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Abstract

Immune effector cell (IEC) therapy is emerging as a promising approach in the field of cancer 

immunotherapy. Clinical IEC trials, predominantly using chimeric antigen receptor (CAR) T cells, 

have shown excellent responses in CD19+ B cell malignancies and multiple myeloma. In solid 

tumors, preclinical data are encouraging, but clinical data are in their infancy, and there are 

challenges in using CAR T therapy in this setting, including (1) on-target off-tumor toxicity, (2) 

optimal target identification, (3) effective trafficking into bulky tumor tissue, and (4) resistance to 

tumor immune evasion mechanisms.

Novel techniques and modifications are being explored in both the preclinical and clinical settings, 

aiming to improve treatment efficacy and address the aforementioned obstacles to successful CAR 

T therapy in solid tumors. Here we review these challenges in a clinically oriented approach and 

summarize published clinical trials using CAR T therapy in a variety of solid tumors.
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INTRODUCTION

Over the past few years, adoptive cell therapy, also known as immune effector cell (IEC) 

therapy [1], has emerged as a leading technology, providing precise, immune-mediated 
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antigen-directed therapy against cancer. Broadly, cellular immunotherapy strategies include 

tumor-infiltrating lymphocytes (TILs), activated tumor- and viral-specific T cells, and 

genetically modified T cell receptor (TCR) and chimeric antigen receptor (CAR) T cells. 

CAR T cells are an effective directed therapy, recently translated from the research phase of 

development to commercially available products for hematologic malignancies. Solid tumors 

are less susceptible than hematologic cancers to the classic CAR T cell therapy, and novel 

technologies are emerging to improve the efficacy of IEC in solid tumors.

CAR T cells are genetically modified autologous or allogeneic T cells, transfected with 

an engineered viral vector or electroporated with a plasmid that introduces a construct 

coding for a CAR into the T cell’s DNA [2]. On target recognition, the receptor activates 

the T cell’s cytotoxic capabilities while bypassing the costimulatory mechanisms that 

often inhibit the immune system’s killing of tumor cells [3]. The extracellular portion 

of the CAR is often composed of a single-chain variable fragment (scFv) of an antibody

—the antigen recognition domain—that specifically targets the desired tumor-associated 

antigen (TAA). Other CAR constructs may include other antigen-recognition domains, 

with modified affinity to the target antigens, or targeting a spectrum of related antigens. 

CARs evolved from first-generation constructs that contained only the intracellular CD3 ζ 
moiety of the T cells, which activates the T cells through the antigen-recognition signaling 

pathway. However, T cells modified with first-generation CARs displayed limited in vivo 

proliferation and persistence [4]. Consequently, second-generation CARs were designed 

that added the CD28 or 4–1BB costimulatory domain into the construct, resulting in 

significantly improved in vivo CAR T proliferation and persistence and eventually leading 

to the Food and Drug Administration approval of second-generation CAR T cell therapy 

for leukemia and lymphoma [5–9]. Combining both CD28 and 4–1BB costimulatory 

domains into a third-generation CAR showed better expansion and longer persistence 

when infused simultaneously with second-generation CARs [10]. Although 1 patient death 

was reported with a third-generation CAR targeting erythroblastosis oncogene B (ERBB2) 

in solid tumors, presumably due to antigen recognition in the healthy lung tissue and 

a rapid cytokine storm [11], other third-generation CAR studies (mostly in hematologic 

malignancies) did not result in any patient mortality [12]. Further developments and 

modifications are being introduced to enhance CAR T activity while recognizing the need to 

avoid T cell exhaustion (Figure 1) [13].

CAR T cell therapy has been more challenging for solid tumors than for hematologic 

malignancies. Emerging reports are showing lower response rates and few long-term 

remissions in preliminary IEC trials in solid tumors (Table 1) [14,15]. It appears that 

solid tumors pose more challenges and obstacles to the immune response, exhibiting 

tumor immune evasion, a hostile tumor microenvironment, and off-target toxicity due to 

less-specific tumor antigens. Numerous clinical trials of CARs and their efficacy in solid 

tumors are currently underway [16].

Most CAR T trials target disease-specific antigens (Table 2), whereas others are aimed at 

a larger group of diseases with a shared tumor antigen (Table 3) [17]. Many of the CAR 

trials use enhanced CAR constructs that incorporate mechanisms for improved persistence, 

efficacy, or safety of the therapy. Finally, some trials use preselected T cells already 
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specialized in viral recognition, which may be more cytotoxic when reprogrammed to target 

cancer cells.

In this review, we focus on CAR T cell therapy for solid tumors and briefly touch on other 

cellular therapies currently under development. We report the results of recently published 

trials, review the present challenges to this therapy, and discuss the current efforts underway 

to mitigate barriers to successful therapies.

CURRENT CHALLENGES OF CAR T CELL THERAPY IN SOLID TUMORS

Immune-Mediated Toxicity and Off-Tumor Effects

The limited clinical benefit of IEC therapy in solid tumors thus far stems from inherent 

difficulties, related both to the tumor biology itself, as well as to the tumor’s interaction 

with the immune system (Figure 2). In addition to tumor-related obstacles to successful 

IEC therapy, the toxicity of the treatment poses a risk to patients. IEC therapy has been 

associated with severe toxicity in hematologic malignancies, manifesting mostly as cytokine 

release syndrome (CRS) and/or immune effector cell-associated neurotoxicity syndrome 

(ICANS). However, only mild CRS and rare ICANS have been reported thus far in early, 

small series of IEC trials for solid tumors [18,19]. Distinguishing local, tumor-mediated 

toxicity from CRS may be challenging, complicating management.

At times it may be more difficult to find a suitable target in solid tumors, as many of the 

tumor antigens are also present in healthy tissue. IEC directed at tumor antigens may present 

on-target off-tumor toxicity—that is, the targeting of antigens in healthy tissues that bear 

similarity to the tumor antigen. Serious off-tumor toxicities have been observed in solid 

tumors. In a study of CAR therapy targeting the carbonic anhydrase IX (CAIX) antigen in 

renal cell carcinoma, some patients developed severe liver toxicity, and a liver biopsy from 

1 patient showed bile duct inflammation, likely caused by effector cells attacking healthy 

hepatic tissue expressing CAIX [20]. Another report described an immediate and fatal CRS 

reaction in a patient treated for lung cancer with a CAR targeting ERBB2, thought to be 

mediated by cytokine release owing to off-tumor target recognition in the patient’s lungs 

[11]. In a series of 9 patients treated with TCR-modified T cells targeting melanoma antigen 

gene (MAGE)-A3, 3 patients developed severe neurotoxicity, and 2 eventually succumbed 

to the neurologic damage. After further investigation using qRT-PCR and other methods 

on brain tissue samples, it was postulated that the toxicity was due to the presence of 

previously unrecognized MAGE family antigens expressed in the brain [21]. In a trial using 

an affinity-enhanced TCR against MAGE-A3 in patients with myeloma and melanoma, 2 

patients had fatal cardiac toxicity caused by the T cells attacking titin, a protein found 

in cardiac myocytes that cross-reacts with MAGE-A3 [22]. The unexpected targeting of 

healthy tissues, which cannot always be detected in preclinical animal models underscores 

the challenge of identifying safe targets.

Tumor Target Identification—Finding a suitable target for T cell therapy is challenging 

in solid tumors, not only due to off-tumor effects, but also due to the intrinsic tumor 

biology. One approach is targeting TAAs that are produced by the cancer cells and not 

expressed by other healthy cells (Tables 2 and 3). These antigens are produced in cancer 
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cells as a consequence of mutations formed during carcinogenesis causing formation of 

neoantigens (eg, KRAS mutations), or by viral oncogenes coding for viral proteins presented 

by the tumor cells (eg, E6 and E7 in human papillomavirus-associated tumors). Another 

mechanism for TAA formation is the abnormal transcription of silenced genes, such as 

MAGE antigens [23] and α-fetoprotein [24]. In addition, tumor-infiltrating T cells mount 

an immune response against these antigens, thus demonstrating their immunogenicity [25]. 

In a phase 1 study of 10 patients treated with CAR T cells directed at carcinoembryonic 

antigen (CEA), an antigen present in colorectal cancer cells, 2 patients had a partial response 

(PR) and 7 patients had stable disease (SD) [14]. In contrast, another study using a CAR 

aimed at CEA showed no clinical improvement, possibly owing to poor persistence of 

the CAR T cells [15]. ERBB2, also known as human epidermal growth factor receptor 2 

(HER-2), is often expressed by pancreatic and biliary cancers and was targeted in a phase 

1 CAR study, with 6 of 11 patients achieving PR or SD [26]. Another study testing a CAR 

targeting HER-2 in sarcoma achieved SD in 4 of 17 patients, lasting between 12 weeks 

and 14 months [27]. Finally, cytomegalovirus-specific cytotoxic T cells from patients with 

glioblastoma were transfected with a construct coding for a HER-2 CAR; among 15 patients 

treated, 5 demonstrated SD or a PR. Notably, these responses were durable, and 3 of these 

patients were reported to be alive at 18 months or longer postinfusion [28]. In a study 

of 11 patients treated with a CAR targeting the Claudin18.2 antigen, found in gastric and 

pancreatic cancers, 1 patient achieved a complete response (CR), 3 patients achieved a PR, 

and 5 patients had SD, with a median progression-free survival of 130 days [29].

Targeting tumor antigens can be further complicated by the fact that tumor cells often 

demonstrate intratumor heterogeneity in the expression of tumor-specific antigens [30]. 

These differences can sometimes be a phenotypic manifestation of subclones formed 

through mutations within the cancerous cells, due to either genetic instability or external 

pressure, resulting in loss of the target antigen. This has been noted following CD19-directed 

CAR T therapy in hematologic tumors [5] and in solid tumors, such as an epidermal 

growth factor receptor variant 3 (EGFRvIII) targeting CAR in glioblastomas [18]. In 

that study, 7 of the treated patients later underwent surgical tumor resection, and in 5 

surgical specimens EGFRvIII antigen loss or decline in level of expression was observed. 

Moreover, some preclinical data show CAR T cells to be active only above a certain antigen 

density threshold, possibly deeming a heterogeneously expressing tumor cell population 

partially resistant to their effect [31]. In that study, approximately 200 antigen molecules 

per malignant cell were needed for lytic activity, whereas cytokine production by the T 

cells was achieved with an antigen density of approximately 2000 antigen molecules per 

cell. A study of EGFR expression on glioblastoma cells showed significant differences in 

expression levels before and after administration of chemotherapy [32], raising the question 

of the correct timing of cellular therapy after previous lines of treatment. Thus, the ideal 

target should be tumor-specific and uniformly expressed at a sufficient antigen density.

Finally, the TAA should be expressed on the tumor cell surface for optimal CAR T 

engagement. Although some cancer cell surface proteins are distinct and can serve as an 

identifiable target, other tumor-related proteins are mostly intracellular, and sometimes 

only displayed after cleavage inside the cell by major histocompatibility complex 

(MHC) molecules, making them “invisible” to chimeric receptors. The ability to identify 
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intracellular proteins displayed only by MHC molecules may greatly enhance the IEC 

strategy.

Tumor Microenvironment and Cell Trafficking—Other factors that impair the immune 

response to IEC are inherent to the tumor microenvironment. Solid tumors often grow to 

a relatively large bulk. Some of the tumor regions feature harsh physiological conditions, 

impeding an effective immune reaction. Areas of necrosis impair immune cell growth 

and expansion, whereas the lack of sufficient blood supply makes the microenvironment 

hostile due to changes in pH, electrolytes, and, importantly, cytokines [33]. Oxygen 

levels are often markedly lower in tumors than in surrounding heathy tissue, yet during 

the initial T cell response, the cells adapt to such conditions with glycolysis, a non-

oxygen-dependent metabolic pathway. However, if the microenvironment has persistent 

unfavorable conditions, T cells may become exhausted with mitochondrial dysfunction and 

up-regulated coinhibitory molecules which prevent their continued antitumor activity [34]. 

These conditions can also interfere with paracrine signaling to other cells that are required 

for efficient immune reactivity [35].

Likewise, tumor bulk and metastases, at times with relatively decreased blood supply, can 

impair the T cells’ ability to migrate into the tumor. In a study of the mechanisms driving the 

trafficking of effector cells into tumors, a lack of CD103+ dendritic cells reduced trafficking 

of immune cells, resulting in insufficient immune cell invasion and tumor immune escape 

[36].

Immune Evasion and Graft Rejection—Another obstacle hindering an effective 

immune response to effector cells is the tumor’s ability to evade the immune attack. T 

cells and other immune cells can infiltrate the tumor and even express specificity to the 

antigens on tumor cells, yet they may not display cytotoxic activity against them and are 

often dormant due to mechanisms blocking their activation. A study looking at CAR T 

cells targeting a surface receptor in triple-negative breast cancer found that after T cell 

expansion, there was an increase in inhibitory receptors on the cell surface [37]. These 

blocking mechanisms involve the Programmed Death 1 (PD1)-PD-L1 checkpoint pathway 

that is up-regulated in tumor cells and its interaction with T cells, as well as other immune-

mediated tumor evasion mechanisms, such as TGF-β signaling [38]. Pancreatic cancer cells, 

for instance, produce IL-4, an inhibitory cytokine that interferes with immune surveillance 

while acting as a growth factor for tumor cells [39].

Similarly, the patients’ own immune system can attack the effector cells, causing graft 

rejection or cell inhibition via antibody production, effectively blocking the cells’ immune 

activity. This can be especially frequent for effector cells bearing chimeric receptors, 

specifically the murine scFv component. These are not recognized by the immune system 

as self and thus may stimulate an immune response against the effector cells. In a CAR T 

phase 1 study, T cells targeting mesothelin had good cell expansion but poor persistence, 

and anti-CAR antibodies were detected in 8 of 14 patients [19]. In another study, a CAR 

targeting tumor-associated glycoprotein (TAG)-72 in patients with liver cancer did not 

produce responses, and an antibody targeting the TAG-72-binding domain of the CAR was 
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found in the patients’ blood [40]. Thus, immune rejection of the cells is also a potential 

limitation for allogeneic effector cells.

NOVEL STRATEGIES IN IEC THERAPY TO IMPROVE SOLID TUMOR 

RESPONSE

Owing to the somewhat discouraging results reported in preliminary studies of CAR T 

cell therapy for solid tumors, other trials are trying to mitigate some of the challenges and 

obstacles discussed above. Novel constructs, sometimes referred to as “next-generation” 

CAR T cells, include mechanisms to enhance cell activity or to mitigate factors that impair 

cell activity. These include genes coding for cytokines or cytokine receptors, which improve 

expansion and persistence. Other additions to CAR T cells target immune checkpoints, with 

blockade of immune inhibition or enhancement of immune interactions as mechanisms built 

into the CAR constructs. Although these novel constructs are mostly in preclinical stages of 

development, they appear to hold substantial promise for improving CAR T cell therapy in 

solid tumors. We present some preliminary clinical data below.

Other improvements, such as new modes of delivery and systemic adjuncts to IEC, are being 

explored as ways to improve the safety of treatment, as well as enhance the response to 

treatment and overcome the obstacles hindering T cell activity (Figure 2). Different IEC 

modalities, such as TCR-engineered T cells, are being developed in an effort to better target 

TAAs and improve the immune response against the tumors.

Toxicity Management: Suicide Genes and Conditional Activation

The main toxicities of CAR T therapy in hematologic malignancies, CRS and ICANS, are 

usually not observed with solid tumor IEC. The harmful and sometimes fatal complications 

of IEC, especially if arising from on-target off-tumor toxicity, have driven the development 

of novel CAR T designs incorporating “suicide genes” that can be triggered to immediately 

stop the cytotoxic activity and cause CAR T cell apoptosis. For example, a CAR directed 

at mesothelin had a I-caspase-9 safety gene incorporated in the construct, allowing for 

caspase-induced apoptosis in the event of severe toxicity [41]. Another method for T cell 

elimination is to include a truncated non-functioning receptor, such as EGFRt, that can be 

targeted with monoclonal antibodies administered in cases of toxicity [42]. Thus far, these 

techniques have yet to be used in a clinical setting, due to a lack of life-threatening toxicity.

Because CAR T cells can potentially cause prolonged suppression of cells bearing a targeted 

antigen, some have tried to avoid incorporating the construct into the DNA by having the 

cells transiently express the chimeric receptors. In a study using mRNA molecules, CARs 

directed at mesothelin were produced in T cells without viral transfection into the DNA. 

Multiple infusions were required owing to the short duration of cell persistence, and 2 out 

of 6 patients showed a stable disease response [43]. In another study, anti-GD2 monoclonal 

antibodies were chemically conjugated to autologous T cells and administered as 8 biweekly 

infusions. Three of 12 patients in this dose escalation study showed a response, with 1 

patient in CR more than 2 years after the treatment [44].
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Studies are currently underway to refine the control of T cell activity and proliferation using 

conditional activation, thus improving its safety. Some constructs have “on-switches,” in 

which a molecule given after the infusion of the cells triggers the cells to produce cytokines, 

proliferate, and activate. In a study targeting prostate stem cell antigen (PSCA), the construct 

included a rimiducin-inducible coactivation switch [45]. Seven days after cell infusion, in 

the absence of major toxicity, a single dose of rimiducin was administered, which caused 

the dimerization of a costimulatory domain, resulting in further expansion and persistence of 

the T cells. In a preliminary phase 1 dose expansion study, patients with PSCA-expressing 

tumors (mainly pancreatic, gastric, and prostate cancers) received PSCA-directed CAR T 

cells with a rimiducin coactivation domain. The best responses observed were SD in 8 out of 

15 patients. Four of the patients remained free of further treatment for up to 30.1 weeks [45].

Some researchers have proposed preclinical models using tumor microenvironment factors 

as conditional “on-switches” for T cell activation, enhancing their activation within the 

tumor and limiting off-tumor toxicity. For instance, a preclinical model of a conditional 

activation CAR was designed to activate only in the low-pH tumor microenvironment, where 

a conformational change in the receptor renders it active [46].

Improved Tumor and Stem Cell Antigen Recognition and Targeting

Tumor heterogeneity, in both antigen expression and variation due to antigenic shift, 

presents another challenge to the efficacy of CAR T cells in solid tumors. Some investigators 

have constructed CARs that can target a range of closely related antigens, and others have 

designed CARs that target more than 1 defined antigen in an effort to maintain activity 

even in the case of antigen loss [47]. A preclinical model proposed low-dose radiation as a 

modality to presensitize tumor cells to immune clearance by effector cells [48].

Some have proposed using natural killer (NK) cells to attack cancer cells missing MHC 

domains, which are less dependent on a specific antigen and more dependent on the aberrant 

MHC expression of the tumor [49]. Preclinical data also hint at the possibility that NK 

cells may be able to target cancer stem cells, thereby preventing relapse and cancer spread 

[50]. Importantly, because NK cells do not recognize MHC and can be obtained from an 

allogeneic source, they can be offered as an “off-the-shelf” drug avoiding the burden of 

producing autologous product [51].

A study of CAR T cells aimed at CD133 expressed on stem cells of epithelial cancers did 

not show a reduction in tumor size but did seem to stabilize the disease, with a progression-

free survival of 8 to 22 weeks [52].

TCR-Modified T Cell Therapy

CAR T cells can only detect antigens present on cell surfaces, and CARs often target 

cluster-of-differentiation molecules or receptors displayed on the cells. However, many of 

the aberrant cancer proteins are intracellular and expressed within the MHC complex only 

after proteasome cleavage inside the cells. Unlike the interaction of CAR T cells with the 

target cells, which involves the receptor’s scFv domain, TCR-engineered T cells interact 

with their target through the more physiological peptide-MHC complex formed by the 

target cell (Figure 1). Because cancer-specific proteins are formed in tumor cells, they are 
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presented by this cell as part of the MHC complex; however, the patient’s cytotoxic T cells 

fail to recognize them. Through transfection of the patient’s T cells with a constructed TCR 

with high affinity to the specific cancer-associated peptide-MHC complex, the engineered 

T cells recognize and activate against tumor cells. Thus, TCR therapies can target both cell 

surface and intracellular TAAs. It is important to note, however, that these cells are restricted 

to the specific HLA subtype that comprises the patient’s MHC molecules.

T cells transfected with a construct coding for a TCR identifying these MHC-peptide 

complexes have been generated, and preliminary TCR clinical trials are currently in progress 

[53,54]. For instance, cells bearing an engineered TCR recognizing MAGE-A3 was given 

in a dose-escalation study. One patient in the dose- escalation cohort had a CR lasting 29 

months, and 3 patients out of a 9-patient cohort receiving the full dose had a PR, 1 of 

which lasted more than 19 months [55]. A clinical phase 1 study used a vector that also 

coded for small interfering RNA production, silencing the endogenous TCR [56]. Silencing 

of the native TCR promotes improves the efficacy of the cells and avoids T cell receptor 

mismatching between the novel TCR and native TCRs in an effort to avoid autoimmune 

toxicity. In a study of 9 patients with endometrial cancer (n = 1), ovarian cancer (n = 1), 

melanoma (n = 3), or synovial sarcoma (n = 4) receiving TCR- modified cells targeting 

NY-ESO-1, 2 patients achieved a PR and 5 patients had SD [57]. A novel mechanism to 

silence the native TCR using the CRISPR CAS 9 editing system was recently introduced 

in a preclinical model. It has shown higher TCR antigen affinity than TCR-transduced cells 

without deletion of the native TCR [58].

TILs and Unconventional T Cells

TILs are one of the first adoptive cell therapies and have shown efficacy in solid tumors, 

especially melanoma [59,60]. TILs are isolated from tumors, ex vivo expanded, and returned 

to the patient after lymphodepleting chemotherapy. Because these cells are already partially 

primed against the tumor, their stimulation, usually with IL-2, leads to greater activity 

against the tumor. Recently, this modality has been explored in combination with checkpoint 

inhibition, with some patients experiencing prolonged responses [61].

Other T cells, termed unconventional T cells, are known to attack cancer cells. Unlike 

conventional T cells, whose TCR recognizes peptide-MHC complexes, unconventional T 

cells recognize other molecules on target cells, and some, such as mucosal-associated 

invariant T cells, have been shown to recognize and kill tumor cells [62]. Recently, a subtype 

of unconventional T cells recognizing MHC-related-protein 1 (MR1) has been shown to 

target many types of cancer cells, sparing cells from healthy tissues, and adoptive transfer 

of these cells’ TCR to naïve T cells grants them activity against tumor cells [63]. However, 

the exact peptide presented on the MR1 target is not yet known. These novel mechanisms of 

tumor immune targeting can lead to innovative therapeutic strategies, harnessing the immune 

system’s ability to recognize and kill cancer cells.

Tumor Microenvironment and Cell Trafficking

Direct infusion of modified T cells into the tumor cavity, or into involved body cavities for 

pleural malignancies, has been performed in an effort to achieve direct cell migration to the 
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tumor [41,64]. In a reported case of a patient with gastric cancer, 7-methylguanosine (MG7)-

directed CAR T cells were administered both systematically and into different metastatic 

sites, with more than 80% of the tumor mass in the metastases undergoing necrosis after 40 

days of treatment [65]. In a case report of a patient with metastatic glioblastoma, CAR T 

cells aimed at IL-13Rα2 were injected directly into the tumor cavity and cerebral ventricles, 

after which the investigators noted a significant reduction in tumor size and improvement 

in the patient’s clinical condition that persisted for longer than 7 months [66]. However, 

other patients showed only transient responses to this therapy, and pretreatment and post-

treatment biopsy specimens showed reduced expression of the target antigen [67]. CAR T 

cells injected directly into the hepatic artery, followed by local radiation, caused shrinkage 

of CEA-positive liver metastases, with a prolonged CR of >30 months in 1 patient [68]. 

However, in a study of 18 patients with glioblastoma, targeting the glioblastoma deletion 

variant of the EGFRvIII via direct injection into the tumor did not produce a clinical benefit 

[69].

Further strategies to circumvent the hostile tumor microenvironment include “fourth-

generation” CAR T cells that produce interleukins and other cytokines that enhance T cell 

proliferation and trafficking [13,70]. These novel constructs, also called TRUCK T cells (“T 

cells redirected for antigen–unrestricted cytokine–initiated killing”) produce cytokines only 

on CAR activation, thus directing their effect on the tumor environment and avoiding the 

adverse effects of systemic cytokine therapy. Through production of cytokines like IL–7, 

IL–12, IL–15, and IL–18, they can enhance their own activity with autocrine signaling 

and recruit more immune cells for a more robust paracrine response [71]. Other CAR T 

constructs target stromal elements found in the tumor microenvironment and lead indirectly 

to tumor shrinkage [72].

Immune Evasion and Graft Rejection

To mitigate graft rejection, it is now common practice to administer lymphodepleting 

chemotherapy before cell infusion, reducing the immune rejection of the cells and 

prolonging their persistence. A study of PSCA-targeted CAR T cells showed improved 

persistence and expansion after fludarabine and cyclophosphamide lymphodepletion versus 

cyclophosphamide alone, and this regimen is being increasingly used in solid tumors, 

although the optimal dosage and administration schedule remain to be determined [45].

Tumor immune evasion is being addressed in clinical trials of strategies to disrupt the 

mechanisms leading to inefficient immune responses. The use of PD-1 pathway inhibitors 

was evaluated in a CAR T cell trial targeting GD2 on neuroblastoma cells, which found 

that PD-1 blockade did not increase cell expansion or persistence [73]. However, in a recent 

study investigating a CAR construct targeting mesothelin and containing I-caspase-9, a 

cohort of 14 patients received a PD-1 inhibitor after the CAR T cell therapy. Of the 14 

patients receiving both CAR T cells and anti-PD-1, 2 patients achieved a CR as the best 

response, 5 had a PR, and 4 had SD [41]. A preclinical model has proposed gene editing 

to delete PD-1 molecules from the CAR T cells, making them resistant to PD-1-mediated 

blockade [74]. A phase 1 study using a CAR targeting Mucin-1 with a PD-1 truncated 

peptide found SD in 9 of 13 enrolled patients [75].
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Other immune evasion mechanisms involving immune suppressing cytokines are also being 

explored as in the setting of IEC [13]. A CAR construct blocking the transforming growth 

factor β (TGF-β) pathway is currently being tested in a study with PSCA-directed CAR T 

cells [76], and another trial is recruiting patients with glypican 3 (GPC3)-positive tumors, 

where the CAR construct also includes IL-15 and IL-21 coexpression [77]. Whereas 

pancreatic tumors were associated with IL-4 elevation, repressing the immune reaction, a 

CAR was constructed to also code for a receptor with an IL-4 exodomain and an IL-7 

endodomain. Thus, exposure to IL-4 causes CAR T cell expansion in response to elevated 

IL-4 levels, instead of the usual immune repression [39,64]. In this study, besides the IL-4-

responsive receptor, the CAR T cells were constructed to target a variety of ERBB antigens, 

thus minimizing the possibility of cells escaping due to heterogeneous antigen expression. 

Furthermore, to enhance direct trafficking of cells to the tumors or the metastases, the cells 

were injected directly into the tumor. Disease control, with stable disease, was achieved in 

69% of the cases [64].

FUTURE DIRECTIONS IN SOLID TUMOR IEC THERAPY

Numerous preclinical and early-phase trials of CAR T therapy for solid tumor malignancies 

are currently underway. As described above, the “classic” CAR construct used in 

hematologic malignancies shows limited response in solid tumors (Table 1). Modified CAR 

constructs developed to address some of the issues unique to solid tumors show great 

promise in preliminary studies, with improved CAR T persistence and tumor trafficking. 

However, the financial burden of CAR T cell and IEC therapy remains very high, given the 

high costs of development and production of the cells for each individual patient. Toward 

this end, “off-the-shelf” cells, such as CAR NK cells, allogeneic CAR T cells [78], and other 

cellular platforms, are being developed for use as allogeneic cell grafts [79]. CAR T cell and 

IEC therapies are in their infancy in solid tumors, but novel and promising approaches are 

driving the field forward.
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Figure 1. 
Adoptive cell therapy. (A) CAR. (B) Fourth-generation CAR coding for cytokine 

production. (C) Genetically modified T cell receptor targeting tumor MHC molecules 

presenting tumor-derived peptides. (Some elements of this figure are adapted from servier 
medical art under a CC 3.0 license.)
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Figure 2. 
Challenges with cellular therapy in solid tumors and areas of investigation and 

improvements in future therapies and constructs. (Some elements of this figure are adapted 

from servier medical art under a CC 3.0 license.)
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