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I M M U N O L O G Y

NF-κB and TET2 promote macrophage reprogramming 
in hypoxia that overrides the immunosuppressive 
effects of the tumor microenvironment
Carlos de la Calle-Fabregat1,2*†, Josep Calafell-Segura1†, Margaux Gardet2, Garett Dunsmore2, 
Kevin Mulder2, Laura Ciudad1, Aymeric Silvin2, Joaquim Moreno-Càceres3, Ángel L. Corbí4,  
Cristina Muñoz-Pinedo3, Judith Michels5,6, Sébastien Gouy7, Charles-Antoine Dutertre2,  
Javier Rodríguez-Ubreva1, Florent Ginhoux2, Esteban Ballestar1,8*

Macrophages orchestrate tissue homeostasis and immunity. In the tumor microenvironment (TME), macrophage 
presence is largely associated with poor prognosis because of their reprogramming into immunosuppressive 
cells. We investigated the effects of hypoxia, a TME-associated feature, on the functional, epigenetic, and tran-
scriptional reprogramming of macrophages and found that hypoxia boosts their immunogenicity. Hypoxic in-
flammatory macrophages are characterized by a cluster of proinflammatory genes undergoing ten-eleven 
translocation–mediated DNA demethylation and overexpression. These genes are regulated by NF-κB, while 
HIF1α dominates the transcriptional reprogramming, demonstrated through ChIP-seq and pharmacological inhi-
bition. In bladder and ovarian carcinomas, hypoxic inflammatory macrophages are enriched in immune-infiltrated 
tumors, correlating with better patient prognoses. Coculture assays and cell-cell communication analyses support 
that hypoxic-activated macrophages enhance T cell–mediated responses. The NF-κB–associated hypomethyl-
ation signature is displayed by a subset of hypoxic inflammatory macrophages, isolated from ovarian tumors. Our 
results challenge paradigms regarding the effects of hypoxia on macrophages and highlight actionable target 
cells to modulate anticancer immune responses.

INTRODUCTION
Macrophages (MACs) are sentinels of the innate immune system 
whose fundamental functions encompass phagocytosis, antigen pre-
sentation, and modulation of neighboring cells (1, 2). Tissue MACs 
can originate from precursors established during embryogenesis or, 
alternatively, differentiate from monocytes (MOs) extravasating from 
the peripheral blood (3). Before undergoing differentiation within 
tissues, MOs migrate into niches characterized by diverse physical 
and biochemical features (4). Within this context, a wide range of 
interactions between MOs and MACs and their environment shape 
their phenotype and functions (5). These interactions are mediated 
by a variety of stimuli occurring either sequentially or simultane-
ously, highlighting the complexity of signaling pathways involved 
(6). Pathological states further influence these interactions, leading 
to altered MAC functions (7). All of these microenvironmental 
cues, which are specific to tissue and context, have the capacity 
to modulate MAC phenotype by regulating epigenetic and tran-
scriptional programs (8, 9). Consequently, such signals contribute to 

the emergence of a heterogeneous range of MACs that coexist in the 
tissues, with fluctuating proportions in health and disease (10).

Oxygen availability influences MAC function in physiological 
and pathological situations. Hypoxia is a hallmark of multiple dis-
eased contexts, such as solid tumors (11), arthritic joints (12), or 
ischemic tissues (13), where appropriate oxygen influx is impaired. 
Exposure to hypoxic conditions induces the stabilization of hypoxia-
inducible factors (HIFs), which are responsible for the cellular ad-
aptation to oxygen deprivation. Among others, HIF transcription 
factors (TFs) regulate genes related to metabolism, nutrient trans-
port, angiogenesis, and cell migration (14). HIFs have also been 
described as regulators of inflammatory processes (15). However, 
the underlying mechanism for this is still controversial, as there 
is evidence associating HIF activity with both proinflammatory and 
anti-inflammatory features, depending on cellular and physiological 
context (16–18).

Hypoxia has the ability to rewire the epigenetic landscape of 
cells (19, 20), including MACs (21). We and others have demon-
strated that DNA methylation, a major epigenetic modification, 
determines the acquisition of immune features by MACs and other 
MO-derived cells (22, 23). Such changes in DNA methylation are 
dependent on context-specific TFs and occur in orchestration 
with additional epigenetic modifications such as histone marks 
(22, 23). Under conditions of low oxygen levels, the activity of ten-
eleven translocation (TET) methylcytosine dioxygenase enzymes, 
required for active DNA demethylation (24), is hindered (25). In 
the tumor microenvironment (TME), which is commonly char-
acterized by hypoxia (11), TET inhibition promotes hypermeth-
ylation of tumor suppressor genes in cancer cells, affecting their 
expression (26). Nevertheless, genomic regulation and transcrip-
tional responses induced by hypoxia differ substantially between 
distinct cell types (19, 27).
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Although there is evidence linking DNA methylation levels with 
the immunogenic status of the hypoxic TME (28), the direct effect of 
these alterations on the MAC functions is still unclear. Given the 
reduced levels of oxygen in the TME and the pivotal role of TET-
mediated demethylation for MAC biology, it is likely that hypoxia 
affects their immunological properties. Moreover, although, in 
several studies, hypoxia is considered an immunosuppression-
associated factor in the TME (16, 29, 30), the specific effect of oxy-
gen restriction on MACs in this context remains uncertain.

Thus, to study the effect of hypoxia and its role underlying the 
acquisition of unique phenotypic and molecular features by MACs, 
we used an in  vitro differentiation model from human MOs to 
MACs in normoxic (21% O2) and hypoxic (1% O2) conditions 
and additionally stimulated them with lipopolysaccharide (LPS) 
to evaluate their immune activation potential. We then charac-
terized the functional, epigenomic, and transcriptomic profiles of 
all those conditions. Our results revealed that MACs differentiated 
and activated under hypoxic conditions (herein named “mMAC1”) 
acquire an enhanced proinflammatory program through a DNA 
methylation–mediated mechanism. The molecular signatures of 
mMAC1, characterized by nuclear factor κB (NF-κB)–mediated 
DNA demethylation and overexpression of proinflammatory acti-
vation genes, were similarly found in an in vivo MAC subpopu-
lation, isolated from human tumors, suggesting that mMAC1 
potentially corresponds to a subset of bona fide tumor-associated 
MACs. Notably, tumors with high estimated loads of mMAC1 sig-
nature–bearing cells were associated with generally better patient 
survival. Our results highlight the potential of hypoxia as an en-
hancer of immunogenic properties in MACs in the TME and 
identify previously unreported mechanisms mediating this phe-
nomenon, posing a refined understanding of the effect of hypoxia 
upon MACs in vitro and in vivo.

RESULTS
Hypoxia elicits inflammatory features and NF-κB–associated 
DNA demethylation in activated MACs
To investigate the impact of hypoxia on the immunological proper-
ties of MACs and their associated epigenomic reprogramming, we 
differentiated in vitro human peripheral blood MOs in the presence 
of MAC colony-stimulating factor (M-CSF) for 5 days in normoxic 
(21% O2) or hypoxic (1% O2) conditions. In addition, the resulting 
MACs were treated with LPS for 48 hours to induce their activation/
maturation or treated with a vehicle for the same time as a control 
(Fig. 1A).

Under these conditions, mature hypoxic MACs (mMAC1) pro-
duced higher levels of the inflammatory cytokines interleukin-6 
(IL-6) and tumor necrosis factor–α (TNF-α) and lower levels of the 
anti-inflammatory cytokine IL-10 than mature normoxic MACs 
(mMAC21; Fig. 1B). At the cell surface level, mMAC1 expressed 
higher levels of the major histocompatibility complex (MHC) class 
II human leukocyte antigen–DR (HLA-DR) and costimulatory pro-
teins CD86 and CD80 than their normoxic counterpart (mMAC21), 
as determined by flow cytometry (Fig. 1C), which is consistent 
with an enhanced antigen presentation capacity. On the other hand, 
resting/immunoregulatory MAC surface proteins CD14, CD206, 
and CD163 were decreased in mMAC1 versus mMAC21, suggest-
ing a phenotypic switch of these cells to a less anti-inflammatory 
phenotype. Hypoxic cells, both at steady state and after activation, 

displayed a decreased capacity to suppress CD8+ T cell prolifera-
tion than normoxic cells in a coculture assay (Fig. 1D and fig. S1A). 
All these results suggest that hypoxia increases the proimmuno-
genic functions of MACs.

To study the effect of hypoxia on the epigenomic landscape of 
MACs, we then performed DNA methylation profiling using Illumi-
na Infinium MethylationEPIC arrays. Comparison among conditions 
revealed a substantial number of differentially methylated positions 
[DMPs; false discovery rate (FDR) < 0.05 and absolute Δβ > 0.2; see 
Supplementary Methods] among the different conditions (Fig. 1E, 
fig. S1B, and table S1A). Specifically, we identified DMPs grouped 
into three different clusters: cluster C1 (2782 CpGs), C2 (403 CpGs), 
and C3 (903 CpGs; table S1B). Clusters C1 and C3 corresponded with 
hypomethylated and hypermethylated CpG sites, respectively, in nor-
moxic MACs when compared to MOs. In these clusters, the methyla-
tion tendency was partially inhibited in hypoxia. On the other hand, 
cluster C2 displayed a marked hypomethylation specifically in ma-
ture hypoxic MACs (mMAC1; Fig. 1E and fig. S1B) in comparison 
with mature normoxic MACs (mMAC21).

DMPs in cluster C1, the largest cluster, displayed a tendency con-
sistent with an inhibition of DNA demethylation under hypoxic 
conditions, as observed in (26), and were enriched in motifs of 
the activator protein 1 (AP-1) complex, canonically associated with 
MAC differentiation (Fig. 1F). Similarly, DMPs in cluster C3, which 
were also enriched in motifs associated with myeloid cell differenti-
ation, such as those in those in the Runt-related (RUNX) and E26 
transformation-specific (ETS) transcription factor families (31), 
displayed hypoxia-associated inhibition of the hypermethylation 
observed for MACs in normoxia. In contrast, DMPs in cluster C2 
displayed hypoxia-associated demethylation specific to activated 
MACs and were highly enriched in motifs of the NF-κB family, clas-
sically associated with Toll-like receptor signaling (32), among oth-
ers (Fig. 1F). Specific examples of demethylated CpGs in cluster C2 
included those in the loci of genes such as IL6 and TNF (fig. S1C), 
which is consistent with the increased levels of their products in the 
supernatant of mMAC1 (Fig. 1B).

To characterize the DMP clusters from a genomic standpoint, we 
annotated them in genomic and CpG context categories. DMPs in 
clusters C1 to C3, particularly those in cluster C2, were enriched in 
intergenic and open sea regions (fig. S1D). In addition, reanalysis of 
public MAC histone mark chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) data (see Supplementary Methods) 
revealed that cluster C2 regions gain canonical enhancer (H3K-
4me1) and enhancer activation (H3K27ac) histone marks after acti-
vation in normoxic conditions (fig. S1E), suggesting that C2 regions 
consist of LPS-dependent de novo enhancers (33). Cluster C2 DMPs 
also displayed the highest enrichment for human MO enhancer 
chromatin state, defined by combinations of different histone marks 
(see Supplementary Methods) (34). These results are consistent with 
the usual observation that DNA methylation–dynamic genomic re-
gions are associated with distal regulatory elements (35).

All these results indicate that hypoxic MACs display a more pro-
inflammatory phenotype compared with their normoxic counter-
parts. In addition, hypoxia partially blocks the DNA methylation 
changes associated with MAC differentiation in normoxic condi-
tions. Last, LPS induces specific NF-κB–associated demethylation 
in inflammatory genes and enhancers in hypoxic conditions that 
might contribute to the more proinflammatory phenotype observed 
in hypoxic MACs.
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Fig. 1. Phenotypic, functional, and DNA methylation characterization of MAC differentiation and activation in normoxia and hypoxia. (A) Scheme depicting the 
in vitro differentiation system. (B) Cytokine (IL-6, TNF-α, and IL-10) concentrations in cell culture supernatants, quantified by enzyme-linked immunosorbent assay (n = 4). 
(C) Analysis of cell surface protein expression, quantified in MACs by flow cytometry. Left: Fluorescence histograms of concatenated replicates (n = 4). Right: Histograms 
showing mean fluorescence intensities (MFIs) of the same replicates. (D) CD8+ T cell proliferation [i.e., percent of cells with decreased carboxyfluorescein succinimidyl 
ester (CFSE) staining] in the presence or absence of allogeneic MACs (n = 4). First bar: Negative control [no MACs and no T cell receptor (TCR) stimulation]; second bar: 
positive control (no MACs and TCR stimulation); bars three to six: coculture with MACs and TCR stimulation. (E) Heatmap depicting differential DNA methylation analysis 
results, aggregated in three different clusters (C1 to C3). Blue and red indicate lower and higher methylation, respectively. (F) Top 10 most significantly enriched TF motifs 
in the three different cluster regions, identified by HOMER. DNAm, DNA methylation. *P < 0.05, **P < 0.01, ***P < 0.001.
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Hypoxia-induced transcriptomic reprogramming to 
proinflammatory MACs mainly depends on HIF1α and NF-κB
Next, we analyzed the transcriptome of MACs in all the afore-
mentioned conditions using bulk RNA sequencing (RNA-seq). 
We identified four different clusters (E1 to E4) comprising a total 
of 3737 differentially expressed genes (DEGs; FDR < 0.05 and 
absolute log2 fold change >1; see Supplementary Methods and 
Fig. 2A and table S2, A and B). E1 (233 DEGs) corresponds to 
genes up-regulated in hypoxic MACs (iMAC1 and mMAC1). E2 
(1452 DEGs) is composed of genes that are up-regulated in acti-
vated MACs (mMAC21 and mMAC1) with a more marked in-
crease in mMAC1. E3 (732 DEGs) includes genes that become 
down-regulated in hypoxia (iMAC1 and mMAC1), which further 
down-regulate in mMAC1. Last, E4 (1330 DEGs) corresponds to 
genes that are down-regulated upon activation. Gene ontology 
(GO) analysis of E1 to E4 clusters revealed an enrichment in func-
tional categories associated with a variety of immune functions 
(Fig. 2B). In particular, the E2 cluster (up-regulated after activa-
tion) was enriched in categories related to response to interferons 
(IFNs), LPS, and TNF-α, as well as positive regulation of NF-κB 
(Fig.  2B), consistent with the association of this factor in genes 
that are demethylated specifically in mMAC1 (Fig. 1F).

When evaluating significant DEGs in MACs across pairwise 
comparisons, we identified that differences in expression differed 
more markedly along the hypoxia axis (iMAC21 versus iMAC1 and 
mMAC21 versus mMAC1) than along the LPS axis (iMAC21 versus 
mMAC21 and iMAC1 versus mMAC1), suggesting that the tran-
scriptional program elicited by hypoxia diverges between resting 
and activated MACs, whereas the core LPS-response program is 
more conserved between normoxia and hypoxia (Fig. 2C). LPS in 
hypoxia induced a higher amount of DEGs (Fig.  2C), and in a 
principal components analysis (PCA) of the most variable genes, 
mMAC1 was the most segregated condition among all MACs 
across PC2, which explains gene expression variance induced by 
the activation (fig. S2A). In this analysis, activated MACs (mMAC21 
and mMAC1) appear far more separated among themselves than 
unstimulated MACs (iMAC21 and iMAC1), which highlights that 
the greatest differences between normoxia and hypoxia are reached 
after LPS activation (fig. S2A).

Cluster C2–associated genes were specifically enriched within 
cluster E2, calculated by a Fisher’s exact test (Fig. 2, A and D), and 
were significantly associated with genes up-regulated after LPS 
stimulation (either in normoxia or hypoxia, fig. S2B) and with up-
regulated genes between mMAC21 and mMAC1 in a gene set enrich-
ment analysis (GSEA; Fig. 2E).

To link the identified transcriptional differences with the in-
volvement of specific TFs, we estimated TF activity by discrimi-
nant regulon expression analysis (DoRothEA) (36). By performing 
this analysis in each comparison along the hypoxia axis, we ob-
served that HIF1A was the most enriched TF regulon in the 
iMAC21 versus iMAC1 comparison. However, after comparing 
the two activated conditions (mMAC21 versus mMAC1), HIF1A 
was overcome by signal transducer and activator of transcrip-
tion 2 (STAT2) and interferon regulatory factor 1 (IRF1) regulon 
scores, suggesting a strong inflammatory and IFN signaling ac-
tivation besides the hypoxic induction in mMAC1 (Fig. 2F). The 
RELA (encoding the p65 subunit of the canonical NF-κB com-
plex) regulon was also significantly activated in hypoxic conditions, 

although to a greater extent in the LPS-activated conditions [normal-
ized enrichment score (NES) = 3.8 in iMAC21 versus iMAC1; 5 in 
mMAC21 versus mMAC1], which highlights that hypoxia also in-
duces inflammatory activation in MACs (Fig.  2F). On the other 
hand, reanalysis of RNA-seq data of MACs activated with LPS in 
a time-course manner (37) revealed that LPS stimulation promotes 
the up-regulation of HIF1α transcriptional targets at late time 
points (4 to 12 hours after LPS; fig. S2C). However, DMPs in C2 
were preferentially associated with genes that up-regulate at early 
time points (0.5 and 2 hours) after LPS stimulation, which are 
predominantly associated with NF-κB activity (fig. S2, D and C).

Next, we decided to resolve whether the observed hypoxia-
specific DNA demethylation and transcriptional overexpression 
during activation (summarized by selected examples depicted in 
Fig. 2G) were exclusive to LPS stimulation or also generalizable to 
other activating signals. With that aim, we stimulated MAC21 and 
MAC1 with different NF-κB–activating ligands for 48 hours and 
measured mRNA expression of the genes in Fig. 2G (table S3). Stim-
ulation with pathogen-associated molecular pattern (PAMP) LPS, 
Pam3-Cys (P3C), CpG, poly I:C, and cytokines TNF-α and IL-1β 
induced increased expression of inflammatory genes in hypoxia as 
compared to normoxia, in most cases (fig. S2E), suggesting that NF-
κB overactivation, rather than a particular stimulus, is responsible 
for the up-regulation of inflammatory genes in hypoxic MACs. Last, 
we wondered whether the changes observed during the activation 
in hypoxia require that the differentiation process from MO to 
MAC also takes place in hypoxic conditions. To interrogate this 
question, we differentiated and activated the cells as described orig-
inally [under normoxic and hypoxic conditions during the entire 
differentiation and activation process (Fig.  1A), i.e., “canonical” 
conditions] or by swapping the samples from normoxia to hypoxia 
and vice versa before the activation step (i.e., “swap” conditions; 
fig. S2F), and we measured the expression of genes in Fig. 2G in a 
time-course manner. The results from this analysis first confirmed 
the differences after LPS activation between canonical normoxic 
and hypoxic conditions and revealed that the most significant dif-
ferences occur at shorter time points (2 hours after LPS stimulation; 
fig. S2G, line plots). In addition, swapping MACs from normoxia to 
hypoxia 2 hours before activation with LPS proved to be sufficient to 
increase expression equaling canonical hypoxia levels, and vice ver-
sa (fig. S2G, bar plots). This suggests that LPS activation in hypoxia 
is sufficient to boost gene expression of inflammatory genes inde-
pendently of oxygen levels during differentiation, in line with our 
previous findings (38).

Together, these results indicate that inflammatory activation of 
MACs in hypoxia in vitro boosts the expression of proinflammatory 
genes associated with demethylated DNA regions, a process that in-
volves activation of HIF1α and NF-κB alongside additional inflam-
matory TFs.

Hypoxia and LPS activate shared and independent 
transcriptional programs
To understand the participation of HIF1α and NF-κB during the 
reprogramming of MACs in hypoxia, we analyzed the protein levels 
of HIF1α and p65 over time before and after activation using Western 
blot. Both LPS-mediated activation and hypoxia resulted in increased 
HIF1α detection, independently, although its maximum was reached 
at 2 hours after LPS in hypoxia (Fig. 3A and fig. S3A). p65 protein 
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was induced during activation to comparable levels in MAC21 and 
MAC1, although there was a slightly higher tendency of expression 
(P > 0.05) in MAC1 at 2 hours after LPS (Fig. 3A and fig. S3A). To 
ascertain the subcellular localization dynamics of these proteins 
throughout this process, we performed immunofluorescence of 
MAC21 and MAC1 treated with vehicle or LPS for 2 hours (Fig. 3B). 
HIF1α protein was increased in hypoxia both in the cytoplasm and 
the nucleus, whereas p65 was increased in the cytoplasm in hypoxic 
conditions and increased in the nuclei after activation (Fig. 3, B and 
C). The effect of LPS on subcellular localization was inverse for 
HIF1α (relative increase in the cytoplasm) and p65 (relative increase 
in the nucleus), suggesting different molecular mechanisms for the 
expression/stabilization of both TFs (fig. S3B). The condition show-
ing higher absolute expression of both TFs was mMAC1 (fig. S3B), 
which reinforces the existence of co-regulatory mechanisms among 
both TFs in inflammatory hypoxic conditions.

Accordingly, the concomitant effect of hypoxia and activation 
was also confirmed at the transcriptional level, as both hypoxia and 
LPS induced the up-regulation of a common set of genes indepen-
dently (Fig. 3D). Consistent with this, genes in the regulon of HI-
F1A were up-regulated both in mMAC21 and iMAC1 at comparable 
levels, and their expression reached a maximum in mMAC1; RELA 
regulon genes were increased in both LPS-activated conditions, 
with maximum expression in mMAC1 (Fig.  3E). The increased 
HIF1A regulon expression was driven by the up-regulation of differ-
ent sets of genes in mMAC21 and iMAC1 (fig. S3C and table S2C), 
suggesting distinct transcriptional programs activated by HIF1α 

under different conditions. On the contrary, RELA regulon differ-
ences were attributable almost exclusively to a hypoxic boosting of 
genes that were already up-regulated in normoxia (fig. S3C). Over-
all, these data suggest that hypoxia and LPS activate intersecting 
mechanisms.

HIF1α and NF-κB transcriptionally co-regulate MAC 
hypoxic activation
To shed light on the transcriptional regulation by HIF1α and NF-
κB in the differentiation and activation of hypoxic MACs, we per-
formed ChIP-seq using antibodies against HIF1α and p65 in all 
MAC conditions. We consolidated a list of consensus peaks for 
each condition (table  S4, A to D, and Supplementary Methods). 
Unsupervised clustering of the differentially bound consensus 
peaks with increased signal either along the hypoxia axis (21% ver-
sus 1% of O2) or the LPS axis (± LPS) led to the identification of 
three independent clusters (H1 to H3) for HIF1α (Fig. 4A and Sup-
plementary Methods). H1 contains HIF1α peaks that increase 
binding in hypoxia (iMAC1 or mMAC1); H2 includes HIF1α peaks 
with increased binding after activation (mMAC21 or mMAC1), and 
H3 consists of HIF1α peaks that increase under hypoxia, activa-
tion, or both simultaneously (iMAC1, mMAC21, or mMAC1). p65 
ChIP-seq peaks revealed one single tendency (P1), showing maxi-
mum binding strength in mMAC1, followed by mMAC21 (Fig. 4A 
and table S4E). Of note, in mMAC1, we observed a number of over-
lapping peaks in clusters of both TF ChIP-seq, which varied for 
every HIF1α cluster (Fig.  4B). The most significantly enriched 
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motifs for HIF1α clusters were HIF and ETS in H1 and AP-1 and 
IRF in H2-H3 (Fig.  4C). The p65 motif was also significantly 
enriched in HIF1α cluster H2, which showed the highest overlap 
with p65 peaks (~15%) in mMAC1 (Fig. 4B). Peaks bound by both 
HIF1α and p65 in mMAC1 (“∩”) revealed a significant enrichment 
of HIF, NF-κB, AP-1, IRF, and ETS motifs, either centering the 
analysis on the HIF1α or the p65 binding sites (Fig. 4C and Supple-
mentary Methods).

We next aimed to ascertain whether the concomitant binding of 
both TFs in the same regions was driven mainly by HIF1α or p65. To 
do this, first, we calculated the enrichment of the binding motifs of 
both TFs in a 1–kb window around the centers of peaks specifically 
bound by HIF1α (“HIF1α-specific”) or p65 (“p65-specific”) or 
those commonly bound by both proteins in mMAC1 (“∩”). In co-
bound peaks, the analysis was performed in a HIF1α-centered or a 
p65-centered manner. When applied to cobound peaks, the HIF1α-
centered analysis revealed a predominance of the HIF1α motif, along 
with a significant, albeit notably lower, enrichment of the p65 motif 
(Fig.  4D). On the other hand, the p65-centered analysis revealed 
similar levels of enrichment for both the p65 and HIF1α motifs 
(Fig. 4D), suggesting a predominance of HIF1α motifs in these peaks. 
p65 and HIF1α common peaks displayed a binding profile similar to 
those that are HIF1α specific, both in terms of gene feature distribu-
tion (fig. S4A) and distance to transcription start sites (fig. S4B).

To establish the activation sequence of the cobound TFs (HIF1α 
and p65) in time, we plotted their binding intensity across all condi-
tions (Fig. 4E). This inspection revealed that although p65 binding 
mainly increases after activation in hypoxia (mMAC1), HIF1α 
binding is notably elevated in the hypoxic steady state (iMAC1), sug-
gesting a prior activation of HIF1α over p65 on commonly bound 
regions. Examples of common peaks showing this tendency are 
depicted in fig. S4C. However, although statistically significant 
(P = 2.5 × 10−4), the intensity of binding of both TFs in mMAC1 
common peaks did not show a clear linear correlation (Pearson’s 
r = 0.13; Fig. 4F), suggesting a cooperation mechanism that is inde-
pendent of a physical interaction among HIF1α and p65 proteins.

GO analysis of genes bound only by single-TF peaks (either 
HIF1α or p65) or bearing commonly bound peaks in mMAC1 re-
vealed enrichment in categories related to functionally distinct pro-
cesses (Fig. 4G). HIF1α-only bound genes were mainly associated 
with categories related to glycolytic metabolism; p65-only bound 
genes were associated with immune cell differentiation and adhe-
sion, and genes with cobinding peaks were predominantly associat-
ed with the LPS-mediated signaling pathway (Fig. 4G).

Last, to elucidate the effect of TF binding on transcriptional ex-
pression, we performed GSEA of genes associated with each ChIP 
peak set on DEG comparisons. DEG comparisons were distributed 
along the hypoxia or the LPS axis, as detailed before. Of note, 
HIF1α- and p65-bound genes were up-regulated significantly only 
by hypoxia or LPS, respectively, whereas genes with cobinding peaks 
showed up-regulation independently by either of the two challenges 
(Fig. 4H). MACs differentiated in hypoxia but unstimulated with 
LPS (iMAC1) showed a significant down-regulation of p65-bound 
genes (Fig.  4H), which suggests an inflammatory suppression of 
these cells, possibly because of an incomplete differentiation process 
in hypoxic conditions (Fig. 1E and fig. S1B). This highlights a pos-
sible paradoxical role of hypoxia depending on the cellular context 
(e.g., presence or absence of an inflammatory insult), in agreement 
with previous studies (39).

Hypoxia-specific proinflammatory properties of activated 
MACs are NF-κB– and TET-mediated DNA 
demethylation dependent
To determine the relationship between HIF1α and p65 binding and 
hypoxia-specific DNA demethylation, we first plotted the ChIP-seq 
signal around the coordinates of CpGs in cluster C2 (Fig. 4I). C2 
regions were characterized by a strong p65 signal in mMAC1, 
whereas the HIF1α signal was not notably high in any of the condi-
tions. This was further confirmed by measuring the coincidence 
between coordinates of ChIP-seq peak sets and C2 CpGs, which 
revealed that C2 regions are exclusively associated with p65-specific 
peaks (Fig. 4J).

We then sought to establish the molecular dependency of the de-
methylation of cluster C2 on HIF1α or p65. To this end, we treated 
MAC21 or MAC1 with the chemical compounds BAY11-7082 (p65 
inhibitor) or PX-478 (HIF1α inhibitor) for 3 hours before LPS stim-
ulation. We also included 4-octyl itaconate, a strong TET2 inhibitor 
(40), as a positive control for the inhibition of active DNA demeth-
ylation. Then, we activated MAC1 with LPS for 48 hours and mea-
sured DNA methylation using microarrays. This revealed that 
inhibition of p65 alone (but not of HIF1α alone) was able to hamper 
DNA demethylation in hypoxia, which appeared at levels com-
parable to those of MAC21 (Fig. 4K). In those same samples, we 
also measured the mRNA expression in a representative set of C2-
associated genes (depicted in Fig. 2G). As expected, p65 inhibition 
led to a decreased gene expression of its targets (Fig. 4L). Similarly, 
samples treated with 4-octyl itaconate showed particularly high 
DNA methylation levels, as well as decreased mRNA expression, 
suggesting that DNA methylation is determinant in regulating 
the expression of these proinflammatory genes (Fig. 4L). HIF1α 
inhibition, instead, partially reduced the expression of some of these 
genes, suggesting the existence of additional potential mechanisms 
associated with the regulation of this factor.

The hypoxic inflammatory MAC signature is found in vivo in 
human cancers and correlates with T cell presence
We then sought to ascertain the biological relevance of our in vitro–
derived signatures in a more physiological context by using public 
data of in vivo human tissue MACs (10). To this end, first of all, we 
defined specific signature genes for all our experimental conditions 
(table S5 and Supplementary Methods). C2-associated genes ap-
peared preferentially enriched in the mMAC1-specific signature 
cluster (Fig. 5A, red dashes). For characterization purposes, we 
also analyzed TF regulons associated with every population’s marker 
genes by DoRothEA (Fig. 5A, right). Next, we transposed those sig-
natures into the MoMac-VERSE (10), which consists of a human 
MO/MAC atlas comprising 13 different tissues in health and dis-
ease, analyzed by single-cell RNA-seq (scRNA-seq). With this ap-
proach, we identified an enrichment of mMAC1 gene expression 
signature, as well as mMAC1-specific DNA demethylation signature 
(C2-associated genes) on three tissue MO/MAC populations, previ-
ously annotated in the MoMac-VERSE: clusters #15 (IL1B Mo), #6 
(IL4I1 Mac), and #4 (ISG Mo; Fig. 5B and fig. S5A). In addition, we 
selected MoMac-VERSE MAC clusters that were not enriched in 
mMAC1 signatures (i.e., #2 HES1/FOLR2 Mac and #3 TREM2 Mac) 
to use them as negative controls in further analyses (fig. S5A). Some 
of these populations (i.e., IL1B Mo, IL4I1 Mac, and TREM2 Mac) 
were found to be expanded in pathological conditions, such as 
cancer (10).
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A visual inspection of mMAC1 signatures projected on the 
MoMac-VERSE uniform manifold approximation and projection 
(UMAP) is depicted in Fig. 5C. Figure S5B illustrates examples of 
MoMac-VERSE cluster-defining genes and their expression, both in 
the in vitro and the in vivo datasets. Last, to integrate all mMAC1-
associated molecular profiles (including mRNA expression, DNA 
methylation, and TF binding) in the in vivo context, we identified 
cells coexpressing any possible combination of these signatures and 
highlighted them in the MoMac-VERSE UMAP (fig. S5C). Again, 
IL1B Mo, IL4I1 Mac, and ISG Mo presented a relatively higher num-
ber of cells with the coexpression of mMAC1 molecular signatures 
(in yellow), suggesting that these populations are the most similar 
in vivo equivalents to mMAC1.

To determine the clinical relevance of MACs in human disease, 
we established the association between the presence of MAC popu-
lation signatures (both in vitro and in vivo) and prognosis in cancer, 
as a model of in vivo–occurring hypoxia (41). Survival analysis on 
public human cancer data [The Cancer Genome Atlas (TCGA); see 
Supplementary Methods] determined that patients with high signa-
tures/scores (i.e., a surrogate of high population infiltration in the 
tissue) of hypoxic MAC signatures (iMAC1 and mMAC1) generally 
displayed a better overall survival in several different cancer types 
(10 of 12 cases; fig. S5D). This association was also true for the IL4I1 
MAC signature, which was associated with higher survival in 7 of 
12 of the cancer types of the dataset, including bladder urothelial 
carcinoma (BLCA), ovarian carcinoma (OC), and others. Initially 
described as highly inflammatory cells with additional tolerogenic 
features (10), IL4I1-expressing MACs have recently been associated 
with good prognosis in colorectal cancer, where they are found 
within the tumor nests, performing active efferocytosis of cancer 
cells (42). In addition, in breast cancer, their presence predisposes 
to improved responses to immune checkpoint inhibitors, presum-
ably owing to their high expression of immune checkpoint mole-
cules (42).

In contrast, normoxic signatures (iMAC21 and mMAC21) were 
mainly associated with decreased survival (10 of 12). In line with 
this, the TREM2 MAC signature displayed the highest association 
with a poor prognosis, showing decreased survival in 7 of 12 cancer 
type series followed by FOLR2 MACs, with 6 of 12 (fig. S5D). In 
agreement with this, TREM2+ MACs have been described as potent 
immunosuppressors in the TME and are usually found associated 
with progression and poor prognosis in a wide variety of cancers 
(43); FOLR2 is thought to be a marker of tissue-resident MACs (44), 
although its role in cancer is converse, tissue specific, and depends 
on additional polarization programs (42, 44). Conversely, IL1B Mos 
were predominantly associated with decreased survival (in 5 of 
12 cases), possibly because of the enrichment of this normoxic 
mMAC21 transcriptomic signature in this population (Fig. 5B). In 
line with this, MACs expressing high amounts of IL-1β and display-
ing a mixed proinflammatory-immunosuppressive phenotype have 
been shown to correlate with poor prognosis in pancreatic ductal 
adenocarcinoma (45). mMAC1 and IL4I1 signatures presented the 
highest overall concordance in terms of association with prognosis, 
presenting a matching effect in 6 of 12 cancer types.

Next, we focused on BLCA as a paradigm of cancer with the 
clearest separation in prognosis between mMAC1 and mMAC21. 
Kaplan-Meier curves (Fig. 5D and fig. S5E) illustrate MAC gene sig-
natures associated with good (mMAC1, IL4I1) or poor (mMAC21, 
TREM2) prognosis. The DNA methylation status of BLCA tumors 

was also associated with prognosis; patients with low methylation 
levels in C2 CpGs displayed a significantly higher survival than pa-
tients with high methylation in the same regions (Fig. 5E).

To further elucidate the biological basis underlying the prognos-
tic value of mMAC1 in this cancer, we reanalyzed public scRNA-seq 
data of BLCA (46). In summary, we (i) annotated cells bearing the 
in vitro–derived MAC signatures, (ii) estimated the proportions of 
these cells, along with the rest of the populations, on BLCA tumor 
bulk RNA-seq data (TCGA) with CIBERSORTx, and (iii) revisited 
the scRNA-seq object to investigate cell-cell communication be-
tween populations of interest to characterize potential cellular 
mechanisms and interactions using CellChat (fig. S5F and Supple-
mentary Methods). Estimation of cell population proportion in 
BLCA samples led to a first separation between immune “cold” and 
“hot” tumors, determined by a lower and higher immune/epithelial 
cell proportion ratio, respectively. These two groups were charac-
terized by distinct clinical variables (e.g., tumor histology, size, me-
tastasis, stage, and grade; Fig.  5F and Supplementary Methods). 
Immune hot tumors with a high estimated percentage of mMAC1 
also presented high percentages of other immune cell types, such as 
cross-presenting dendritic cells (DCs) and, most notably, T cells 
(Fig.  5F). In addition, these samples were largely devoid of non-
immune cells (e.g., fibroblasts and endothelial cells) and normoxic 
MACs (iMAC21 and mMAC21). Of note, T cell percentage was sig-
nificantly correlated with mMAC1 (r  =  0.74, P  =  2.2·10−67) and, 
opposingly, anticorrelated with iMAC21 (r  =  −0.27, P  =  5·10−8) 
along all the patient series [Fig. 5, G and F (bottom)].

Cell-cell communication analysis revealed several significant ligand-
receptor pairs between mMAC1 and T cells, related to T cell che-
motaxis (CXCL9:CXCR3 and CXCL10:CXCR2) and trafficking 
(ICAM1:SPN), as well as T cell receptor (TCR) activation through 
MHC class I (HLA-A/B/C/E/F:CD8) and additional costimulatory 
interactions (MIF:CD74 + CD44/CXCR4), among others (Fig. 5H). 
In summary, this analysis suggests that mMAC1 display enhanced T 
cell–activating features, potentially contributing to an increased im-
munogenic status of the TME in BLCA tumors, leading to improved 
outcomes of these patients.

Last, we isolated these MAC populations from primary ovarian 
tumors. We used OC samples for practical reasons, such as the in-
herently large weight of these tumors, which are characterized by a 
substantial MAC infiltration and a marked hypoxia (47, 48). Of 
note, OC also showed a clean separation between the normoxic 
(mMAC21) and hypoxic (mMAC1) populations with regard to prog-
nosis in our previous analysis (fig. S5D). Through sorting by flow 
cytometry, we purified IL4I1, TREM2, and FOLR2 MACs through a 
gating strategy developed in (10) with additional optimizations 
(Fig. 5I and Supplementary Methods). The expression of marker 
genes (defined in the MoMac-VERSE) was confirmed in every pop-
ulation by bulk RNA-seq (fig. S5G), supporting the validity of the 
sorting strategy. DNA methylation profiling revealed a general reca-
pitulation of the methylation dynamics of C2, in which the IL4I1 
population showed the lowest average methylation levels (Fig. 5J). 
p65 was the most enriched motif in the demethylated CpGs associ-
ated specifically with IL4I1 (Fig. 5K). When comparing each popu-
lation against the rest, the expression of genes in the RELA and 
HIF1A regulons were only up-regulated in IL4I1, whereas they 
were found relatively down-regulated in TREM2 and FOLR2 
(Fig. 5L). Additional regulons such as RFX5, NFKB1, IRF1, and 
E2F4, among others, were found among the top associated with 
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both IL4I1 (fig. S5H) and mMAC1 (Fig. 2F), reinforcing the simi-
larity between these two cellular programs.

In summary, we conclude that the in vitro properties of mMAC1 
are displayed by in vivo MAC populations present in human cancer 
samples such as IL4I1 MACs, including the demethylation and up-
regulation of NF-κB–associated genes, as well as hypoxic and addi-
tional inflammatory signatures.

DISCUSSION
In this work, we demonstrate that hypoxia enhances the acquisition 
of immunogenic features during MAC activation. Underlying this 
hyperimmunogenic boosting, we identify a group of proinflamma-
tory genes that undergo DNA demethylation and overexpression in 
hypoxic conditions. Despite the implication of both HIF1α and NF-
κB in the vast transcriptional reprogramming associated with hy-
poxia, the p65 subunit of NF-κB is the primary driver of the DNA 
demethylation process, associated with the activation of critical in-
flammatory cytokines such as IL-6 and TNF-α. These molecular fea-
tures are found in vivo and enriched in tissue MAC populations in 
pathogenic contexts such as cancer. In that setting, hypoxic inflam-
matory signatures (both their in  vitro and in  vivo homologs) are 
associated with better survival in a range of human cancers with 
immune infiltration, including bladder and ovarian carcinomas. We 
propose that changes in the cellular cross-talk between inflamma-
tory hypoxic MACs and T cell populations are responsible for the 
improved immune response in these tumors.

TET-mediated DNA methylation changes are crucial for myeloid 
cell function in vitro and in vivo (49, 50). The enzymatic activity of 
TET methylcytosine dioxygenases depends on several cofactors, in-
cluding Fe2+, α-ketoglutarate, and oxygen (51). In this line, previous 
studies have shown that tumor hypoxia causes DNA hypermethyl-
ation by reducing TET activity (26). In our study, we observed 
that limited oxygen availability also results in an inhibition of de-
methylation for a large cluster of CpGs that demethylate during 
normal MAC differentiation. However, unexpectedly, even under 
TET-inhibitory conditions such as 1% oxygen, there is a significant 
de novo DNA demethylation of proinflammatory genes controlled 
by NF-κB, specific to hypoxic conditions. This highlights a paradox-
ical mechanism where NF-κB is able to override the effect of hy-
poxia and enhances TET-mediated demethylation for a specific 
group of proinflammatory genes. Of note, to interrogate the gene 
regulatory role of DNA methylation, further time-resolved analyses 
of paired methylome and transcriptome would be required to estab-
lish the sequence of events.

The proposed effects of hypoxia and HIFs on MAC function are 
highly contradictory, with examples demonstrating their influence 
on both immunogenic- and immunosuppressive-promoting capaci-
ties (15, 38, 52, 53). Our study supports that hypoxia can promote 
immunogenic properties in MACs, characterized by increased in-
flammatory cytokine secretion and surface marker expression, and, 
most importantly, by a loss in the T cell–suppressive capacity, char-
acteristic of M-CSF MO-derived MACs (54). At the transcriptional 
level, MACs activated in hypoxia displayed not only increased hy-
poxic and glycolytic signatures but also additional immune-related 
signaling pathways, including IFN, TNF, STAT, and NF-κB, when 
compared with their normoxic counterparts. Of note, hypoxia-
associated DNA demethylation was mainly associated with a tran-
scriptional boosting of LPS-response genes, consisting of NF-κB 

targets that already up-regulate in normoxic LPS but whose levels 
markedly increase when LPS is administered in hypoxia. Activation 
in hypoxia was sufficient to achieve the transcriptional boosting of 
these genes, highlighting the importance of the coexistence of both 
stimuli for the acquisition of the phenotype. Nevertheless, some fea-
tures induced by hypoxia (i.e., loss of CD8+ T cell suppression) were 
indeed perdurable after cellular reoxygenation, suggesting the exis-
tence of additional phenotypical rewiring that is independent of ac-
tivation in hypoxic conditions.

Of note, it is critical to acknowledge that MAC polarization 
in vivo is produced in response to complex cues in the microenvi-
ronment, leading to a functionally diversified myriad of popula-
tions. Hence, even if, in our case, the joint effect of hypoxia plus an 
immunogenic stimulus (i.e., LPS) leads to the increase of immuno-
genic features, we do not discard that, in the presence of, for in-
stance, an anti-inflammatory signal (e.g., IL-10 and transforming 
growth factor–β), the resulting consequence upon the MAC state is 
different or inverse (e.g., boosting of immunosuppressive features) 
(55). A limitation of this study is the use of one stimulus at a time 
(LPS or other PAMPs, TNF-α, or IL-1β), which possibly does not 
account for the complexity found in physiological contexts. How-
ever, contrary to in vivo experiments, where ascertaining the effect 
and contribution of multiple signals is more complicated, we believe 
that our model is clear in showing that the isolated effect of hypoxia 
plus an additional inflammatory ligand reproducibly induces an 
inflammatory-boosting effect.

Inspection of the binding profiles of HIF1α and p65, the two 
most significantly enriched TFs in our analyses of the methylomics 
and transcriptomics data, revealed a set of genes that are commonly 
bound by both proteins around the same regions. Despite showing 
HIF1α-driven profiles, genes bound by both HIF1α and p65 were 
mostly associated with immune-related functions, reinforcing the 
role of HIF1α as a regulator of immunity and inflammation, aside 
from its role in hypoxia (56, 57). The expression of commonly bound 
genes was activated by any of the two independent stimuli (hypoxia 
or LPS), suggesting a mechanistic convergence in the response to 
these two signals, which deserves further investigation. However, 
the specific demethylation in hypoxia was exclusively dependent on 
p65, suggesting the involvement of HIF-independent hypoxic p65 
overactivation mechanisms (58). All of this implies the concurrence 
of several independent mechanisms underlying the hypoxic inflam-
matory boosting, highlighting this phenomenon as a biologically 
relevant process.

Hypoxia in the TME has been classically linked with the acquisi-
tion of detrimental features in MACs (55), where their presence is 
found widely associated with worse patient prognosis or response to 
treatment (59, 60). However, these studies often regard MACs as a 
whole, overlooking their ontogeny, heterogeneity, or localization 
within the tumor, and also fail to determine molecular signals driv-
ing specific subpopulations of these inherently plastic cells (61, 62). 
In this study, when we inspected human cancer data, patients bear-
ing a high hypoxic inflammatory signature (or of their in vivo equiv-
alent population), showed, in general, a higher overall survival, 
suggesting a protective role of these cells. It should be noted that this 
relationship between MAC abundance and clinical outcome was 
highly context specific, with associations in opposite trends depend-
ing on the cancer type. This is in line with previous findings suggest-
ing that one given MAC population may have opposing roles in 
different cancers (63).
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When focusing on examples where hypoxic inflammatory MACs 
were of prognostic value, such as BLCA, we identified that the abun-
dance of these cells significantly correlated with tumors that are 
heavily infiltrated by T cells. Predictive analyses on BLCA scRNA-
seq data suggested significant interactions between these two cell 
types, pointing to increased chemotaxis and activation of T cells 
through antigen cross-presentation by MHC class I. This function, 
classically associated with DCs, has also been described in human 
in  vivo MO-derived MACs in cancer ascites (64). Together, these 
results suggest that hypoxia prompts the activation of several mech-
anisms in activated MACs that boost not only their own inflamma-
tory features but also their ability to activate other immune cells.

Collectively, our study revealed that, in isolated inflammatory 
conditions, hypoxia has a net effect of boosting the immunogenic 
properties of MACs. We propose a model in which, under condi-
tions that inhibit DNA demethylation due to limited access to oxy-
gen, NF-κB–mediated activation overcomes this inhibitory trend 
and achieves increased demethylation of a cluster of inflammatory 
genes, provoking their overexpression. This leads to the acquisition 
of immunological and molecular signatures that are associated with 
good prognosis in human cancers, in a process that is regulated by 
TET2 and the TFs NF-κB and HIF1α. This poses specific hypoxic 
inflammatory MAC populations as promising actionable targets to 
modulate responses to cancer and underpins DNA methylation as a 
potential manipulable mechanism to fine-tune MAC states.

MATERIALS AND METHODS
Study design
This study was designed to characterize the effect of hypoxia on MAC 
differentiation and activation. As an experimental system, we used 
human MO-derived MACs, in which we interrogated the epigenetic 
(DNA methylation), transcriptional (RNA-seq), TF binding (ChIP-
seq), and protein expression (flow cytometry) profiles in normoxia 
and hypoxia, in steady state, and under several stimuli. Through our 
research, we identified an in vivo MAC subpopulation exhibiting fea-
tures consistent with our observations. To confirm our findings, we 
isolated these MACs from ovarian cancer samples and assessed their 
DNA methylation and transcriptional profiles. Replicates in all fig-
ures refer to independent biological replicates, and the statistical tests 
used in each analysis are detailed in the corresponding figure legend.

Obtention of healthy human buffy coats
Healthy, anonymous donor-derived buffy coats were obtained 
through the Catalan Blood and Tissue Bank (CBTB), following 
the principles of the World Medical Association Declaration of 
Helsinki. Before providing the first blood sample, all donors re-
ceived detailed oral and written information and signed a consent 
form at the CBTB. The study was approved by the board of the Bell-
vitge Hospital Ethical Committee (PR275/17).

Monocyte purification and MAC differentiation in vitro
Peripheral blood mononuclear cells (PBMCs) were isolated by 
Ficoll-Paque gradient centrifugation. Monocytes were isolated from 
PBMCs using positive selection with MACS magnetic bead–coupled 
CD14 antibody (Miltenyi, 130-050-201).

To obtain differentiated MACs, purified MOs were cultured in 
RPMI 1640  +  GlutaMAX (Gibco, Thermo Fisher Scientific) con-
taining 10% of heat-inactivated fetal bovine serum (FBS), penicillin 

(100 U/ml), streptomycin (100 μg/ml), and human M-CSF (15 ng/
ml; PeproTech). Immediately after the addition of M-CSF, MAC 
plates were placed in a normoxic (21% O2) or hypoxic (1% O2) CO2 
incubator at 37°C, 5% CO2, and 80 to 90% humidity for 5 days. At 
day 5, MACs were stimulated with LPS (10 ng/ml; Sigma-Aldrich) 
or an equivalent volume of phosphate-buffered saline (PBS) for 2 to 
48 hours, depending on the experiment. The hypoxic workstation 
(Whitley H35 Hypoxystation, Don Whitley Scientific, UK) was cali-
brated less than 2 weeks before all experiments.

When indicated, iMAC21 and iMAC1 at day 5 were stimulated for 
48 hours with the following ligands at different final concentrations: 
P3C (10 μg/ml; IBIAN Technologies, S.L.), CpG (3 μg/ml; ODN 
2006, InvivoGen), poly(I:C) (10 μg/ml; InvivoGen), human TNF-α 
(10 ng/ml; PeproTech), or IL-1β (10 ng/ml; PeproTech).

Quantification of cytokines in cell culture supernatants
IL-6, TNF-α, and IL-10 proteins were quantified in cell culture su-
pernatants at the end of the MAC differentiation protocol (day 7) 
with the LEGENDplex Human Inflammation Panel 1 (BioLegend), 
following the manufacturer’s instructions.

Flow cytometry of cultured cells
The expression of extracellular surface protein expression was as-
sessed by flow cytometry. To detach cells, culture medium was re-
moved and substituted with cold fluorescence-activated cell sorting 
(FACS) buffer (PBS containing 4% FBS and 2 mM EDTA). After 
5 min, cells were gently detached with rubber-capped cell scrapers 
(Sarstedt). Nonspecific antibody binding was blocked by incubating 
cells with anti-CD16/CD32 antibody for 5 min at 4°C. Then, 105 cells 
per condition were incubated in FACS buffer for 20 min at 4°C in 
the dark with optimal concentration of the following fluorophore-
conjugated antibodies: HLA-DR-PE/Cy7 (BioLegend, clone L246), 
CD86-APC (Miltenyi, clone FM95), CD80-PE (Miltenyi, clone 2D10), 
CD14-APC (Miltenyi, clone TÜK4), CD206-PE/Cy7 (BioLegend, 
clone 15-2), and CD163-FITC (BioLegend, clone GHI/61). Stained 
cells were analyzed on a FACSCanto II (BD Biosciences). FlowJo 
v10.9.0 (FlowJo LLC) was used to export fluorescence data and gen-
erate histogram plots.

Cytotoxic T cell proliferation assay
Allogenic cytotoxic (CD8+) T cells were isolated by negative selec-
tion using Dynabeads Untouched Human CD8 T Cells Kit (Invitro-
gen) and labeled with carboxyfluorescein succinimidyl ester (CFSE) 
CellTrace (Invitrogen), in accordance with the manufacturer’s in-
structions.

Purified CD8+ T cells were seeded in round-bottom 96-well 
plates (2 × 105 cells per well), and MACs were added at a ratio of 1:3 
(approximately 65,000 cells per well). To stimulate CD8+ T cell pro-
liferation, 5 μl of anti-CD3/CD28 Dynabeads (Invitrogen) were added 
to each well, except in negative controls, and additional complete 
medium was added in every well until a total volume of 200 μl was 
reached. After 4 days, CD8+ T cell proliferation was analyzed by 
FACS and determined by estimating the percentage of cells with de-
creased CFSE staining compared to unstimulated CD8+ T cells.

Real-time quantitative reverse transcription polymerase 
chain reaction
Total RNA was extracted with using a Maxwell RSC simplyRNA 
Cells Kit (Promega) and subjected to reverse transcription with the 
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Transcriptor First Strand cDNA Synthesis Kit (Roche) following 
the manufacturer’s instructions. Real-time quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR) was performed 
in three technical replicates per sample using LightCycler 480 SYBR 
Green Mix (Roche) using 5 ng of cDNA per replicate. The ΔΔCt 
method was used to determine the relative expression of target 
genes, and RPL38 was used as a housekeeping gene. qRT-PCR prim-
ers for the selected genes are described in table S3.

Western blotting
After removing the medium and washing with PBS, whole-cell pro-
tein lysates were obtained by adding Laemmli buffer (LB; 5× SDS-
PAGE Sample Loading Buffer, NZYtech) directly to cell culture plates 
(200 μl of LB per 15 × 106 cells) at the indicated time points. Lysates 
were then sonicated and loaded, and proteins were separated by 
SDS–polyacrylamide gel electrophoresis. Resolved proteins were 
transferred to polyvinylidene difluoride membranes, and immunob-
lotting was performed as described in (65). Primary antibodies were 
used at the following concentrations: 1:1000 anti-HIF1α (Novus Bio-
logicals, NB100-134), 1:1000 anti-p65 (Diagenode, 615310256), and 
1:100 anti–α-tubulin (Rockland Immunochemicals, 200-301-880).

Immunofluorescence
Cells were fixed with PBS + 4% paraformaldehyde for 20 min and 
then washed two times with PBS. Fixed cells were permeabilized 
with PBS + Triton X-100 (0.5%) for 10 min at room temperature. 
Coverslips were washed twice with PBS and blocked with PBS + 4% 
bovine serum albumin (BSA) for 1 hour at room temperature. Anti-
human HIF1α (Novus Biologicals, NB100-134) or anti-human p65 
(Abcam, ab16502), both at 1:200 with PBS + 4% BSA, were incu-
bated overnight. Then, cells were washed four times for 15 min at 
room temperature with PBS and incubated with anti-rabbit Alexa 
Fluor 488 (1:300; Invitrogen, A-11008) for 1 hour in PBS + 4% 
BSA. Then, preparations were washed four times for 15 min at 
room temperature with PBS and incubated with 1:500 Phalloidin 
Alexa Fluor 568 (Invitrogen, A12380) for 30 min in the dark. Prep-
arations were washed three times for 5 min with PBS and stained 
with 4′,6-diamidino-2-phenylindole (2 μg/ml). VECTASHIELD (Vector 
Laboratories) was used as a mounting medium. Images were taken 
with Leica STELLARIS 8.

Human ovarian tumor samples
Tumor tissue from ovaries was obtained from patients with high-
grade serous ovarian carcinoma (n = 5) following written informed 
consent (Gustave Roussy Hospital, Villejuif, France) and ethical ap-
proval (N°ID-RCB: 2015-A01183-46).

Tissue processing
Tissues were transferred to a sterile tissue culture dish and cut 
into small fragments (1 to 2 mm) with scissors and incubated 
with digestion buffer [collagenase IV (0.2 mg/ml; Sigma-Aldrich, 
C5138-500MG] and deoxyribonuclease IU (20,000 IU/ml; Roche, 
11284932001) dissolved in RPMI + 10% FBS) for 30 to 40 min at 
37°C. Digested tissue was then mechanically disaggregated by re-
suspension using a 3-ml syringe with a 18-gauge needle, filtered 
through a 70-μm strainer (Starlab, CC8111-0072), and centrifuged 
at 400g for 8 min at 4°C. When needed, pellets were then resus-
pended in 5 ml of RBC lysis buffer (eBioscience, 00-4333-57), incu-
bated on ice for 5 to 10 min, and washed with additional RPMI. Last, 

cells were counted, centrifuged, and resuspended in CryoStor CS10 
(STEMCELL, 100-1061) at a concentration of 1 × 106 to 20 × 106 cells/
ml before cryopreservation.

Cell sorting of tumor-associated MACs
Cryopreserved cells were thawed in a water bath at 37°C and instant-
ly diluted with prewarmed RPMI + 10% FBS. Cells were washed and 
incubated with Live/Dead blue dye (Invitrogen) for 20 min at 4°C in 
PBS and then resuspended and blocked in PBS + 20% FBS for 15 
min at 4°C. Then, cells were incubated in FACS buffer for 30 min at 
4°C with the appropriate volumes of the following primary antibod-
ies: CD45-PerCP (BioLegend, clone 2D1), CD3-BV650 (BioLegend, 
clone UCHT1), CD19-BV650 (BioLegend, clone HIB19), CD20-
BV650 (BioLegend, clone 2H7), CD15-BV650 (BioLegend, clone 
SSEA-1), CD16-APC-Cy7 (BioLegend, clone 3G8), HLA-DR–Alexa 
Fluor 700 (BioLegend, clone LN3), HLA-DQ–BV510 (BD, clone 
Tu169), CD14-BUV737 (BD, clone M5E2), CD88-FITC (BioLegend, 
clone S5/1), PD-L1–Alexa Fluor 594 (BioLegend, clone 29E.2A3), 
FOLR2-PE (BioLegend, clone 94b.FOLR2), CD206-BUV395 (BD, 
clone 19.2), CD207-PE-Vio770 (Miltenyi, clone MB22-9F5), CD141-
BV421 (BioLegend, clone M80), CD1c-BV785 (BioLegend, clone 
L161), and chicken anti-human CADM1 IgY primary antibody 
(MBL, clone 3E1). Cells were washed and incubated with secondary 
antibody anti-chicken–Alexa Fluor 647 for 20 additional minutes 
at 4°C. Cells were then washed with FACS buffer, resuspended in 
RPMI + 10% FBS, and passed through a 40-μm strainer (Starlab, 
CC8111-0042). Last, cells were sorted in a FACSAria Fusion (BD 
Biosciences) at a purity of <95%.

Statistical analysis
Statistical tests used in every figure are specified on their respective 
figure legends. As a general rule: Bar plots represent means ± SEM; 
box plots represent the median and interquartile range (IQR), and 
lines outside the boxes represent the 25th percentile minus 1.5 times 
the IQR and the 75th percentile plus 1.5 times the IQR. Violin plots 
depict data distribution density curves. Significance values were 
computed with functions from R’s stats package unless specified 
otherwise. P values were adjusted by the FDR method when indi-
cated. Significance values were summarized as follows: *P < 0.05, 
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
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