sEPSC amplitude was unchanged (Fig. 6g, 
h; t(26) = 2.623, p = 0.0144 and t(26) = 0.1069, p = 0.9157). 
Not all recorded cells displayed sEPSCs, but the percent-
ages of this occurrence did not differ between HC and 
C9 (Fig.  6i; Chi-square test, Χ2(1) = 0.235, p = 0.628). As 
sEPSC frequency reflects the level of synaptic connectiv-
ity in a neuronal network, these results suggest that C9 
neurons are less well-connected. The percentage of neu-
rons in which action potentials (AP) could be evoked was 
lower in C9 as compared to HC (Fig. 6j; Chi-square test, 
Χ2(1) = 0.7212, p = 0.3958), but this effect did not reach 
statistical significance. A similar trend was observed for 
repetitive APs (Fig.  6k; Chi-square test, Χ2(1) = 0.4898, 
p = 0.4840). Spontaneous action potentials occurred at 
a similar frequency in C9 and HC neurons (Fig. 6l; Chi-
square test, Χ2(1) = 0.01959, p = 0.8887).

Together, these data suggest reduced synaptic trans-
mission and neuronal activity in C9 cerebral organoids 
that may reflect the concomitant structural synaptic 
changes and alterations in synaptic protein expression 
and distribution.

Presymptomatic carrier organoids show C9‑HRE pathology 
and various molecular and cellular phenotypes
Presymptomatic C9-HRE carriers show robust structural 
changes in the brain [31, 52, 69, 73, 97, 119]. To explore 

(See figure on next page.)
Fig. 4  C9-HRE causes a reduction of deep layer neurons and disorganized radial glia. a Immunohistochemistry for CTIP2, to mark deep layer 
neurons (red), and MAP2, to label neuronal regions (green), in day 90 healthy control (HC), C9-ALS/FTD (C9) and corresponding isogenic control 
(C9-iso) organoids. Dotted line indicates the border of ventricular-like zones (VLZ). DAPI in blue. b, c Quantitative PCR for the deep layer neuron 
marker CTIP2 in day 90 HC and C9 organoids (b) and day 45 HC, C9, and C9-iso (c) organoids. Expression is normalized to TBP and RPII. Graphs 
show mean ± SEM, symbols indicate specific lines and dots represent an average measurement of 3 organoids pooled per independent organoid 
induction (b: n = 4 C9, and n = 3 HC, Mann–Whitney t-test, U = 7, p = 0.0005; c: n = 3 HC, n = 4 C9 and n = 3 C9-iso, One-way ANOVA, Holm–Sidak’s 
multiple comparisons test, F(2,42) = 4.389, p = 0.019). d Immunohistochemistry for CTIP2, to mark deep layer neurons (red), MAP2, to label neuronal 
regions (green), and SOX2, to mark neural stem cells in the VLZ (light blue) in day 90 HC, and C9organoids. Dotted line indicates the border of VLZs. 
DAPI in blue. e Whole-organoid immunostaining followed by 3DISCO tissue clearing and fluorescent lightsheet imaging. Representative 3D 
rendering of an HC and C9 organoid, in which the tight junction marker ZO-1 depicts the borders of the ventricular lumen in red and the nuclear 
marker TOPRO3 indicates the denser ventricular-like zones (VLZs) in green, which was confirmed by the stem cell marker SOX2 in another channel. 
The selection volume of the VLZs is shown in yellow. Scale bars: a 50 μm, d 150 μm, e 100 μm * = p < 0.05, *** = p < 0.001
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whether cerebral organoids can help dissect underlying 
presymptomatic disease mechanisms or act as a platform 
for (personalized) therapy development, we next gener-
ated iPSC-derived cerebral organoids from four family 
members of C9-ALS/FTD patients who carry C9-HRE 
but did not display symptoms at the time of skin biopsy 
(termed C9-carriers;  Supplementary Fig.  6a-h). HRE 
were detected on one allele in C9-carrier iPSCs with a 
median length between 666–998 repeats (Fig. 7a). Simi-
lar to HC and C9 organoids, C9-carrier organoids dis-
played VLZs and MAP2+ neural regions and comparable 
levels of TUBB3 and DCX at day 90 (Fig.  7b, c; One-
way ANOVA, TUBB3: F(2,20) = 4.929, p = 0.081; DCX: 
F(2,20) = 5.349, p = 0.0626). Western blot analysis showed 
a ~ 25% reduction in C9ORF72 expression in C9-carrier 
organoids compared to HC (Fig.  7d; One-tailed t-test, 
t(10) = 1.521, p = 0.0796). Further, MSD-ELISA assays 
confirmed the presence of poly(GA) and poly(GP) at 
day 90 (Fig. 7e). Interestingly, levels of poly(GA), but not 
poly(GP), were higher in C9 as compared to C9-carrier 
organoids. Finally, sense RNA foci were observed in the 
nucleus of some, but not all, cells of day 90 C9-carrier 
organoids (Fig.  7f, Supplementary Fig.  7a). In all, these 
results for the first time show that cerebral organoids 
derived from presymptomatic C9-HRE carriers display 
extensive C9-HRE molecular pathology.

Next, we investigated whether organoids derived 
from presymptomatic C9-carriers display phenotypes 
as observed in C9 organoids. C9-carrier organoids 
were subjected to a selection of analyses performed 
on C9-organoids (Fig.  1, 2, 3, 4, 5, 6) to cover a range 
of molecular and cellular phenotypes at early (up to 
day 10) and later developmental stages (day 45 and 90) 

(i.e. organoid size, CTIP2 and SOX2 distribution, and 
synaptic gene expression). Interestingly, size analy-
sis of early C9-carrier organoids revealed an increased 
area as compared to HC at day 10 (Fig.  8a–c, One-way 
ANOVA – Kruskal–Wallis test with Dunn’s correction 
for multiple testing, F(5,267) = 98.12, p < 0.0001; Supple-
mentary Fig. 8a). However, further analysis showed that 
organoids of (1) C9-carrier-3 and -4 were significantly 
larger (padj < 0.0001 and 0.0030) than HC, (2) C9-car-
rier-2 showed a trend to be larger (padj = 0.0511), and (3) 
C9-carrier-1 were not different from HC (padj = 0.5376). 
In general, C9-carrier organoids were much smaller 
than C9 organoids (Fig.  8b, c). Size analysis at day 90 
showed that part of the C9-carrier organoids were also 
significantly smaller than HC, as observed for C9 orga-
noids (Figs.  2g–h, 8d, one-way ANOVA—Kruskal–
Wallis test, F(5,413) = 58.49, p < 0.001; Supplementary 
Fig.  8b). Interestingly, while C9-carrier-2 and -4 orga-
noids were smaller (padj < 0.001 and < 0.001), C9-carrier-1 
and -3 organoids were more similar to HC (padj = 0.330 
and > 0.999). Together, these results reveal size pheno-
types in C9-carrier organoids.

Our analysis of C9 organoids also showed a reduc-
tion in CTIP2 mRNA expression and the number of 
CTIP2+ deep layer neurons together with an abnormal 
organization of SOX2+ radial glia cells (Fig.  4). qPCR 
and immunohistochemistry revealed that although 
CTIP2 expression was generally decreased in C9-car-
rier organoids (padj < 0.001) as compared to HC (Fig. 8e, 
one-way ANOVA, Tukey’s multiple comparisons test, 
F(2,34) = 13.91, p < 0.001), only some lines (C9-carrier-3 
and -4) but not others (C9-carrier-1 and -2) displayed 
a reduction in CTIP2+ neuron number at day 90 using 

Fig. 5  Pre- and post-synaptic changes in the expression and distribution of synaptic proteins and mRNA transcripts. a Schematic overview 
of the pre- and postsynaptic compartment showing differentially expressed genes (DEGs) related to ‘glutamatergic synapse’ and reduced in C9-ALS/
FTD (C9) neurons (in red) in the scRNA-seq dataset of day 90 healthy control (HC) and C9 organoids. b Quantification of the relative number of SYP 
and SHANK2 puncta. Graphs show mean, dots represent puncta normalized to the MAP2+ area of one image, and images were taken of three 
organoids from 2–3 independent differentiations (n = 3 HC, n = 4 C9 lines). SYP: Unpaired two-tailed t-test, t(66) = 4.275, p =  < 0.0001; SHANK2: 
Mann–Whitney two-tailed t-test, U = 452, p = 0.1816. c Quantification of the colocalization of SYP and SHANK2 puncta. Graph shows mean, dots 
represent colocalization normalized to the MAP2+ area of one image, images were taken of three organoids from 2–3 independent differentiations 
(n = 3 HC, n = 4 C9 lines). Mann–Whitney two-tailed t-test, U = 449, p = 0.1687. d Analysis of SYP puncta size averaged per image (left) or relative size 
frequency of individual puncta (right). Graph shows mean, dots represent average of one image, images were taken from three organoids from 2–3 
independent differentiations (n = 3 HC, n = 4 C9 lines). Unpaired two-tailed t-test, t(66) = 3.469, p = 0.0009. e Quantification of the signal intensity 
of SYP and SHANK2 (SH2) in puncta. Graphs show mean, dots represent average of one image, and images were taken from three organoids 
from 2–3 independent differentiations (n = 3 HC, n = 4 C9). Unpaired two-tailed t-test, SYP: t(66) = 2.456, p = 0.0167; SHANK2: t(66) = 0.4488, p = 0.6551. 
f Quantification of the signal intensity of SYP and SHANK2 (SH2) in dendrites. Graphs show mean, dots represent average of one image, images 
were taken from three organoids from 2–3 independent differentiations (n = 3 HC, n = 4 C9). Unpaired two-tailed t-test, SYP: t(66) = 2.519, p = 0.0142; 
SHANK2: t(66) = 3.221, p = 0.0020. g–k Quantitative PCR was performed for glutamatergic synaptic genes and major synaptic components in day 
90 healthy control (HC) and C9-ALS/FTD (C9) organoids. Expression was normalized to the housekeeping genes TBP and RPII. Graphs show 
mean ± SEM, symbols indicate the cell lines, dots represent an average measurement of 3 organoids pooled per independent organoid induction 
(n = 4 C9, and n = 3 HC lines). Mann–Whitney two-tailed t-test, BSN: U (19) = 0, p < 0.0001; EAAT2: U (19) = 7, p = 0.0005; PSD95: U (18) = 25, p = 0.1288; 
SLC17A7 (vGlut1): U (17) = 0, p < 0.0001; SYN2: U (19) = 7, p = 0.0005. Additional genes are displayed in Supplementary Fig. 5d-g. Scale bar: b 40 μm. 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001

(See figure on next page.)
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immunohistochemistry. SOX2 labelling of the VLZ of 
C9-carrier organoids was more diffuse and many SOX2+ 
cells were found in MAP2+ parts of the organoid in all 
C9-carriers (Fig. 8f; Supplementary Fig. 8c).

Finally, we assessed synaptic gene expression in 
C9-carrier organoids. This experiment showed that the 
synaptic expression patterns of C9-carrier-2 and -4 were 

most similar to C9, while C9-carrier-1 behaved more 
similar to HC (Fig. 8g–m, Supplementary Fig. 8d-f; One-
way ANOVA, Tukey’s multiple comparisons test, BSN: 
F(5, 34) = 6.186, p = 0.0004; EAAT2: F(5, 36) = 5.558, 
p = 0.0007; PSD95: F(5, 34) = 2.102, p = 0.0892; SHANK2: 
F(5, 35) = 6.840, p = 0.0002; SYN2: F(5, 35) = 6.644, 
p = 0.0002; SYN3: F(5, 35) = 6.800, p = 0.0002).
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set-up. b Representative image of immunohistochemistry on organoid slices after electrophysiological measurements showing biocytin-filled 
neurons (white) embedded in a MAP2+ dendritic network. HC, healthy control; C9, C9-ALS/FTD. c–h Electrophysiological analysis. Graph shows 
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(Vm). t(46) = 2.543, p = 0.0144. g Spontaneous excitatory post synaptic current (sEPSC) frequency. t(26) = 2.623, p = 0.0144. h sEPSC amplitude. 
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Chi-square test, Χ2(1) = 0.7212, p = 0.3958. k Percentage of cells with APs that displayed repetitive APs. Chi-square test, Χ2(1) = 0.4898, p = 0.4840. l 
Percentage of cells with APs that showed spontaneous APs. Chi-square test, Χ2(1) = 0.01959, p = 0.8887. Scale bar: b 100 μm. * = p < 0.05
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Together, these results show that several of the phe-
notypes observed in C9 organoids can also be found 
in presymptomatic C9-carrier organoids although the 
specific set of defects detected or their severity may 

vary, e.g. C9-carrier-4 appeared to phenotypically 
resemble C9, while C9-carrier-1 (a sibling of C9-car-
rier-4) organoids were more similar to HC (except for 
C9-HRE pathology and SOX2 misorganization).
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shown as the mean ± SEM and dots represent individual MSD measurements of ≥ 3 organoids pooled per experiment after background subtraction. 
f Representative images showing LNA-FISH for sense RNA foci (red) in cryosections of day 90 C9-carrier organoids. DAPI (blue) marks nuclei. Boxed 
areas are shown at higher magnification in the right upper corner (n = 4 C9-carrier lines). Scrambled control probes did not show signal (scrambled 
probe on C9-carrier-2 sample is displayed). Scale bars: b 100 µm, f 50 µm and 10 µm in higher magnification box
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Discussion
Human brain imaging and experimental studies indi-
cate early changes in brain structure and connectivity in 
C9-ALS/FTD (C9) patients, even before symptom onset. 
Because these early disease phenotypes remain poorly 
understood, we derived and studied cerebral organoid 
models from (pre)symptomatic C9 patients. Our work 
revealed all three C9-HRE-related pathologies in cerebral 
organoids and novel opposite size differences at differ-
ent stages of organoid development. Changes in cell type 
abundance and distribution were found at later stages, 
e.g. a reduction in the number of deep layer cortical neu-
rons, together with synaptic deficits in excitatory neurons 
(Fig.  9a). Interestingly, organoids from presymptomatic 
C9-HRE carriers consistently showed C9ORF72 haplo-
insufficiency, DPRs and RNA foci. A selection of defects 
detected in C9 organoids was also observed in organoids 
from some, but not all, presymptomatic C9-HRE carri-
ers. These results identify early C9-HRE-induced changes 
in cellular architecture and synaptic connectivity in 
complex brain tissue, show that in vitro models derived 
from presymptomatic C9-HRE carriers display extensive 
molecular pathology and cellular defects, and highlight 
the potential of cerebral organoids for defining initial dis-
ease phenotypes and developing therapeutic approaches, 
perhaps even at presymptomatic stages.

Molecular pathology and developmental changes 
in C9‑ALS/FTD cerebral organoids
C9-HRE leads to reduced C9ORF72 expression and the 
generation of DPRs and nuclear RNA foci in C9 patients 

[7]. Thus far, poly(GA) DPRs have been reported in 
mature cerebral organoid slices [107]. Our current work 
confirms and extends these observations by detecting 
multiple distinct DPRs (poly(GA) and poly(GP)), and 
both C9ORF72 haploinsufficiency and sense RNA foci at 
earlier stages of organoid development. Our results are 
the first to show all three C9-HRE pathologies in cerebral 
organoids and align with recent work in C9 neuromuscu-
lar organoids [39].

Our analysis of C9 cerebral organoids identified oppo-
site size differences at early and later stages of orga-
noid development. At early stages (around day 10), C9 
organoids were larger as compared to healthy and iso-
genic control organoids. These phenotypes were not 
not reported before and detected in organoids derived 
from other ALS genetic backgrounds (TDP-43-ALS, 
ATXN2-ALS). This indicates that increased organoid size 
is not a general ALS phenotype and resonates with the 
observation that the most prominent cortical changes 
are observed in C9 patients as compared to the general 
ALS patient population [11, 82]. It is, however, possible 
that ALS genetic backgrounds other than those tested 
here similarly affect organoid size. The early size defect 
was only partially rescued in isogenic control organoids, 
which hints at the involvement of additional mecha-
nisms, e.g. additional genetic influences. How C9-HRE 
causes early accelerated organoid growth is unknown. 
Interestingly, re-expression of different cell cycle-
associated proteins has been reported in C9 neurons 
[68, 87]. Cell cycle progression analysis did, however, 
not reveal differences between C9 and healthy control 

(See figure on next page.)
Fig. 8  Presymptomatic C9-HRE carrier organoids varying degrees of molecular and cellular phenotypes. a Representative brightfield images 
of presymptomatic C9-HRE carrier (C9-carrier) organoids at day 2, 6 and 10. b–c Quantification of the cross-sectional area of HC, C9, and C9-carrier 
organoids at day 2, 6, and 10 (b) and at day 10 (c) based on images as in a. Size normalized to the HC average. Graphs show mean ± SEM, 
n = 12 organoids per timepoint times from 3 to 5 independent differentiations per iPSC line (n = 1 HC, n = 1 C9 n = 4 C9-carrier lines), one-way 
ANOVA—Kruskal–Wallis test with Dunn’s correction for multiple testing, F(5,267) = 98.12, p < 0.0001. Trendlines in c represent average size 
of n = 3 HC (green) and n = 4 C9 (pink) as shown in Fig. 2d. d Quantification of the cross-sectional area of HC, C9, and C9-carrier at day 90 based 
on images as in Supplementary Fig. 8b. Size normalized to the HC average. Graphs show mean ± SEM, measurements from 3 to 6 independent 
differentiations per iPSC line, n = 1 HC, n = 1 C9, n = 4 C9-carrier lines, one-way ANOVA—Kruskal–Wallis test with Dunn’s correction for multiple 
testing, F(5,413) = 58.49, p < 0.001. Trendlines indicate the average size of n = 3 HC (green) and n = 4 C9 (pink) as shown in Fig. 2h. e Quantitative 
PCR for the deep layer neuron marker CTIP2 in day 90 HC, C9 and C9-carrier organoids. Expression is normalized to TBP and RPII. Graphs show 
mean ± SEM, symbols indicate specific lines and dots represent an average measurement of 3 organoids pooled per independent organoid 
induction, n = 3 HC, n = 4 C9 and n = 4 C9-carrier lines, One-way ANOVA, Tukey’s multiple comparisons test, F(2,34) = 13.91, p < 0.001. Non-significant 
results are not displayed. f Immunohistochemistry for CTIP2, to mark deep layer neurons (red), MAP2, to label neuronal regions (green), and SOX2, 
to mark neural stem cells in the VLZ (light blue) in day 90 HC, C9 and C9-carrier organoids. Dotted line indicates the border of VLZs. DAPI in blue. 
g–l Quantitative PCR was performed for glutamatergic synaptic genes and major synaptic components in day 90 healthy control (HC), C9-ALS/
FTD (C9), and C9-carrier organoids. Expression was normalized to the housekeeping genes TBP and RPII. Graphs show mean, dots represent 
an average measurement of 3 organoids pooled per independent organoid induction (n = 4 C9-carrier, n = 4 C9, and n = 3 HC lines). One-way 
ANOVA, Tukey’s multiple comparisons test, BSN: F(5, 34) = 6.186, p = 0.0004; EAAT2: F(5, 36) = 5.558, p = 0.0007; PSD95: F(5, 34) = 2.102, p = 0.0892; 
SHANK2: F(5, 35) = 6.840, p = 0.0002; SYN2: F(5, 35) = 6.644, p = 0.0002; SYN3: F(5, 35) = 6.800, p = 0.0002. DLGAP1, SLC17A7 (vGlut1), and SYP are 
displayed in Supplementary Fig. 8d–f. m Heatmap summarizing the results of the qPCR analysis of (glutamatergic) synaptic genes as in (g–l) relative 
to the highest expression detected for that gene. Asterisks mark significance of the group compared to HC. Test statistics are described in g–l. Scale 
bars: a 500 µm, f 150 μm. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. **** = p < 0.0001
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(HC) iPSCs (Supplementary Fig.  9a; Two-way ANOVA, 
F(2,114) = 0.39, p = 0.6787). C9ORF72 has been impli-
cated in different pathways that contribute to cell prolif-
eration and differentiation, e.g. cytoskeletal control and 
intracellular trafficking [19, 104]. Some of these pathways 
were deregulated in our scRNA-seq data and constitute a 
valuable starting point for further studies into these early 
phenotypes.

Growth of the brain and of neural organoids depends in 
part on the initial symmetrical division of neuroepithelial 
cells followed by asymmetrical division of radial glia [10, 
12, 46]. Early depletion of the stem cell pool could lead 
to initial accelerated development of neural tissue, fol-
lowed by reduced growth at later stages. This mimics our 
phenotypic observations in early and later organoids. At 
day 90, the SOX2+ neural stem cell pool area was reduced 
and SOX2+ stem cells were dispersed in C9 organoids. 
Similar developmental changes in the organization of 
stem cells have been found in neural organoids modelling 
other, developmental, brain diseases [15, 74]. Whether 
the early and later effects on organoid size observed in 
our study are linked, and if not, how these later defects 
arise is unknown. Interestingly, DPR type-specific effects 
on stem cell proliferation have been reported. Whereas 
poly(AP) expression mostly affected PAX6+ neural stem 
cells in 2D cultures, poly(GR) and poly(PR) inhibited 
KI67+ dividing cells [48]. These observations support 
the exciting possibility that C9-HRE influences different 

stages of organoid development through distinct down-
stream pathological mechanisms.

Our scRNA-seq analysis of day 90 organoids revealed 
the presence of similar cell types in C9 and HC orga-
noids. However, differences were detected in the abun-
dance of specific cell types. For example, the number of 
CTIP2+ deep layer cortical neurons, a vulnerable cell type 
in ALS/FTD, was reduced in C9 organoids, as confirmed 
by immunohistochemistry. No changes in cell type com-
position were recently reported in C9 cerebral organoid 
slices at later stages [107]. This apparent discrepancy may 
be explained by different factors, e.g. the number of lines 
analyzed (which was higher in our study), the model and 
timepoint of analysis, and markers used for confirmation 
(e.g. CTIP2 was not analyzed). No obvious increase in 
cell death was observed in C9 organoids (data not shown) 
[107] and we already detected changes in CTIP2 expres-
sion at day 45. These observations together with the 
developmental nature of cerebral organoids at day 90 and 
previous mouse studies showing C9-HRE-induced neu-
rodevelopmental effects [48] support a model in which 
C9-HRE cause developmental defects that affect specific 
cell populations, such as deep layer neurons. The accumu-
lation of DNA damage and nuclear pyknosis in deep-layer 
neurons at later stages of organoid development [107], 
indicate that the changes found in our study are likely fol-
lowed by more neurodegenerative changes in the same cell 
types.
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Fig. 9  Schematic overview of the findings of the study. a Graphical overview of the main findings of the study. At the level of whole organoids 
(left): C9 organoids were larger at day 10 and smaller at day 90, at the cellular level (middle): fewer CTIP2+ deep layer neurons (red) and disorganized 
SOX2+ radial glia (cyan) were detected. Moreover, C9 organoids displayed all three types of C9-HRE molecular pathology, and at the synapse 
level (right): fewer presynapses (green) and decreased expression of postsynaptic SHANK2 (red) in dendrites together with fewer spontaneous 
excitatory post-synaptic currents (sEPSCs; downward facing peaks)
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Synaptic deficits in C9‑ALS/FTD cerebral organoids
The presence of the same cell types in day 90 C9 and HC 
organoids provided an opportunity to assess cell type-
specific gene expression changes and revealed changes in 
glutamatergic gene expression. This is in line with accumu-
lating evidence of synaptic impairments in C9-ALS/FTD 
and upon C9 loss-of-function [27, 42]. C9ORF72 protein is 
present at pre- and postsynaptic terminals [6, 37, 123] and 
interacts with synaptic proteins such as SYP [9]. C9ORF72 
deficiency and/or C9-HRE result in decreased expression 
of synaptic proteins and a reduced number of excitatory 
synapses in  vitro, in different animal models in  vivo and 
in post-mortem brain tissue [9, 21, 36, 49, 50, 59, 73, 106]. 
Our work complements these observations by identifying 
prominent changes in synaptic gene expression in excita-
tory neurons, structural presynaptic changes, and altered 
synaptic and dendritic expression of pre- and postsynap-
tic proteins in patient-derived 3D brain tissue models. 
Further, our approach, for the first time, allowed detailed 
electrophysiological assessment of synaptic and neuronal 
function in a multi-cellular and complex tissue carrying 
C9-HRE. Previous studies have reported hyperexcitability 
[20, 30, 43, 85], or hypoexcitability phenotypes [1, 9, 26, 
30, 98], or lack of differences [38, 101, 107] in neuronal 
cultures. The significantly depolarized resting membrane 
potential observed in C9 organoids (Fig. 6f) is in line with 
reports of hyperexcitability. Our results in 3D organoids 
indicate reduced synaptic and neuronal function at 90 days 
of culture. Further studies are needed to establish whether 
this, likely developmental, phenotype persists in more 
mature organoid cultures. This is, for example, important 
as the maturation of astrocytes, essential for synaptic func-
tion, only commences around day 70 in cerebral organoids 
[115]. Furthermore, synaptic defects in C9 cultures have 
been reported to be culture age-dependent [24, 105]. The 
precise mechanism by which C9-HRE causes different 
synaptic phenotypes is incompletely understood, but the 
reported role of C9ORF72 in intracellular trafficking, also 
at synapses [19], is in line with our observation of reduced 
presynaptic and dendritic expression of proteins such as 
SYP and SHANK2.

In all, our results reveal widespread synaptic changes 
in C9 cerebral organoids, and both complement and 
strengthen previous work identifying synaptic changes 
as early and convergent pathogenic events. While a large 
body of work has focused on postsynaptic changes [42], 
our work and that of others [27] highlights the cen-
tral (pre)synapse as a crucial structure in C9-ALS/FTD. 
Human PET imaging studies have revealed reduced syn-
aptic density in the thalamus of presymptomatic cases 
[73]. Although we did not perform an exhaustive synap-
tic analysis of C9-carrier organoids, our synaptic gene 
expression data align with these findings by highlighting 

early changes in synaptic genes. Our data support the idea 
that neural organoids constitute a valuable additional tool 
for further unveiling the synaptic phenotypes underlying 
C9-ALS/FTD and other neurodegenerative diseases.

C9‑HRE pathology and disease phenotypes in organoids 
from presymptomatic carriers
Presymptomatic C9-HRE carriers display several but not 
all phenotypes found in C9-ALS/FTD cases [31, 52, 69, 
73, 97, 119]. Further, the penetrance of the C9-HRE is 
incomplete and age of onset varies from 40 to 90 years of 
age [81, 121]. It is therefore difficult to predict if or when 
C9-HRE carriers will display their first clinical symptoms. 
To explore whether cerebral organoids may help to predict 
symptom onset and the dissection of presymptomatic dis-
ease mechanisms, we generated cerebral organoids from 
presymptomatic C9-HRE carriers. Interestingly, all three 
C9-HRE pathologies were detected in organoids from 
all four C9-carriers. This is in line with studies detecting 
C9-HRE pathology in brain tissue before symptom onset 
[88, 112]. Based on these observations one could argue 
that the mere presence of C9-HRE in C9-carrier organoids 
will be sufficient to induce C9-HRE pathology and down-
stream phenotypes as found in C9 organoids. In contrast, 
our analysis identified a lack of most phenotypes in one 
C9-carrier (C9-carrier-1, except for changes in SOX2+ cell 
distribution) but detected a full range of defects in a pre-
symptomatic sibling (C9-carrier-4). Two other unrelated 
C9-carriers displayed distinct sets of cellular phenotypes. 
One limitation of our study is that we do not yet know if or 
when these C9-carriers will display their first symptoms. 
The difference in phenotypes (or lack thereof) could sim-
ply reflect time left until disease onset. Alternatively, these 
differences could be caused by other factors such as addi-
tional polygenic risk related to the idea that ALS is a multi-
step process [2]. This is in line with recent work suggesting 
that even in C9-ALS/FTD pedigrees, genetic factors other 
than C9-HRE may contribute to the disease process [94]. 
Our observations show that the presence of C9-HRE 
pathology is not indicative of the presence of other cel-
lular phenotypes, at least in  vitro. We, however, found 
that poly(GA) levels were higher in C9 as compared to 
C9-carrier organoids. It is therefore possible that in depth 
quantification of C9-HRE pathologies, and perhaps other 
markers such as TDP-43 localization or Nf-L levels, will 
improve correlation with the development of pathogenic 
events. If proven, such quantitative measurements could 
feed into multi-modal prediction platforms that include 
other patient data, such as brain imaging and functional 
assessments, for improved diagnosis and prognosis.

In conclusion, by exploiting the potential of human 
neural organoid models we identify early changes in cell 
type abundance, developmental processes, and synaptic 
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dysfunction that resonate with early changes in brain struc-
ture and connectivity observed in C9-ALS-FTD patients 
in  vivo. Analysis of organoids from presymptomatic 
C9-HRE carriers consistently revealed all three C9-HRE 
pathologies and showed C9-carrier-specific expression of 
the cellular phenotypes that are consistently observed in 
C9-ALS/FTD organoids. Overall, our observations sup-
port the notion that the cellular and structural complexity 
of 3D neural organoids, which resembles the multicellular 
environment of the human brain and promotes neuronal 
maturation, provides a valuable tool for the molecular, cel-
lular, and functional interrogation of ALS pathogenesis and 
a platform for (personalized) therapy development.
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