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1.  INTRODUCTION

The domestic canine, canis familaris, has gained increas-
ing recognition as a model for human disease. Many dis-
eases with human homology occur spontaneously in 
canines, with similar underlying pathology and progres-
sion as the human condition. Canines are uniquely suited 
to studies of disease within the nervous system. For 
example, unlike rodents which are common subjects for 
neuroscience research, the canine brain is gyren-
cephalic, with similar cortical divisions to the human 

brain. Dogs display similar executive cognitive functions 
to humans (Bunford et al., 2017), and are naturally prone 
to a number of conditions that affect humans such as 
age-related changes in cognitive function (Dewey et al., 
2019, 2020; Vite & Head, 2014), anxiety disorders 
(Blackwell et al., 2013; Dreschel, 2010), epilepsy (Löscher, 
2022), glioma (Hicks et  al., 2017; Hubbard et  al., 2018; 
Leblanc et al., 2016), neuromuscular disorders (Nghiem 
& Kornegay, 2019), neuropathies (Correard et al., 2019), 
retinopathies (Petersen-Jones & Komáromy, 2015), and 
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metabolic diseases (Gurda & Vite, 2019). Widespread 
acceptance of dogs as companion animals ensures a 
canine population with similar environmental exposures 
to humans in which disease progression is often charted. 
Furthermore, in contrast to inbred strains of lab animals, 
domestic canines exhibit breed-related differences in 
disease prevalence that have provided insight into 
genetic predispositions for developing various neurolog-
ical disorders (Dickinson, 2020; Dickinson & Bannasch, 
2020; Ekenstedt & Oberbauer, 2013; Flegel et al., 2021; 
Garafalo et  al., 2020; Hülsmeyer et  al., 2015; Nardone 
et al., 2016; Wu et al., 2018).

In neuroscience research, there is a need for meth-
ods to map neurological function, and to measure the 
effects of diseases on both function and structure. 
Magnetic resonance imaging (MRI) represents a non-
invasive methodology that permits study of the brain’s 
anatomic detail and can provide information regarding 
structure-function relationships. In MRI diffusion tensor 
imaging (DTI), patterns of diffusion of water molecules 
can be used to assign a value for isotropy for different 
tissue types. Within brain tissues, diffusion of water is 
constrained by cellular architecture, and the amount of 
constrained diffusion, or fractional anisotropy (FA), can 
be attributed to specific tissues. In white matter, diffu-
sion is constrained in a bidirectional manner, and high 
values for FA can be used to delineate anatomically 
defined functional white matter tracts that may not be 
discriminated histologically (Bazin et  al., 2011; Le 
Bihan, 2003; Mori & Zhang, 2006). Accordingly, white 
matter atlases employing DTI provide a standardized 
reference that can be used to investigate structure-
function relationships, such as age-related (Calabrese 
et  al., 2015; Mukherjee & McKinstry, 2006; Qiu et  al., 
2008; F. Zhang et  al., 2018) and disease-related 
changes in brain connectivity (Alexander et  al., 2007; 
Bonilha et  al., 2013; Freund et  al., 2010; Johnson,  
Barry, et al., 2019). DTI can also be used to establish 
models of diffusion tensors that create deterministic or 
probabilistic orientation paths of white matter (Mori 
et al., 2009).

White matter atlases have been established for several 
species used in research, including non-human primates 
(Calabrese et al., 2015; Liu et al., 2020; Oishi et al., 2011; 
Zakszewski et al., 2014), rodents (Figini et al., 2015; Jiang & 
Johnson, 2011; Yon et al., 2020), cats (Jacqmot et al., 2017; 
Johnson, Pascalau, et  al., 2020; Stolzberg et  al., 2017), 
sheep (Nitzsche et al., 2015; Pieri et al., 2019), and horses 
(Boucher et al., 2020; Johnson, Janvier, et al., 2019), per-
mitting comparative studies of white matter tracts across 
species and with human subjects (Catani & Thiebaut de 
Schotten, 2008; Mori et al., 2008, 2011). DTI has also been 
employed to delineate specific tracts within the canine 

brain (Anaya García et al., 2015; Jacqmot et al., 2013, 2017) 
and to detect alterations in canine brain diffusivity in the 
aging brain (Barry et al., 2021), epilepsy (Hamamoto et al., 
2017), and glaucoma (Graham et al., 2021). Recently, DTI 
has been used to identify olfactory pathways not previously 
described (Andrews et al., 2022). Beyond clinical applica-
tions, these studies pose a useful corollary to the nascent 
field of canine functional MRI (fMRI) in comparative studies 
of function and evolution (Andics & Miklósi, 2018). While 
comparative studies of cognition employing dogs cannot 
replace those performed in non-human primates, whose 
cognitive and executive functions are closely aligned with 
humans, dogs as a species are well-suited to studies of 
cognition, since they are able to recognize and interpret 
human verbal and non-verbal language, and respond to 
human commands (Andics & Miklósi, 2018; Bunford et al., 
2017). Studies employing fMRI have shown convergence in 
human and canine neural processing in temporo-occipital 
brain regions when presented with animate versus inani-
mate objects (Boch et al., 2023; Bunford et al., 2020), and 
activation of canine olfactory pathways associated with 
species-specific recognition (Boch et  al., 2023). While 
these techniques provide complementary mechanisms for 
functional comparisons of distinct grey matter areas and 
white matter pathways, to date, however, canine white 
matter has not been comprehensively parcellated in an 
atlas form.

Here, we present a DTI white matter atlas for the 
mesaticephalic canine brain, created using diffusion-
weighted imaging and 3-dimensional T1-weighted data 
from 30 neurologically normal dogs. In this atlas, we pro-
vide a series of white matter segmentation maps and 
tract priors available for download in common neuroim-
aging informatics technology initiative (NIfTI) format (Cox 
et  al., 2004). This comprehensive white matter atlas 
establishes a reference standard that aids standardiza-
tion of data processing and interpretation of MRI images 
in canine brain research and may be used to facilitate 
studies of functional alterations in connectivity with 
respect to canine neurological disease.

2.  MATERIALS AND METHODS

2.1.  Study population

For creation of population average templates, we recruited 
30 neurologically normal dogs from research populations 
housed at Cornell College of Veterinary Medicine. Since 
cranial conformation in brachycephalic dogs has been 
demonstrated to result in frontal shortening of the brain 
(Johnson, Luh, et al., 2020), only mesaticephalic and dol-
ichocephalic dogs were included. The final cohort was 
composed of 10 beagles and 20 mixed breed dogs that 



3

F.M. Inglis, P.A. Taylor, E.F. Andrews et al.	 Imaging Neuroscience, Volume 2, 2024

had a median weight of 13 kg (IQR 12.75) and had either 
a mesaticephalic (n = 25) or dolichocephalic (n = 5) cranial 
conformation. This group was composed of eight males 
and 22 females, with a median age of 5.5 years (IQR 7.5). 
All animals were clinically healthy and neurologically nor-
mal and underwent MRI for research purposes only.

2.2.  Ethics statement

This research was approved by Cornell University’s insti-
tutional animal care and use committee (IACUC protocol 
number: 2015-0115).

2.3.  MRI examination

All dogs underwent physical and neurological examina-
tions to ensure that they were clinically healthy, neurolog-
ically normal and had an American Society of 
Anesthesiologists (ASA) score of I. They were premedi-
cated, induced, and maintained under anesthesia by a 
board-certified veterinary anesthesiologist as previously 
described (Johnson, Luh, et  al., 2020). MRI was per-
formed using a 3.0T General Electric (GE) Discovery 
MR750 whole-body scanning unit. Subjects were imaged 
in dorsal recumbency using a 16-channel radio-frequency 
coil (Johnson, Luh, et  al., 2020). Both T1-weighted 3D 
inversion recovery fast spoiled gradient echo (BRAVO, 
isotropic voxels 0.5 mm3, TE = 3.6 ms, TR = 8.4 ms, TI = 
450 ms, excitations = 3, flip angle 12°, acquisition matrix 
size 256  x  256) and diffusion tensor imaging (TR  = 
7000 ms, TE = 89.6 ms, flip angle = 90°, isotropic voxels 
1.5  mm3, 60 gradient directions, b  =  800  s/mm2 and a 
single unweighted (b  =  0) diffusion image) sequences 
were performed on each subject.

2.4.  Data processing

DW images were corrected for phase distortion 
(Andersson et al., 2003; Smith et al., 2004), eddy current 
distortion, motion correction (Andersson & Sotiropoulos, 
2016), Gibbs artifact (Kellner et  al., 2016), and noise 
(Veraart et al., 2016) using the FSL (https://fsl​.fmrib​.ox​.ac​
.uk/) (Smith et al., 2004) and MRTrix (https://www​.mrtrix​
.org) (Tournier et al., 2019) software packages. Diffusion 
tensors were modeled using the three principal eigenval-
ues with FSL’s dtifit from the FSL diffusion toolbox 
(Behrens et  al., 2003, 2007). Tensor maps were calcu-
lated for fractional anisotropy (FA) using the following 
equation (Basser & Jones, 2002; Beaulieu, 2002).

(λ1− λ2 )
2 + (λ2 − λ3 )

2(λ1− λ3 )
2

2(λ1
2 + λ2

2 + λ3
2 )

.

In addition, maps for mean diffusivity (MD; (λ1+ λ2 +
λ3 )/3), radial diffusivity (RD; (λ2 + λ3 )/2), and axial diffu-
sivity (AD; λ1) were generated for all subjects. All maps 
were visually inspected for quality assurance between 
each stage of registration, orientation, and preprocessing.

2.5.  Population template creation

2.5.1.  T1-weighted population average template

A T1-weighted template was created as described previ-
ously (Johnson, Luh, et al., 2020). This template under-
went quality assurance testing and the success of 
registration after aligned, linear, and non-linear registra-
tion was performed with external datasets was evaluated 
as previously described (Johnson, Luh, et al., 2020). This 
template was used for manual white matter mask delin-
eation and figure creation.

2.5.2.  DTI population average template

Using MRTrix tools (Tournier et al., 2019), preprocessed 
diffusion data and brain masks for all subjects were used 
to generate fiber orientation distributions (FODs). The 
resulting MRtrix population template was then used to 
generate an unbiased average FOD data set for the canine 
subjects employed in this study. To generate an average 
diffusion data set, the average FOD was subsequently 
converted back into diffusion data using the fod2dwi tool 
in MRtrix (Tournier et al., 2019; Wang et al., 2007). The 
average population data were subject to deterministic 
modeling using Diffusion Toolkit. Using the template diffu-
sion tractogram, virtual dissection was performed in 
TrackVis (Wang et  al., 2007). This method produced a 
population average diffusion data set representing our 
canine sample that could be used for tractography.

2.6.  Manual white matter segmentation

Anatomic regions of white matter were manually seg-
mented using ITK-Snap (Yushkevich et al., 2006) (www​
.itksnap​.org), using sagittal, transverse, and dorsal planes 
to ensure accurate reconstruction of three-dimensional 
white matter structures. Segmentations were performed 
on the T1-weighted population average template, and 
fiber orientation was visualized by overlying color-coded 
red-blue-green FA maps to help define borders between 
adjacent white matter structures. White matter segmen-
tations were made with reference to existing white matter 
atlases created for other species (Calabrese et al., 2015; 
Mori et  al., 2011; Oishi et  al., 2011; Zakszewski et  al., 
2014) and canine histological and MRI atlases (Fletcher & 
Saveraid, 2009; Nitzsche et  al., 2019; Singer, 1962).  

https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
https://www.mrtrix.org
https://www.mrtrix.org
http://www.itksnap.org
http://www.itksnap.org
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Segmentations divided the white matter according to 
anatomic structures visible on the population average 
templates, such as within specific gyri or defined subcor-
tical structures.

2.7.  Deterministic tractography dissection

Tractography dissections of the population average diffu-
sion dataset tractogram were performed using TrackVis 
software (Johnson, Pascalau, et  al., 2020). The major 
projection, association, commissural, and cerebellar fas-
ciculi were dissected using both human and animal ana-
tomic references (Catani & Thiebaut de Schotten, 2008; 
Jacqmot et  al., 2013, 2017; Johnson, Pascalau, et  al., 
2020). Descriptions of how each were dissected are 
included under each tract title in the results section, and 
a guide to region of interest placement is included in 
Supplementary Materials.

2.8.  Template and atlas collection processing  
and formatting

Several aspects of the template and atlas were pro-
cessed using AFNI (Cox, 1996) to ensure maximal 
usability and consistency among the various parts of the 
collection. For example, we ensured that all expected 
parts of the NIFTI header (Cox et al., 2004) were present 
and correct, including srow values and appropriate 
qform_code and sform_code values of 5. The dataset 
datatypes are short in order to have efficient disk space 
usage for these files, which should also help create 
efficiently-sized files for downstream processing by 
default. The dataset orientation was set to be “RAI,” for 
convenience of interpretation and simpler mapping 
between data matrix and physical coordinate location 
across general software and scripting. The coordinate 
origin (x, y, z) = (0, 0, 0) itself was placed in a convenient 
and meaningful anatomical location within the brain (at 
the anterior commissure), facilitating interpretations of 
reported results, mapping to other templates and spaces 
(especially across species), and likely initial overlap with 
acquired datasets that researchers will look to align with 
the template. The final voxel size (0.5 mm isotropic) is 
also a convenient number for reporting coordinates. The 
template dataset, atlases, network maps, and masks 
were all verified for consistency of coverage and overlap 
both visually and computationally.

For all relevant atlas files, label tables were created 
with AFNI’s @MakeLabelTable to insert that information 
directly into the file header. This is convenient within 
AFNI’s widely used visualization software for displaying 
atlas regions within the GUI, as well as interactively click-
ing around and seeing lists ROIs located at and near the 

current click location (called “Where am I?” functionality). 
Programmatically, users can also use the label names to 
select regions conveniently within commands, which is 
less likely to result in scripting errors and is easier for oth-
ers to correctly interpret. Plain text label files were also 
created for general reference, and these are distributed 
within the data package. (A schematic of the methods 
used is documented in Fig. 1.)

2.9.  White matter atlas

FSLmaths and FSLstats were used to document the vol-
ume and mean FA and MD values for each of the white 
matter anatomic priors. The final atlas is available, open 
source at: https://doi​.org​.10​.7298​/2w4q​-8j27 and https://
hdl​.handle​.net​/1813​/113846

3.  RESULTS

3.1.  White matter regions—manual segmentation

3.1.1.  Gyral white matter

White matter within each gyrus represents the terminal 
extensions of white matter within the corona radiata, a 
large central white matter region that fans out as it 
extends dorsally (see below). Here, we have segmented 
gyral white matter as follows. Each separate gyral parcel-
lation was considered to begin as the corona radiata nar-
rowed to enter the gyrus. For each, the left and right 
gyrus was segmented separately. Segmentations were 
performed with reference to previous studies of white 
matter segmentation in canines (Fletcher & Saveraid, 
2009; Nitzsche et al., 2019) and pre-existing canine his-
tological (Adrianov, 2010; Singer, 1962) and MRI atlases 
(Czeibert et al., 2019).

Cingulum: This association tract runs in a predomi-
nantly rostral/caudal direction dorsal to the corpus callo-
sum (Schachter & Singer, 1962) and was dissected with 
reference to manual segmentation of the rhesus macaque 
brain (Zakszewski et al., 2014). At the caudal aspect of 
the splenium of the corpus callosum, the cingulum 
courses dorsoventrally, giving rise to the perihippocam-
pal cingulum. This limbic structure contains both long- 
and short-range cortico-cortical fibers, as well as axons 
arising from the amygdala, thalamus, and brainstem 
nuclei, and provides afferent innervation to the hippo-
campus and parahippocampal gyrus (Vogt, 2019). While 
short and long association fibers of the cingulum defas-
ciculate towards individual gyri, the cingulum bundle dis-
section was limited to the white matter running 
rostrocaudally.

Splenial gyrus: This small, predominantly rostrocau-
dally orientated gyrus lies dorsal to the cingulum on the 

https://doi.org.10.7298/2w4q-8j27
https://hdl.handle.net/1813/113846
https://hdl.handle.net/1813/113846
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midline surface of the falx cerebri, adjacent to the mar-
ginal gyrus. At its caudal end, the splenial gyrus courses 
dorsoventrally, caudal to the perihippocampal cingulum 
(Czeibert, Baksa, et al., 2019).

Marginal, Ectomarginal, Suprasylvian, Ectosylvian and 
Sylvian Gyri: These gyri, listed from medial to lateral, have 
a predominantly rostral/caudal orientation and comprise 
the majority of the surface of the parietal, sensorimotor, 
occipital, and temporal regions of the brain (Czeibert, 
Andics, et al., 2019; Johnson, Luh, et al., 2020).

Rostral and caudal composite gyri: These ventrolater-
ally located gyri adjoin the sylvian, ectosylvian, and supra-
sylvian gyri at their rostral and caudal extent. The borders 
of the rostral and composite gyri are drawn at the acute 

angle where they converge with the silvian, ectosylvian, 
and suprasylvian gyri (Czeibert, Andics, et al., 2019).

Precruciate and post-cruciate gyri: These gyri lie ros-
tral and caudal to the cruciate sulcus respectively and 
have a predominantly medial/lateral orientation. The bor-
der between these is drawn at the most lateral aspect of 
each gyrus.

Frontal, Rectus and Proreus gyri were delineated 
according to the study by Czeibert and colleagues 
(Czeibert, Andics, et al., 2019) and are as follows:

Frontal gyrus: This gyrus runs in a rostral/caudal orien-
tation within the frontal region of the brain, and occupies 
a mediodorsal position, rostral to the cruciate sulcus and 
its associated gyri.

Fig. 1.  Provides an overview of the methods used to create the manually delineated white matter priors and white 
matter tract priors that make up the final white matter (WM) atlas. A population average template was created from high-
resolution isovolumetric 3-dimensional (3D) T1W data. The WM priors were created by manually delineating the different 
regions of the WM using anatomical and histopathological references and evaluation of the fractional anisotropy (FA) red 
blue green (RBG) color map. In order to create representative population average WM tract priors, the raw diffusion tensor 
imaging (DTI) data were corrected for distortion, motion, artifact, and noise using FSL and MRtrix software. FSL DTIfit was 
used to model diffusion tensors and create FA maps. A diffusion-weighted population average template was created using 
MRtrix. Diffusion toolkit was used to deterministically model the population average DTI data to create a tractogram. This 
population average tractogram was dissected using TrackVis software with reference to the FA RBG color map. Individual 
tracts were saved as masks and registered to the population average T1W template.
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Rectus gyrus: This white matter region lies within the 
medial aspect of the frontal region, ventral to the frontal 
gyrus, and runs rostrocaudally.

Proreus: This gyrus is situated within the frontal region 
and lies lateral to the rectus gyrus. It runs in a rostrocau-
dal orientation dorsal to the olfactory lobes.

3.1.2.  Central white matter

Corona radiata: The corona radiata represents the white 
matter of the cortical gyri and extends ventrally to the 
internal capsule. Fibers within the corona radiata form a 
fan-like structure dorsal to the internal capsule. Tracts 
within these regions include corticothalamic and thal-
amocortical pathways, cortical projections to subcorti-
cal extrapyramidal structures, and corticofugal pathways 
including corticopontine, corticobulbar, and corticospi-
nal pathways (de Lahunta et  al., 2021b). The corona 
radiata also conveys long- and short-range cortico-
cortical association fibers. Extensions of the corona 
radiata were subdivided in this atlas as they enter indi-
vidual gyri and segmented as above. Gyri of the parien-
tal, temporal, and occipital lobes were segmented from 
medial to lateral as marginal, ectomarginal, suprasyl-
vian, ectosylvian, and sylvian white matter (Czeibert, 
Andics, et al., 2019; Datta et al., 2012; Nitzsche et al., 
2019). Gyri within prefrontal and frontal areas were seg-
mented as rostral suprasylvian, post-cruciate, precruci-
ate, frontal, prorean, and rectus gyri. At their rostral and 
caudal margins, sylvian, ectosylvian and suprasylvian 
gyri are connected via the rostral and caudal composite 
gyri respectively.

Internal capsule: This white matter structure rep-
resents a continuation of the corona radiata ventrally. 
The margin between the corona radiata and internal 
capsule was arbitrarily defined in this atlas on the trans-
verse plane as the approximate dorsal margin of the 
caudate. This definition is in line with previous histolog-
ical and MRI references (Czeibert, Andics, et al., 2019; 
Singer, 1962). At the caudoventral extent, the internal 
capsule continues as the cerebral peduncle. The inter-
nal capsule contains corticothalamic and thalamocorti-
cal fibers, and contains the long corticofugal fibers 
including the corticospinal, corticobulbar, and corticop-
ontine tracts.

Temporal Horn: White matter within the temporal horn is 
distinguished from the internal capsule in this atlas, since 
information within the temporal lobe represents predomi-
nantly limbic information and auditory processing in the 
dog, and pathways within the temporal horn are required 
for auditory recognition and spatial memory (Kowalska, 
2000). Tracts within this region enter the temporal lobe, 

occipital cortex (Johnson, Luh, et al., 2020), and olfactory 
structures (Andrews et al., 2022). The rostral border with 
the internal capsule was arbitrarily defined as the approxi-
mate rostral margin of the lateral geniculate nucleus, where 
the internal capsule is at its most lateral position.

Cerebral peduncle: The cerebral peduncle continues 
ventrally and caudally from the internal capsule, convey-
ing ascending sensory and descending motor tracts 
between the cerebrum and pons. These tracts contain 
the corticopontine, corticobulbar, and corticospinal 
tracts. The cerebral peduncle represents an anatomical 
eminence visible on the ventral surface of the canine 
brain, and was delineated as such.

Perithalamic Tract: This prominent white matter tract 
begins at the optic chiasm and conveys visual afferent 
information from the optic nerve. In the dog, an estimated 
75% of fibers cross at the optic chiasm (de Lahunta et al., 
2021c) and run contralaterally lateral to the thalamus to 
terminate at the lateral geniculate nucleus. The right and 
left optic tracts were segmented.

Corpus Callosum (CC): This prominent midline white 
matter tract contains commissural fibers connecting 
analogous cortical regions in both hemispheres. The ori-
entation of this structure within the rostral two thirds is 
rostral/caudal, and projects in with similar rostro-caudal 
topography to the cortex. While this represents a contin-
uous white matter structure, we subdivided the corpus 
callosum into the following divisions: genu, body, sple-
nium, and tapetum in alignment with previous studies in 
other species. The borders of each were drawn arbitrarily 
but correspond approximately to divisions in humans 
(Catani & Thiebaut de Schotten, 2008; Mori et al., 2008, 
2011; Oishi et  al., 2011) and non-human primates 
(Calabrese et  al., 2015; Oishi et  al., 2011; Zakszewski 
et al., 2014). At the caudal extremity, the corpus callosum 
is oriented dorsoventrally, giving rise to the tapetum 
which provides the temporal lobe with interhemispheric 
connections. The left and right tapetum were segmented 
separately.

Fornix: The rostral extremity of the fornix represents a 
midline structure arising at the level of the medial sep-
tum, coursing dorsally and caudally to lie directly below 
the corpus callosum. From there, the fornix divides and 
follows the lateral aspect of the hippocampus caudally 
and ventrally. This tract contains the septohippocampal 
and subiculothalamic pathways, and connects the hip-
pocampus with several limbic regions including the 
amygdala, subiculum, thalamus, and mamillary bodies. 
This evolutionarily conserved structure is critical in for-
mation of certain types of memory (Manns & Eichenbaum, 
2006). The fornix was segmented as a single midline 
structure.
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Rostral Commissure: This transverse white matter 
structure delimits the rostral aspect of the diencephalon 
and carries information from the olfactory lobes, amyg-
dale, and pyriform cortex. This structure is prominent in 
T1w images, but is not visible in FA maps, likely due to 
the presence of substantial isotropy within the adjacent 
grey matter and the presence of crossing fibers within 
the commissure. Therefore, the rostral commissure  
was delineated using the T1w template rather than the 
FA map.

Olfactory Peduncle: This prominent white matter bun-
dle contains olfactory tracts from the olfactory bulb at the 
rostroventral extremity of the brain. This tract is orien-
tated in a rostral/caudal direction. Olfactory white matter 
was sub-divided into additional masks as a result of 
recent findings that indicate five distinct white matter 
tracts (Andrews et al., 2022).

3.1.3.  Cerebellar white matter

Afferents and efferents of the cerebellum can be divided 
into three distinct major tracts, the rostral, middle, and 
caudal cerebellar peduncles. These integrate informa-
tion between the spinal cord, brainstem, and forebrain 
(de Lahunta et al., 2021a). These are parcellated accord-
ing to the direction of diffusion tensors within each struc-
ture, and with reference to previous histological studies 
(Singer, 1962).

Rostral Cerebellar Peduncle (RCP): This tract conveys 
predominantly cerebellar efferent pathways to the mes-
encephalon, diencephalon, and telencephalon, and some 
cerebellar afferent pathways from the mesencephalon. 
The RCP is oriented rostrocaudally and is medial to the 
middle and caudal cerebellar peduncles.

Middle Cerebellar Peduncle (MCP): This laterally situ-
ated peduncle conveys cerebellar afferent information 
from the cortex via the pons. Fibers arising in the pons 
decussate via the transverse fibers in the ventral pons 
and continue as the contralateral MCP.

Caudal Cerebellar Peduncle (CCP): This peduncle 
conveys afferent information to the cerebellum from the 
spinal cord and vestibular system, and efferent pathways 
from the cerebellar nuclei to the brainstem.

Cerebellar Medulla: The white matter of the cerebellar 
hemispheres and its extensions into the overlying folia 
(arbor vitae) contain cerebellar afferents and axons of 
cerebellar Purkinje neurons that innervate cerebellar 
nuclei to provide critical feedback and efferent control of 
motion and body position (de Lahunta et al., 2021a). The 
cerebellar medulla was segmented as four masks, repre-
senting white matter within left and right rostral and cau-
dal cerebellar lobes.

3.2.  White matter tracts—deterministic 
tractography

3.2.1.  Projection tracts

Corticospinal Tract (CST): The CST runs from the ventral 
horn of the spinal cord, through the cerebral peduncles 
and to form connection with the frontal and sensorimotor 
cortex. It was dissected by including fibers that extended 
between seed regions placed within the spinal cord and 
cerebral peduncles.

Thalamic Radiation: The thalamic radiation has fibers 
running between the thalamus and cerebral cortex. It lies 
in close association with the CST; however, it extends 
within the corona radiata to form a more extensive corti-
cal connectivity involving frontal, sensorimotor, parietal, 
and occipital regions. It was dissected by using a seed 
region within the thalamus and excluding pathways that 
extended into the brainstem.

Fornix: The fornix extends between the mammillary 
bodies and hippocampus. It was dissected by using 
including fibers that ran between regions within the body 
and crura of the fornix.

Optic tract and radiation: The optic pathway was dis-
sected as previously described (Andrews et  al., 2021). 
The tract runs within the perithalamic white matter to the 
level of the lateral geniculate nucleus. The radiation 
extends from the lateral geniculate nucleus to the occipi-
tal cortex.

Olfactory tracts: The olfactory pathway in the dog was 
dissected as previously described (Andrews et al., 2022). 
These include the olfactory occipital tract (OOT) which 
extends between the dorsal aspect of the olfactory bulb 
and the occipital pole, the olfactory piriform tract (OPT) 
which extends from the olfactory bulb through the ante-
rior internal capsule to the piriform cortex, olfactory lim-
bic tract (OLT) which extends through the limbic system 
to terminate in the frontal lobe, the olfactory corticospinal 
tract (OCST) which extends from the ventral aspect of the 
olfactory bulb, through the anterior internal capsule, mes-
encephalon, and medulla oblongata and into the spinal 
cord, and the olfactory entorhinal tract (OET) which 
extends to the entorhinal cortex directly from the bulb 
and peduncle.

3.2.2.  Association tracts

Cingulum: The cingulum lies within the cingulate gyrus 
with fibers extending to frontal, sensory-motor, parietal, 
temporal, and occipital regions. It was dissected by plac-
ing multiple seed regions within the cingulate white mat-
ter to ensure both long and short fiber components were 
incorporated.
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Inferior Fronto-occipital Fasciculus: The IFOF con-
nects the ventromedial occipital cortex to the frontal lobe. 
It runs between these regions within the internal capsule 
medial to the SLF and lateral to the optic radiation. It was 
dissected by placing a seed region within the occipital 
lobe and only including fibers running to the frontal lobe 
via the internal capsule.

Superior Fronto-occipital Fasciculus: The SFOF 
extends between the ventral occipital cortex and frontal 
lobe via a more medial course than the IFOF. It extends 
dorsal to the thalamus and then lateral to the caudate 
nucleus. It has been described in the canine by Muratoff 
(1893) who termed it the subcallosal fascicle (Muratoff, 
1893; Pascalau et al., 2016) It was dissected by placing 
seed regions in the occipital and frontal lobes and 
including pathways extending along dorsal aspect of 
the thalamus.

Inferior Longitudinal Fasciculus: This caudoventrally 
situated association pathway connects the ipsilateral 
occipital and temporal lobes, and is thought to partici-
pate in visual recognition. The tract was identified using 
seed regions placed in the occipital and ventral temporal 
regions.

Superior Longitudinal Fasciculus: This tract represents 
a series of long-range and short-range (arcuate) fibers 
that connect ipsilateral gyri within the cerebral hemi-
spheres. The tract is situated dorsally and lateral to the 
centrum semiovale. Here, this tract was identified using a 
single arcuate ROI placed within the dorsal aspect of 
temporal lobe on the dorsal plane.

Uncinate Fasciculus: The UF connects the frontal and 
temporal lobes. It was dissected by identifying fibers that 
ran between seed regions within the frontal and ventral 
temporal white matter. The tract has a lateralized location 
lying within the proreus gyral white matter. It has a similar 
course to that identified on white matter dissection 
(Pascalau et al., 2016).

3.2.3.  Commissural tracts

Corpus callosum: The corpus collosum is the largest 
commissural tract connecting cortical areas in the right 
and left hemispheres. Dissection was performed as pre-
viously described (Johnson, Barry, et al., 2019). A single 
seed region placed on the corpus callosum on the mid-
sagittal image was used to identify this pathway.

3.2.4.  Cerebellar tracts

Caudal cerebellar peduncle: The caudal cerebellar 
peduncle contains white matter pathways that extend 
between the cerebellum and dorsal spinal cord. It was 
dissected by placing seed regions over the caudal cere-

bellar peduncle and including only tracts that extended 
to the spinal cord.

Middle cerebellar peduncle: The middle cerebellar 
peduncle contains white matter pathways that extend 
from the cerebellum to the pons and mesencephalon. 
This pontocerebellar tract was dissected using a seed 
region placed over the middle cerebellar peduncle.

Rostral cerebellar peduncle: The rostral cerebellar 
peduncle contains white matter tracts that extend both to 
cerebral cortex via the thalamus and to the ventral spinal 
cord. These were dissected by placing seed regions over 
the rostral cerebellar peduncle and including tracts that 
extended to the level of the cerebral cortex.

3.3.  Generation of atlas schematics

The following schematics of the atlas were generated; 3D 
images are provided in Figure 2 (figure generated using 

Fig. 2.  3-dimentional render images of the regional white 
matter atlas. (A) ventral view, (B) dorsal view, (C) left lateral 
view. CC = Corpus Callosum, CCb = Caudal cerebellum, 
CCP = Caudal cerebellar peduncle, ES = Ectosylvian, 
EM = Ectomarginal, Fr = Frontal, Fx = Fornix, IC = Internal 
capsule, M = Marginal, MCP = Middle cerebellar peduncle, 
OP = Olfactory peduncle, OT = Optic tract, PC = pre-
cruciate, PoC = post-cruciate, R = Rectus, RC = Rostral 
commissure, S = Sylvian, cSS = Caudal Suprasylvian, 
rSS = Rostral Suprasylvian and TH = Temporal horn. Figure 
generated using MRIcroGL (64-bit OSX Cocoa).
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MRIcroGL (64-bit OSX Cocoa)), dorsal plane images are 
provided in Figures 3 and 4 and transverse plane images 
are provided in Figures  5 to 8 (figures generated with 
FSLeyes and Powerpoint).

4.  DISCUSSION

In this study, we have created a canine white matter atlas 
based on a population average template of 30 normal 
mesaticephalic dogs. This atlas was created via manual 

segmentation of white matter in accordance with previ-
ously published resources (Czeibert, Andics, et al., 2019; 
Fletcher & Saveraid, 2009; Pascalau et al., 2016) in order 
to create mask files that can be imported for use with 
other MRI studies. In addition, using deterministic trac-
tography we have characterized the location of major 
functional white matter tracts within the brain in living 
subjects. These files have been made available for down-
load so that they can be used by investigators for future 
canine neuroimaging research. This white matter atlas is 

Fig. 3.  Dorsal to ventral dorsal plane slices of the population average brain template from z-30 to z-15. In each section, 
the left hemisphere demonstrates the white matter regions on the T1-weighted population average template and the 
right hemisphere demonstrates the white matter tracts dissected from the population average tractogram overlain on the 
population average FA map. The key for all regions is provided in Figure 8.
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aligned with the previously published canine cortical 
atlas, in which cortical regions were mapped according 
to myeloarchitectonic parcellations (Johnson, Luh, et al., 
2020). Given the increasing reliance on canines in com-
parative studies of brain structure and function (Bunford 
et al., 2017; Dewey et al., 2020; Horschler & MacLean, 
2019) and the use of MRI for clinical diagnostic purposes, 
it is the hope of the authors that this atlas will provide a 
standard reference for canine white matter tracts.

Several atlases based on MRI imaging now exist for 
the canine brain in which T1-weighted images provide 
good resolution of and segmentation between grey and 
white matter in much of the brain (Czeibert, Baksa, et al., 
2019; Datta et  al., 2012; Fletcher & Saveraid, 2009). 
However, since axons from different pathways converge 
at various points within the brain, these atlases do not 
always distinguish separate axonal pathways. This is 
particularly the case in the brainstem, which conveys 

Fig. 4.  Dorsal to ventral dorsal plane slices of the population average brain template from z-5 to z-10. In each section, 
the left hemisphere demonstrates the white matter regions on the T1-weighted population average template and the 
right hemisphere demonstrates the white matter tracts dissected from the population average tractogram overlain on the 
population average FA map. The key for all regions is provided in Figure 8.
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numerous distinct pathways between the brain and spi-
nal cord important in motor initiation and feedback, and 
in which grey and white matter are indistinct. To delin-
eate specific white matter pathways, DTI has been used 
in conjunction with tractography techniques which help 
identify several distinct pathways (Anaya García et  al., 
2015; Berns et  al., 2015; Cook et  al., 2018; Jacqmot 
et al., 2013, 2017). These studies have provided valuable 
information in establishing the use of DTI in identifying 
functional white matter tracts. Our atlas extends these 
previous findings to examine functional white matter 

tracts in living subjects, and employs a larger population, 
thus limiting artifacts due to small sample size or post-
mortem changes. To date, several white matter atlases 
have been created using DTI for humans (Catani & 
Thiebaut de Schotten, 2008; Mori et  al., 2011; Oishi 
et al., 2008; Y. Zhang et al., 2010) and non-human pri-
mates (Calabrese et  al., 2015; Oishi et  al., 2011; 
Zakszewski et al., 2014), and similar atlases now exist 
for other species including feline (Johnson, Pascalau, 
et al., 2020), rodent (Harsan et al., 2010; Jiang & Johnson, 
2011), equine (Boucher et al., 2020), and ovine (Nitzsche 

Fig. 5.  Rostral to caudal transverse slices of the population average brain template from y-25 to y-10. In each section, 
the left hemisphere demonstrates the white matter regions on the T1-weighted population average template and the right 
hemisphere demonstrates the white matter tracts dissected from the population average tractogram. The atlas key is 
provided in Figure 8.
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et al., 2015; Pieri et al., 2019) brains. The generation of 
this canine brain atlas complements these studies and 
provides a comprehensive reference for comparative 
studies between canines and other species.

Comparative studies of white matter tracts demon-
strate significant differences in the organization of brains 
across species. Hecht et al. (2015) showed that connec-
tivity within frontal areas of the brain differs between 
humans and primates, such that in primates there was a 
larger connectivity with regions involved in motor plan-
ning, whereas pathways associated with executive func-
tions were more developed in humans. Similarly, 

comparisons of white matter tracts in dogs and cats have 
revealed that the limbic system occupies a greater por-
tion of the brain in cats, whereas frontoparietal connec-
tions present in dogs were not found in cats (Jacqmot 
et  al., 2017). These results have important implications 
for understanding structure-function relationships and for 
elucidating pathologies such as affective disorders that 
manifest differently across species. Consequently, these 
observations are important in considering animal models 
of disease in research.

Numerous studies in humans have now demon-
strated the utility of DTI tractography in mapping white 

Fig. 6.  Rostral to caudal transverse slices of the population average brain template from y-5 to y-10. In each section, 
the left hemisphere demonstrates the white matter regions on the T1-weighted population average template and the right 
hemisphere demonstrates the white matter tracts dissected from the population average tractogram. The atlas key is 
provided in Figure 8.



13

F.M. Inglis, P.A. Taylor, E.F. Andrews et al.	 Imaging Neuroscience, Volume 2, 2024

matter pathways in healthy and diseased brains. For 
example, DTI can be applied at various stages across 
the lifespan, from fetal to late adult life stages, to exam-
ine temporal and regional changes in functional white 
matter pathways (Lebel et al., 2012; Oishi et al., 2019). 
In humans, these studies demonstrate that white matter 
expands rapidly up to approximately 3  years of age, 
with continued growth of many tracts into early adult-
hood. In contrast, grey matter volume decreases after 
the age of 5 (Lebel & Deoni, 2018). These studies also 
demonstrate that individual white matter tracts differ in 
their rate of development, such that more caudal regions 

of white matter reach maximal fractional anisotropy 
before those lying rostrally (Lebel et al., 2012). In chil-
dren, fractional anisotropy has been shown to correlate 
with reading ability (Deutsch et  al., 2005). With age, 
fractional anisotropy decreases more rapidly in white 
matter tracts in frontal areas of the human brain involved 
in executive planning and reasoning, consistent with 
decline in executive functions that accompanies normal 
aging (Gunning-Dixon et  al., 2009; Lebel et  al., 2010; 
O’Sullivan et al., 2001; Ota & Shah, 2022). Patients with 
Alzheimer’s disease, a disease diagnosed on the basis 
of early or severe cognitive decline, display consistent 

Fig. 7.  Rostral to caudal transverse slices of the population average brain template from y-15 to y-30. In each section, 
the left hemisphere demonstrates the white matter regions on the T1-weighted population average template and the right 
hemisphere demonstrates the white matter tracts dissected from the population average tractogram. The atlas key is 
provided in Figure 8.
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decline in volume and FA of white matter supplying fron-
totemporal and limbic regions (Chen et al., 2023; Talwar 
et al., 2021), and some evidence suggests that decline 
in FA values precedes anatomic loss of white matter, 
giving weight to DTI as a promising tool to identify indi-
viduals most at risk for decline (Hugenschmidt et  al., 
2008). Canines display similar cognitive decline with 
age, and similar histopathological changes within the 
brain (Head, 2013). Recently, DTI-based studies of white 
matter in aged canines revealed, as in humans, that 
these animals have reduced fractional anisotropy in 
frontotemporal brain regions associated with executive 
functions (Barry et  al., 2021). Analogous to humans, 

canines can suffer from dementia as they age (Dewey 
et al., 2019; Head, 2013), positioning dogs as promising 
clinical models for Alzheimer’s disease.

Canines suffer from several other neurological dis-
eases in line with human counterparts, including epilepsy 
(Charalambous et al., 2023; Löscher, 2022), degenerative 
diseases (Coates & Wininger, 2010; Story et  al., 2020), 
dyskinesias (Urkasemsin & Olby, 2014), neoplasia (Hicks 
et al., 2017; A. D. Miller et al., 2019), and inflammatory 
diseases (Cornelis et  al., 2019), and these similarities 
cement their place as naturally-occurring pre-clinical 
models for human disease. For many neurological dis-
eases, DTI has provided insights into changes that occur 

Fig. 8.  Rostral to caudal transverse slices of the population average brain template from y-35 to y-45. In each section, 
the left hemisphere demonstrates the white matter regions on the T1-weighted population average template and the right 
hemisphere demonstrates the white matter tracts dissected from the population average tractogram. The atlas key is 
provided in the bottom right of the figure and relates to Figures 3–8.
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in white matter pathways, permitting structure-function 
relationships to be established. DTI studies are also use-
ful in drawing comparisons between human and canine 
neurological disease. Developmental abnormalities of the 
corpus callosum, for example, which constitute common 
malformations of the human brain, are associated with 
neurodevelopmental delay (Probst, 1901; Rakic & 
Yakovlev, 1968; Sztriha, 2005). In these patients, DTI 
studies indicate reduced densities of interhemispheric 
fibers, and instead, aberrant, long-range pathways, 
named “Probst bundles,” that remain in one hemisphere 
(Bénézit et al., 2015; Yeon Kim et al., 2004). Corpus cal-
losal abnormalities are also detected in canines 
(Gonçalves et al., 2014), and DTI imaging of canine cor-
pus callosum agenesis has indicated similarly few inter-
hemispheric fibers, with large numbers of Probst bundles 
(Johnson, Barry, et al., 2019; Wang-Leandro et al., 2018).

Canine degenerative myelopathy, a disease consid-
ered analogous to amyotrophic lateral sclerosis (ALS) in 
humans, is characterized by loss of motor neurons, 
resulting in progressive general proprioceptive ataxia and 
paresis, progressing to plegia (Coates & Wininger, 2010; 
Nardone et al., 2016). In both the canine disease and a 
familial form of the human disease, genetic mutations of 
the superoxide dismutase I (SOD1) gene have been iso-
lated (Awano et  al., 2009; Boillée et  al., 2006). These 
mutations have been associated with a mutant, gain-of-
function enzyme that leads to protein mis-folding, aggre-
gate deposition, and loss of neuronal integrity in human 
patients (Boillée et  al., 2006). In both species, DTI has 
demonstrated reduced fractional anisotropy within the 
spinal cord (Johnson et al., 2021; Nair et al., 2010) find-
ings consistent with loss of axonal load. These studies 
highlight the use of fractional anisotropy and DTI in 
assessing in vivo changes in white matter function that 
may facilitate disease staging and prognosis, and empha-
size the utility of canines in modeling human disease.

DTI is also used in humans for surgical planning to 
remove brain tumors (Costabile et al., 2019; Henderson 
et al., 2020) and epileptic foci (Sivakanthan et al., 2016; 
Yogarajah & Duncan, 2008) to avoid neuronal connec-
tions critical for cognitive functions such as language and 
reasoning, underscoring the clinical potential for DTI as a 
non-invasive method for assessing white matter function 
in situ. While this approach has not been used for canines, 
the disease processes are similar. The rate of epilepsy in 
humans and dogs is similar, and these species are prone 
to refractory disease at similar rates (Charalambous et al., 
2023; Löscher, 2022). Studies of glioma in canines have 
found genetic similarities with human patients (Amin 
et al., 2020). Therefore, canines are an ideal species for 
comparative studies of white matter function and pathol-
ogy in the human counterpart.

DTI has also been used to investigate previously 
unidentified pathways. Using a seed function to delineate 
white matter passing through specific regions of brain, 
long-range functional pathways may be identified that 
are not easily discerned in studies of white matter dissec-
tion in cadavers. Recently, DTI has been employed in 
canines to identify an extensive complex of pathways 
between the olfactory bulb and other brain regions, 
including hitherto undescribed connections to the occip-
ital lobe (Andrews et al., 2022). Given increased interest 
employing canines to detect various health disorders 
such as SARS-CoV2 (Jendrny et al., 2021), these results 
provide a foundation for screening dogs to identify those 
animals most suitable to perform olfactory-based tasks.

While our atlas was generated with reference to sev-
eral other published sources incorporating gross dissec-
tion techniques, histology and imaging, borders between 
adjacent white matter regions are poorly defined. To facil-
itate comparative studies, we have attempted, where 
possible, to use similar borders and nomenclature to 
those used in other atlases (Mori et al., 2011; Zakszewski 
et al., 2014). However arbitrary borders between struc-
tures do not necessarily represent functionally discrete 
regions: for example, the corona radiata, internal cap-
sule, and cerebral peduncles represent a continuous 
white matter pathway in which several tracts are com-
bined. To help delineate these various pathways, we 
employed deterministic tractography to identify estab-
lished white matter tracts. In doing so, this atlas does not 
identify novel tracts, and therefore is not an exhaustive 
list of functional connectivity within the brain.

Another limitation of this atlas is that the spatial reso-
lution is limited by a voxel size of 1.5 mm3. Since deter-
ministic tractography depends on creating tensors from 
eigenvectors within a single voxel, regions containing 
compact, small, non-myelinated fibers with various ori-
entations may not be differentiated accurately due to vol-
ume averaging artifact. While the use of a sizeable 
population may minimize such error, studies of gyral 
white matter in humans indicate low fractional anisotropy 
within the corona radiata and centrum semiovale (Brander 
et al., 2010; Hakulinen et al., 2012). Similarly, in our atlas, 
fractional anisotropy within the gyral white matter fre-
quently corresponded to only a portion of the white mat-
ter identified in the population average T1w template. 
Accordingly, variability in the size and direction of local 
axonal connections within individual gyri, in which small, 
unmyelinated fibers are numerous, may create incongru-
ities in calculated fractional anisotropy. For this atlas we 
elected to use fractional anisotropy to identify individual 
gyral white matter initially, and to use the T1w template to 
complete the manual segmentations for each gyral mask. 
A significant limitation of deterministic tractography is the 
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inability to resolve pathways where there is significant 
crossing of axon bundles, or to distinguish between 
axons that cross and those that converge but stay sepa-
rate (so-called “kissing” artifact) (Dell’Acqua & Tournier, 
2019). As a result, while the individual masks are anatom-
ically correct for each gyrus, functional pathways within 
in gyral white matter remain difficult to quantify, and false 
negatives are possible. Therefore, an important consider-
ation within these studies is that absence of a discern-
able white matter tract in DTI tractography does not 
necessarily imply that none exists. In addition, since the 
detection of white matter pathways depends on the 
degree of diffusivity in each voxel, smaller fiber tracts 
within the vicinity may be masked by larger fiber tracts 
with greater fractional anisotropy, and therefore remain 
undetected. Further, in regions where fractional anisot-
ropy is low, models of best fit may result in false posi-
tives. Notwithstanding these limitations, tractography 
has advantages over previous histologic methods that 
required invasive interventions and processing post-
mortem specimens, where fibers of passage may be 
incorrectly identified as a source of innervation for a par-
ticular region of interest (Gorbachevskaya, 2014; Sakai 
et al., 1993). Future work could consider utilizing post-
mortem brain imaging where prolonged acquisition times 
allow for ultra-high resolution DTI data acquisition (Berns 
et al., 2015; Cook et al., 2018; K. L. Miller et al., 2012).

In summary, we have developed a detailed white mat-
ter atlas of the canine brain based on a T1w population 
average template, using DTI to manually delineate white 
matter tracts. In addition, individual projection pathways 
were identified using tractography. This atlas provides a 
basis for future studies in comparative anatomy and neu-
rological disease. This atlas allows for the addition of 
novel tracts and refined masks as new findings arise. It is 
anticipated that these tract files and manual segmenta-
tions will facilitate interpretation of quantitative studies of 
white matter tracts in clinical and research settings.
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