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Abstract

We assess the UK Biobank (UKB) Polygenic Risk Score (PRS) Release, a set of PRSs for

28 diseases and 25 quantitative traits that has been made available on the individuals in

UKB, using a unified pipeline for PRS evaluation. We also release a benchmarking software

tool to enable like-for-like performance evaluation for different PRSs for the same disease or

trait. Extensive benchmarking shows the PRSs in the UKB Release to outperform a broad

set of 76 published PRSs. For many of the diseases and traits we also validate the PRS

algorithms in a separate cohort (100,000 Genomes Project). The availability of PRSs for 53

traits on the same set of individuals also allows a systematic assessment of their properties,

and the increased power of these PRSs increases the evidence for their potential clinical

benefit.

Introduction

Polygenic risk scores (PRSs) provide a personalised measure of genetic liability of disease,

combining genetic risk information from across the genome [1, 2]. PRSs can also be used to

measure the genetic contribution to quantitative traits (for simplicity, we also use the term

PRS here for such traits). The field is growing rapidly, with advances in methods [3], tools [4],

reporting standards [5], and cataloguing [6–8]. There is also mounting evidence for their clini-

cal utility [9]. For example, a PRS algorithm for coronary artery disease has similar predictive

power to LDL cholesterol [10], an established clinical risk factor, while PRS algorithms for cor-

onary artery disease [11] and for breast cancer [12] have been shown to identify groups with
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equivalent risk to rare monogenic variant carriers. The extensive interest in PRSs means there

are a large number now available; in some cases more than 100 PRS algorithms have been pub-

lished for the same disease [7].

Prospectively collected biobanks such as UK Biobank [13] (UKB) play an important role in

enabling PRS development, evaluation, and application [14]. They can provide data for PRS

training, but more importantly they provide large representative population samples for evalu-

ation of PRSs in multiple contexts, including ancestry (herein, ‘ancestry’ refers to genetically

inferred ancestry, see S1 File). They also provide a broad base of other clinical and biomolecu-

lar information, both to train and evaluate multi-factor clinical risk models and for other

research applications [15–19].

To enable PRS research and development, we have previously made available the UK Bio-

bank PRS Release (Category 300, https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=300), which

comprises well-powered PRSs for 28 diseases and 25 quantitative traits, together with associ-

ated data [20]. The UK Biobank PRS Release comprises two PRS sets, a Standard Set with

scores calculated on all individuals in UKB, trained on external data only, and an Enhanced

Set calculated on a subset of individuals in UKB, which has the advantage of being trained on

external data plus additional training data from a separate subgroup of UKB. The Release cov-

ers a representative sample of common chronic diseases and disease-relevant quantitative

traits, spanning a range of genetic architectures, and for which sufficient genomewide training

data were available.

Since its release in mid-2022, the UK Biobank PRS Release has been widely used in

research, with over 60 publications to date taking advantage of the resource. In this paper we

provide an evaluation of the resource. Our evaluation of the UK Biobank PRS Release falls into

several parts. First, we consider predictive performance, comparing the Standard and

Enhanced PRS sets to each other and to 76 PRSs from published algorithms, with favourable

results. We take care to separate results according to genetic ancestry, as this is a known driver

of performance [21, 22]. Next, we consider the interplay between predictive performance and

potential for clinical utility. In line with earlier results [11, 12, 23–25], we show that risk pro-

files of individuals with appropriately high PRS scores are similar to those seen in carriers of

known rare pathogenic variants, that these high-PRS individuals account for a much higher

fraction of disease, and of early onset disease, and that the PRS score modulates the effect of

rare pathogenic variants. Next, we quantify the impact of age and sex on predictive PRS perfor-

mance, and also describe some multivariate PRS properties and model their influence on mor-

tality. Finally, we provide a separate evaluation of predictive performance in an external

dataset, the 100,000 Genomes Project maintained by Genomics England [26, 27]. The poly-

genic risk scores used in this external validation have also been released for use in the Geno-

mics England research environment.

A level playing field is essential for fair comparisons and evaluations of PRS performance

[28]. Reported performance can be influenced by many factors, including the choice of perfor-

mance metric, covariate adjustment, demographic and study properties of the evaluation

cohort, and decisions on how the phenotype was defined [14]. These choices can confound

inferences about the performance of the underlying PRS algorithm or PRS methodologies. To

address these issues, we have built a unified pipeline for PRS evaluation, constructing a stan-

dardised Testing Subgroup within UKB and a standardised set of disease and quantitative trait

definitions, and we have used this pipeline to benchmark the UK Biobank PRS Release. We

have made this pipeline available as an open source tool within the UK Biobank Research

Access Platform, along with the associated phenotype definitions, to allow other researchers to

check reported metrics and perform evaluations of their own or others’ PRSs against the UK

Biobank Release.

PLOS ONE Polygenic risk scores for 53 diseases and quantitative traits

PLOS ONE | https://doi.org/10.1371/journal.pone.0307270 September 18, 2024 2 / 24

at https://zenodo.org/record/7034289 (doi:10.

5281/zenodo.7034289).

Funding: The author(s) received no specific

funding for this work.

Competing interests: Peter Donnelly and Gil

McVean are partners in Peptide Groove LLP.

Deborah Thompson, Daniel Wells, Saskia Selzam,

Iliana Peneva, Rachel Moore, Kevin Sharp, William

Tarran, Edward Beard,Fernando Riveros-Mckay,

Carla Giner-Delgado, Duncan Palmer, Priyanka

Seth, James Harrison, Gil McVean, Vincent

Plagnol, Peter Donnelly and Michael Weale are

current or former employees of Genomics plc, and

are or have been in possession of stock or stock

options for Genomics plc. Peter Donnelly and Gil

McVean are Founders and Directors of Genomics

plc, and Peter Donnelly is the CEO of Genomics plc.

This does not alter our adherence to PLOS ONE

policies on sharing data and materials.

https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=300
https://doi.org/10.1371/journal.pone.0307270
https://zenodo.org/record/7034289
https://doi.org/10.5281/zenodo.7034289
https://doi.org/10.5281/zenodo.7034289


For clarity, in what follows we distinguish three closely related concepts. Throughout, we

use: (1) PRS score, or just PRS, for the score assigned to a particular individual; (2) PRS algo-
rithm for the function which calculates the PRS score from genetic data on an individual; and

(3) PRS methodology for the approach used to determine a particular PRS algorithm.

Materials and methods

This is a PRS risk model evaluation study, as per established reporting standards [5]. See S1

File for a point-by-point discussion regarding PRS-RS reporting standards. To ensure unifor-

mity of evaluation using the same individuals, the performance of both Standard and

Enhanced PRS sets was evaluated on a standard array of metrics in a single UKB Testing Sub-

group. The UKB Testing Subgroup comprised 97,608, 9,542, 9,476 and 2,864 individuals with

predominantly European, South Asian, African, and East Asian genetic ancestries, respec-

tively, and was designed to maximise the representation of non-European ancestries for testing

and to be independent of other individuals in the UK Biobank (see S1 File). The Standard PRS

Set (S1 Table) consists of scores for 28 diseases and 11 quantitative traits, calculated on all

UKB individuals, using non-UKB GWAS datasets. The Enhanced PRS Set (S1 Table), consists

of scores for 28 diseases and an expanded list of 25 quantitative traits, calculated on UKB indi-

viduals not used for training [20]. The phenotype definitions for these traits, as used for evalu-

ating the PRS Sets in the UKB Testing Subgroup, are described in S1 Table.

We built a pipeline for evaluating the performance and properties of the UK Biobank PRS

Release in the Testing Subgroup, which is available as a command line tool within the UK Bio-

bank Research Access Platform and as source code (https://github.com/Genomicsplc/ukb-

pret) (Fig 1). In order to provide reassurance against UKB-specificity and overfitting, we also

carried out performance evaluations in the 100,000 Genomes Project (S2 Table). Our evalua-

tion methods are further described in S1 File.

At the time of recruitment, all UK Biobank participants were provided with an information

leaflet and were given the opportunity to ask questions about the project. They consented to

the statement “I give permission for access to my medical and other health-related records,

and for long-term storage and use of this and other information about me, for health-related

research purposes (even after my incapacity or death)” by tapping “I agree” on a touch-screen

monitor, followed by a recording of their signature using a stylus on an electronic signature

pad. A recruitment staff member determined whether the participant had the mental capacity

to provide informed consent, and participants were told they could withdraw their consent at

any time (see https://www.ukbiobank.ac.uk/explore-your-participation/basis-of-your-

participation). Our research project (project application number 9659) was approved by the

UK Biobank according to their established access procedures [29], and legal and ethical

approval is covered by the Research Tissue Bank approval obtained from the UK Biobank’s

governing Research Ethics Committee (REC 16/NW/0274), as recommended by the National

Research Ethics Service.

Results

Performance of the PRS Release in UK Biobank

PRS performance has been quantified in multiple ways. Cumulative incidence plots (Fig 2)

provide a useful visual tool for comparing disease incidence over time among individuals

grouped according to their PRS for that disease. Notwithstanding known issues in UKB

healthy bias [30] and underreporting of some diseases (e.g. type 2 diabetes is reported mainly

from primary care records, which are only available for ~40% of UKB participants), Fig 2
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reveals large differences in disease incidence across ages for groups defined by the Enhanced

PRS Set, further emphasising the potential of PRSs for powerful individual risk stratification.

Fig 3 and S3 and S4 Tables quantify performance properties of the Enhanced PRS Set, for

disease and quantitative traits, in the Testing Subgroup. Performance is assessed across multi-

ple ancestries, subject to a minimum threshold on case numbers, as reliable performance met-

rics cannot be evaluated in some ancestries for diseases which are rare in UKB. In individuals

with European ancestries, performance in disease traits (measured by odds ratio per SD of

PRS, from logistic regression adjusting for age and sex) was variable, ranging from 3.64 (type 1

diabetes) to 1.45 (epithelial ovarian cancer), with median 1.85. Performance in quantitative

traits in individuals with European ancestries (measured by effect on standardised trait per SD

of PRS, from linear regression adjusting for age and sex) ranged from 0.421 (estimated BMD

T-score) to 0.223 (docosahexaenoic acid), with median 0.286. Similar patterns were seen for

the Standard PRS Set (S1 Fig and S3, S4 Tables), and also when performance was evaluated on

the disease traits using the area under the receiver operating characteristic curve (AUC) as an

alternative performance metric (S2 Fig and S3 Table). In individuals with European ancestries,

the AUC for the Enhanced PRS alone ranged from 0.596 (age-related macular degeneration)

to 0.888 (type 1 diabetes) among disease traits, with median 0.666.

Fig 1. Schematic workflow of the standardised evaluation pipeline for the UK Biobank PRS Release. The UK Biobank PRS Release comprises a Standard

PRS set, trained on external GWASs only, and an Enhanced PRS set, trained on both external and internal GWASs, targeting 28 disease and 25 quantitative

traits. The evaluation pipeline generates a standardised report for a PRS (either from the UK Biobank PRS Release or from a comparator) across five genetic

ancestry groups in a separate UK Biobank testing subgroup. The standardised report includes information on cumulative incidence stratified by PRS;

performance metrics including AUC, logHR-per-SD and logOR-per-SD for disease traits and r2 for quantitative traits; and PRS distribution metrics.

QT = quantitative trait. AMD = age-related macular degeneration. POAG = primary open angle glaucoma. SLE = systemic lupus erythematosus. VTE = venous

thromboembolic disease. eGFR = estimated glomerular filtration rate. BMD = bone mineral density. HDL/LDL = high/low density lipoprotein.

PUFAs = polyunsaturated fatty acids. UKB = UK Biobank. WBU = white British unrelated. GWAS = genomewide association study. PRS = polygenic risk

score. AUC = area under the receiver operating characteristic curve. logOR-per-SD/logHR-per-SD = log odds/hazard ratio per standard deviation of PRS.

EUR = European ancestry. SAS = South Asian ancestry. EAS = East Asian ancestry. AFR = African (Sub-Saharan) ancestry. Throughout, ovarian cancer refers

specifically to epithelial ovarian cancer.

https://doi.org/10.1371/journal.pone.0307270.g001
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As previously reported for other PRSs [21, 22], performance in individuals with non-Euro-

pean genetic ancestries was generally lower than in those with European ancestries (Fig 3).

Averaging across all diseases, the odds ratio per SD of PRS reduced by 9.4% in individuals with

South Asian ancestries (95% CI 6.2–12.6%), and by 14.0% in individuals with East Asian

Fig 2. Cumulative incidence plots illustrating the predictive performance of the UK Biobank PRS Release for 28 diseases in individuals with European

ancestries (Enhanced PRS Set). Each plot shows the estimated percentage of individuals diagnosed with the stated disease by a given age, for three groups

within the UKB Testing Subgroup defined only by their PRS scores. Colours indicate individuals in the highest 3% (red), median 40–60% (green) and lowest

3% (blue) of the Enhanced PRS distribution. M = male, F = female. Shadings indicate 95% confidence intervals. Type 1 diabetes age range is restricted to 0–20

years. CAD = coronary artery disease. Refer to Fig 1 legend for other disease abbreviations.

https://doi.org/10.1371/journal.pone.0307270.g002
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ancestries (95% CI 4.5–23.4%). Consistent with previous observations, the largest reduction

was in individuals with African ancestries (27.5%, 95% CI 23.6–31.3%). Reductions in effect

per SD were numerically larger for the 25 quantitative traits (Fig 3D), but the OR per SD and

effect per SD are on different scales [31], and so the magnitude of changes for the quantitative

traits cannot be directly compared to those for the disease traits. Averaging across all quantita-

tive traits, the effect size of the PRS reduced by 16.0% in individuals with South Asian ances-

tries (95% CI 11.4–20.5%), 25.9% in individuals with East Asian ancestries (95% CI 21.4–

30.3%), and 45.0% in individuals with African ancestries (95% CI 39.0–51.0%). While some

point estimates of performance were greater in individuals with South Asian ancestries, none

of these differences were significant following correction for multiple testing.

As expected, the Enhanced PRS Set generally outperformed the Standard PRS Set (S3 Fig

and S5 Table). Across the 37 diseases and quantitative traits with independent Standard and

Fig 3. Predictive performance of the UK Biobank PRS Release (Enhanced PRS Set) by ancestry group. Performance (odds ratio, or effect on standardised

quantitative trait, per SD of PRS, adjusting for age and sex), measured in the independent UKB Testing Subgroup, of the disease traits (A) and quantitative

traits (C), stratified by genetically inferred ancestry. Odds ratios are shown on a log scale. Results for non-European ancestries are shown if at least 100 cases are

available for testing. Relative change in performance in non-European compared to European ancestries for disease traits (B) and quantitative traits (D). Bars

indicate 95% confidence intervals (CI). Refer to Fig 1 legend for disease and quantitative trait abbreviations.

https://doi.org/10.1371/journal.pone.0307270.g003
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Enhanced PRS scores, there were 27 instances where the Enhanced PRS significantly outper-

formed (at a nominal 5% level) the Standard PRS in individuals with European ancestries, and

no instance where the Standard PRS significantly outperformed the Enhanced PRS (median

relative increase in Enhanced odds ratio = 1.03, range 0.97–1.24). In a separate comparison,

looking across diseases and quantitative traits, the relationship between training sample size

[20] and predictive performance was positive but noisy (S4 and S5 Figs), indicating that other

trait-specific factors, such as heritability, genetic architecture, and prevalence, may also be

important in determining performance [14, 32].

We benchmarked the UK Biobank PRS Release against 76 comparator PRS scores gener-

ated from published algorithms, across a range of disease and quantitative traits (Fig 4 and S3–

S6 Tables). Among individuals with European ancestries, the odds ratio or effect per SD of the

Enhanced PRS Set was larger than all comparator PRS for all diseases and traits apart from epi-

thelial ovarian cancer, and the Enhanced PRS Set significantly outperformed (at a nominal 5%

level) all comparator PRSs for all diseases apart from Parkinson’s disease and epithelial ovarian

cancer (median relative increase in Enhanced odds ratio = 1.12, range 0.96–1.50), and for all

quantitative traits (median change in Enhanced standardised effect size = 0.11, range 0.014–

0.28). Similar patterns were seen in comparisons of the Standard PRS Set against comparators

(S6 Fig and S5 Table). In most cases, the Enhanced and Standard PRSs were based on larger

training data sample sizes than the corresponding best performing comparator PRS, suggest-

ing that differential sample size was one of the factors responsible for the performance differ-

ence (S7 Fig).

We noted above that absolute performance of the UK Biobank PRS Release was reduced in

non-European ancestries. This is also true of the comparator PRSs (S3 and S4 Tables), which

indicate that, when compared within each ancestry group, the UK Biobank PRS Release per-

formed favourably across all traits relative to comparator PRSs. We also note that differences

in absolute risk can sometimes compensate for differences in discriminatory performance. For

example, the odds ratio per SD of the Enhanced PRS for type 2 diabetes is lower in individuals

with South Asian ancestries (OR per SD = 1.87, 95% CI 1.77–1.98), compared to European

ancestries (OR per SD = 2.27, 95% CI 2.21–2.33) (S3 Table). But because the disease is more

prevalent in individuals with South Asian ancestries, there is a bigger separation in absolute

risk between the top and bottom 3% of the PRS distribution in individuals with South Asian

compared to European ancestries (Fig 5).

PRS risk profiles compared to high-risk variant carriers

Health systems already use genetics to identify individuals at increased risk of particular dis-

eases, including some common diseases (e.g. breast cancer and heart disease), but to date this

has focussed on carriers of high-risk rare mutations [33, 34]. PRS scores provide a way to mea-

sure a separate component of genetic risk, via the accumulation of many small-effect common

variants, and so it is of interest to compare the risk profiles of these two components. Taking

familial hypercholesterolemia (FH) and breast cancer (BC) as examples, and following previ-

ous work [11, 12], we find that individuals possessing high PRS scores have a cumulative inci-

dence risk profile similar to carriers of high-risk variants in known functional genes identified

from available whole exome sequencing in the same cohort.

FH carriers (with a pathogenic or likely-pathogenic mutation in one of the four major FH

genes APOB, APOE, LDLR or PCSK9, see S1 File) comprise 0.35% of UKB individuals with

European ancestries for whom whole exome sequencing data were available (S7 Table). We

find that the average risk, by age 70, of coronary artery disease (CAD) in FH carriers is 13.2%

(95% CI 10.1–16.2%), in line with previous studies [35, 36]. A similar average risk is seen in
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Fig 4. Predictive performance of the UK Biobank PRS Release against published comparator PRSs. Performance (odds ratio, or effect on standardised

quantitative trait, per SD of PRS, adjusting for age and sex) in the independent UKB Testing Subgroup (European ancestries) of the Enhanced PRS sets for

disease traits (A) and quantitative traits (B), for those traits for which there are published PRS algorithms (citations provided in S6 Table). Odds ratios are

shown on a log scale. Bars indicate 95% confidence intervals. Asterisks indicate significance level for difference in performance between the Enhanced PRS and

the nearest comparator PRS (5000 bootstraps): * p<0.05, ** p<0.01, *** p<0.001. Wheeler-E-A, Wheeler-E-E and Wheeler-E-EA refer respectively to the

African, European and East Asian ancestry versions of the Wheeler 2017 PRSs for glycated haemoglobin using erythrocytic variants. Wheeler-G-A, Wheeler-

G-E and Wheeler-G-EA refer respectively to the African, European and East Asian ancestry versions of the Wheeler 2017 PRSs for glycated haemoglobin using

glycemic variants. Refer to Fig 1 legend for disease and quantitative trait abbreviations.

https://doi.org/10.1371/journal.pone.0307270.g004
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individuals who are in the top 19% of the CAD Enhanced PRS distribution (risk by age

70 = 14.6%, 95% CI 14.0–15.2%, Fig 6A). Risks are higher both for mutation carriers and for

high PRS individuals who are not using statins for primary prevention [37]. Restricting the

analyses to individuals for whom primary care prescribing data are available and who have no

recorded statin prescription (other than prescriptions following a CAD diagnosis), the average

risk to age 70 in FH carriers is 17.9% (95% CI 10.3–24.9%), which is similar to that seen in

statin-free individuals in the top 8% of the Enhanced PRS distribution (risk by age 70 = 18.6%,

95% CI 16.8–20.3%, Fig 6B). The proportion of high PRS individuals who are also carriers is

small, and in line with the expected independence (due to low linkage disequilibrium [38]) of

common-variant PRS scores with rare variation (S7 Table). Note that all analyses here have

caveats. For example, while FH carriers not on statins are expected to have a higher CAD risk,

these individuals might have avoided statin prescription due to lower measured cholesterol

levels, an effect which will tend to reduce their CAD risk compared to other FH carriers.

For the example of female breast cancer, individuals in the top 0.3% of the breast cancer

Enhanced PRS distribution have an equivalent average lifetime risk to deleterious mutation carri-

ers for BRCA1 or BRCA2 genes in UK Biobank (35% to age 70, S8A Fig). We note that the level of

carrier risk in UKB is lower than that reported by studies of BRCA1/2 penetrance in women who

were selected for genetic testing on the basis of a family history of breast and/or ovarian cancer

(e.g. [39]), which likely include a degree of residual ascertainment bias, but is broadly in line with

estimates from other unselected population-based studies (e.g. [40–42]). Considering breast can-

cer-associated mutations across a broader range of genes (BRCA1, BRCA2, PALB2, and the more

moderate-risk genes, ATM and CHEK2), the average carrier risk is equivalent to the top 3% of the

PRS distribution (S8B Fig, see S1 File for definition of mutation carriers).

Previous studies [11, 12] have also shown that individuals at equivalently high average risk

due to PRS typically outnumber high-risk variant carriers, often massively so. Focusing on

non-statin users, and on the individuals in the top 8% of the Enhanced UKB CAD PRS distri-

bution with similar average lifetime CAD risk to FH carriers (combined carrier frequency

0.22%), the high PRS group accounts for between 18 and 29 times the number of CAD events,

Fig 5. Cumulative incidence of type 2 diabetes in two ancestry groups, stratified by Enhanced PRS. Incidence is shown for the UKB Testing Subgroup with

European ancestries (A) and South Asian ancestries (B). Colours indicate individuals in the highest 3% (red), median 40–60% (green) and lowest 3% (blue) of

the Enhanced PRS distribution. Shaded areas indicate 95% CI.

https://doi.org/10.1371/journal.pone.0307270.g005
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depending on age (Fig 6C). Both high PRS and FH mutation carriers convey a higher average

risk at younger ages (S9 Fig), but the effect is stronger for FH carriers, explaining the reduced

ratio when restricted to age less than 50 (Fig 6C).

Following previous work [23–25], we also find that carriers of high-risk variants can have

their disease risk further modulated by their PRS score (Fig 6D), providing one explanation

for the incomplete penetrance and variable expressivity seen in carriers [43]. The more-power-

ful PRSs described here should have a larger effect in modulating the impact of rare variants

than has previously been observed.

Fig 6A and 6B display average incidence of disease with age for individuals in their respec-

tive PRS groups. Thus, our statements regarding equivalence of risk focus on average risk. We

note that some of the individuals in a given PRS group will tend to have higher incidence with

age, and some will have lower. This is also true for the mutation carriers—some will have

higher disease risk and some will have lower risk, for a number of reasons, one of which is that

the risk caused by the monogenic mutation is modulated by the individual’s PRS (Fig 6D).

Fig 6. PRS risk profiles compared to functional variant carriers. A) Cumulative incidence of coronary artery disease

(CAD) in familial hypercholesterolemia (FH) carriers (red, 0.35% of evaluation group), compared to individuals in the

top 19% of the Enhanced CAD PRS distribution (blue, percentile chosen such that the risk up to age 70 is similar to

that for mutation carriers), and the median 40–60% of the PRS (green). Carrier risks are evaluated in UKB individuals

with European ancestries for whom whole exome sequencing data were available. PRS risks are evaluated in the UKB

Testing Subgroup (European ancestries). B) Cumulative incidence of CAD in FH carriers (red, 0.22% of evaluation

group), compared to individuals in the top 8% of the Enhanced CAD PRS distribution (blue) and the median 40–60%

of the PRS (green). Carrier and PRS risks are evaluated in their respective Panel A groups, additionally restricted to

those with primary care data linkage and no recorded statin prescription prior to CAD event. C) Percentage of CAD

cases diagnosed in individuals aged<50,<60, or<70 years that occurred in FH carriers (red) or in individuals in the

top 8% of the Enhanced PRS distribution (blue). Carrier and PRS risks are evaluated in their respective Panel B groups.

The ratio between the number of high PRS cases and mutation carrier cases in each age group is shown on the plot. D)

Cumulative incidence of CAD in FH carriers (evaluated as in Panel A), with additional stratification by the top 10%

(red), median 40–60% (green), and bottom 10% (blue) of the Standard CAD PRS. The Standard PRS is used here to

maximise the number of individuals with both whole exome sequencing data and a PRS value available for analysis.

Sample size details are provided in S7 Table. Bars and shadings indicate 95% CI.

https://doi.org/10.1371/journal.pone.0307270.g006
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PRS risk profiles with age and sex

Cumulative incidence plots across multiple traits and ancestries (Fig 2 and S10, S11 Figs) indi-

cate that people with high PRS are at elevated risk of disease throughout the lifecourse. This

observation could be clinically relevant, given that a person’s PRS score is invariant with age

and can be measured early in life, and that identifying high-risk individuals at younger ages is

often challenging via other methods. In addition, there is evidence for age-dependent PRS per-

formance in some diseases, with a tendency for greater discrimination at younger ages [44],

and this could add further weight to the use of PRS for risk identification in younger people.

We assessed this question systematically across the diseases in the PRS Release. Fig 7 shows

that many of the diseases display evidence for larger PRS effect size (log hazard ratio per SD of

PRS) in younger compared to older individuals in UKB (nine out of 22 diseases with nominal

significance and 13 consistent with the null of no age effect). This is in line with earlier obser-

vations of declining genetic relative risk with increasing age [44].

Fig 7. Change in Standard PRS disease effect size with age. Difference in PRS effect size (log hazard ratio per SD of PRS, based on incident

events over the next 10 years) between younger (40–49) and older (60–69) age-at-first-assessment groups. Standard PRSs are presented and

evaluated in all UKB individuals with European ancestries, to maximise case numbers. Alzheimer’s disease, asthma, psoriasis, schizophrenia and

type 1 diabetes are omitted, because they are primarily diagnosed outside the UKB age range. Bars indicate 95% CI. Refer to Fig 1 legend for

disease abbreviations.

https://doi.org/10.1371/journal.pone.0307270.g007
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The majority of the external training data used for the UKB PRS Release is in the form of

GWAS summary statistics combined across sexes [20], and for this reason the PRSs have been

trained on females and males together (apart from those for sex-specific traits). Nevertheless,

we observe some sex-specific differences in Enhanced PRS performance (Fig 8, S8 Table). Sig-

nificant differences (at the nominal 5% level) are seen for six disease traits (larger female effects

for age-related macular degeneration and hypertension; larger male effects for asthma, cardio-

vascular disease, coronary artery disease and venous thromboembolic disease), and nine quan-

titative traits (larger female effects for apolipoprotein B, creatinine-based estimated glomerular

filtration rate, HDL cholesterol, remnant cholesterol, resting heart rate, sphingomyelins, total

cholesterol and total triglycerides; larger male effect for calcium).

Fig 8. Change in PRS effect size with sex. Performance (odds ratio, or effect on sex-standardised quantitative trait, per SD of PRS, adjusting for age),

measured in the independent UKB Testing Subgroup (European ancestries), of the Extended PRS set for disease traits (A) and quantitative traits (B), stratified

by All (blue), Female (purple) and Male (orange). Odds ratios are shown on a log scale. Quantitative traits are standardised to zero mean and unit variance

within each sex separately, and then combined for the ‘All’ analysis, generating a different effect size compared to Figs 3 and 4. Asterisks indicate two-tailed

significance level for difference in performance effect size between females and males: * p<0.05, ** p<0.01, *** p<0.001. Refer to Fig 1 legend for disease and

quantitative trait abbreviations.

https://doi.org/10.1371/journal.pone.0307270.g008
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Heritability is a determinant of PRS performance [14, 32], and our results are broadly con-

cordant with previous studies of sex-specific heritability in UKB traits [45, 46]. Bernabeu et al.
[45] report the same sex biases as we observe, with significant heritability differences for

ischaemic heart diseases, hypertension and venous thromboembolic disease, and borderline

significance for asthma (FDR-corrected p = 0.06). Age-related macular degeneration was not

addressed by these authors. Flynn et al. [46] report concordant effects, with significant herita-

bility differences, for apolipoprotein B, creatinine-based estimated glomerular filtration rate,

HDL cholesterol and total cholesterol. Remnant cholesterol and resting heart rate were not

addressed by these authors. Differences in trait processing may explain certain inconsistencies,

in that Flynn et al. did not find significant heritability differences for calcium or total triglycer-

ides, but instead found significant heritability differences for LDL cholesterol. Flynn et al. ana-

lysed covariate-corrected traits (correcting for age, genetic principal components, and several

other factors), and they applied empirical corrections for the effect of statin use on LDL choles-

terol, whereas we removed statin users completely for that analysis.

These sex-specific patterns may reflect differences in environmental heterogeneity between

sexes, or may reflect true differences in genetic architecture. The latter would imply a benefit

to sex-specific training for PRS algorithms, but there are conflicting reports on the relative

importance of these two factors [45–47].

Multivariate PRS properties

We assessed PRS correlations across the 53 diseases and quantitative traits in the UKB PRS

Release. Correlations between PRS scores for the disease traits are generally low (S12 Fig, S9

and S10 Tables). The only disease-disease correlations greater than 0.5 are between closely

connected diseases: coronary artery disease and cardiovascular disease (r = 0.80, Enhanced

Set), hypertension and ischaemic stroke (r = 0.78, Enhanced Set) and Crohn’s disease and

ulcerative colitis (r = 0.55, Standard/Enhanced Set). Correlations among PRSs for quantitative

traits are stronger, with strong correlations in particular among the traits related to lipid biol-

ogy, and with the strongest correlation between phosphatidylcholines and phosphoglycerides

(r = 0.99, Enhanced Set). The only absolute correlations greater than 0.5 between a disease

trait and a quantitative trait are those between primary open angle glaucoma and intraocular

pressure, a known major risk factor (r = 0.62, Enhanced Set), and between osteoporosis and

estimated bone mineral density, a diagnostic factor (r = -0.90, Enhanced Set). Comparing the

Enhanced PRS for coronary artery disease to Enhanced PRSs for known risk factors, the corre-

lation with the LDL cholesterol PRS is 0.22, while the correlation with the body mass index

PRS is 0.16. Despite generally low correlations, clustering of traits by PRS scores generates rela-

tionships consistent with known biology (S12 Fig). For example, type 2 diabetes clusters with

body mass index (r = 0.31, Enhanced Set) and glycated haemoglobin (r = 0.32, Enhanced Set).

The relatively low between-PRS correlations suggest that multi-PRS prediction models

could be useful for analyses of general mortality. Following previous work [16, 48], we carried

out separate training and testing of a stepwise regression of time from first assessment to death

from any cause, using the Standard Set PRS scores for both diseases and quantitative traits as

predictors. We used the same UKB Testing Subgroup for testing, and for training we used the

same White British Unrelated subgroup that was used for GWAS training of the Enhanced

PRS Set (see S1 File for details). For most traits, we found the expected 2:1 relationship

between PRS effect size on participants’ own mortality compared to that of their parents (S13

Fig). PRS scores for common diseases including coronary artery disease (hazard ratio per

SD = 1.06, 95% CI 1.04–1.08) and ischaemic stroke (hazard ratio per SD = 1.07, 95% CI 1.05–

1.09) were significant determinants of participants’ all-cause mortality, as was the PRS for
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body mass index (hazard ratio per SD = 1.05, 95% CI 1.04–1.07). The PRS for HDL cholesterol

(hazard ratio per SD = 0.97, 95% CI 0.95–0.98) was a notable protective factor. The model that

included all the PRS risk factors in S13 Fig was a significantly better predictor of mortality in

the UKB Testing Subgroup than a model including age-at-first-assessment and sex only, both

for own mortality (change in Harrell’s C = 0.0043, 95% CI 0.0025–0.0061, p = 3.8x10-6) and for

parental mortality (change in Harrell’s C = 0.0073, 95% CI 0.0067–0.0079, p = 9.2x10-136,

where the model was adjusted for the participant’s age-at-first-assessment and for the parent’s

sex). However, the amount of variation explained by the model was low (Royston’s [49] mea-

sure of explained variation = 1.5% for the PRS-only model on participants’ own mortality),

suggesting the model is useful more for biological insight than direct prediction.

Validation in the 100,000 Genomes Project

The previous sections have validated the PRS scores as powerful predictors of disease and

quantitative traits in UK Biobank. To further validate the PRS algorithms, and to guard against

UKB specificity of results or overfitting, we examined their performance in the 100,000

Genomes Project [26, 27] (100KGP). This cohort is similar to UK Biobank in being UK-based

(specifically, England-based), with linkage to the same UK electronic healthcare record system,

but is different in being recruited either via genetic disorder probands or cancer diagnosis, and

in being genetically assayed via whole-genome sequencing rather than array-based genotyping.

We selected a subgroup of unrelated 100KGP individuals, excluding those with rare genetic or

comorbid disorders (35,123, 3,262, 1,209, and 353 individuals with European, South Asian,

African, and East Asian ancestries, respectively; see S1 File), and evaluated PRS scores for

twelve diseases (which are available through application to Genomics England). Despite the

differences in cohort characteristics, we found predictive performances to be similar (Fig 9;

Fig 9. Comparative predictive performance in UK Biobank and 100,000 Genomes Project. Performance (OR per SD) across twelve

diseases in the UKB Testing Subgroup and selected individuals with European ancestries from the 100,000 Genomes Project (selected to be

free of rare genetic and comorbid disorders). A) Enhanced PRSs. B) Standard PRSs. Odds ratios are shown on a log scale. Coloured bars

show the 95% CI of the OR per SD. Refer to Fig 1 legend for disease abbreviations.

https://doi.org/10.1371/journal.pone.0307270.g009
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Pearson r (logOR per SD, Enhanced PRS, European ancestry) = 0.957; Pearson r (logOR per

SD, Standard PRS, European ancestry) = 0.974; see S2 Table for all performance data). Reas-

suringly, the alignment in effect sizes holds for both the Extended and Standard PRS sets, sug-

gesting that the use of UKB training data for the former set did not lead to cohort-specific

performance improvements. The only disease with a significant difference in logOR per SD (at

nominal 5% level) was atrial fibrillation, which had a higher European ancestry performance

in 100KGP than in UKB for both the Enhanced PRS (OR per SD (100KGP) = 2.18 (95% CI

2.01–2.34); OR per SD (UKB) = 1.94 (95% CI 1.88–2.00)) and the Standard PRS (OR per SD

(100KGP) = 2.06 (95% CI 1.89–2.22); OR per SD (UKB) of 1.82 (95% CI 1.76–1.87)).

Discussion

The UK Biobank PRS Release has already been widely used by the research community. In this

paper we have evaluated its performance in several respects, including performance compari-

sons with other PRS algorithms, and across ancestries, and shown the generalisability of the

algorithm to another large UK-based resource, namely the 100,000 Genomes Project main-

tained by Genomics England.

Validating PRS performance, or comparing the performance of different PRS algorithms, is

challenging, because performance is context specific. The primary requirement is for a ‘level

playing field’, to correct for cohort-specific and design-specific factors such as phenotype defi-

nition and other cohort characteristics [14]. We have developed and made available a PRS

evaluation tool to address this requirement. It enables robust and like-for-like comparisons of

the predictive performance of different PRS scores in UKB. It should facilitate the ongoing

development of PRSs by the research community.

Our comparisons show that both the Enhanced and Standard PRS scores released in the

UK Biobank PRS Release are more powerful, in individuals with European and non-European

ancestries, than almost all of those in a large comparator set of 76 previously released PRSs

across these traits. The potential reasons for this increase in performance are varied, but differ-

ence in training sample sizes is one likely factor, especially for the Enhanced PRSs which lever-

age additional data from UK Biobank. The observation of similar performance in a separate

UK cohort (the 100,000 Genomes Project) further validates the algorithms underlying the

PRSs released in UKB. We note that making PRS scores available for a range of widely-used

cohorts will become especially valuable as PRS algorithms themselves move beyond simple lin-

ear combinations of variant weights, and towards other algorithmic forms with pre- and post-

processing steps [3].

The availability of powerful PRSs for 53 traits on the same large set of extensively character-

ised individuals has allowed a systematic study of PRS properties. PRS performance differs

substantially across the diseases studied, presumably due, amongst other things, to differences

in GWAS sample size [50] and genetic architecture across diseases (for example, ischemic

stroke is a collection of multiple subtypes which have differing genetic risk factors [51], mean-

ing that an algorithm that generates a single PRS for this compound phenotype will have

reduced power). With a few unsurprising exceptions, within-individual pairwise correlations

of PRS scores are low. The correlation between the Enhanced coronary artery disease (CAD)

PRS and the Enhanced PRSs for known quantitative risk factors for CAD (e.g. LDL cholesterol:

r = 0.22; body mass index: r = 0.16) are also not appreciable. Many PRSs show evidence for

larger effect sizes for younger, compared to older, individuals in UKB. We also find sex-spe-

cific differences in the predictive power of some PRSs. Sex-specific differences in heritability

would generate such differences, and this is broadly consistent with previous studies [45, 46].

More work is needed to explore the causes of these observed patterns.
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One critical aspect is PRS performance in different ancestry groups [21, 22]. We developed

our PRS evaluation tool with this in mind, maximising the representation of non-European

ancestries in the Testing Subgroup of UKB and reporting ancestry-specific results for all analy-

ses with sufficient case data. We confirmed and quantified the widely-observed diminution of

performance across ancestries, with average decrease in disease OR per SD of 9.4%, 14.0%, and

27.5%, respectively for individuals with South Asian, East Asian, and African ancestries respec-

tively, relative to the performance for individuals with European ancestries. Clearly there is an

urgent need for additional GWAS data in individuals with non-European ancestries, through

further studies, and where possible, release of summary statistics from existing studies, to

improve PRS training data, and for improved PRS methodologies to further reduce perfor-

mance differences across ancestries. We note that PRSs nonetheless have predictive power

across all ancestries, and that the predictive power of the UKB Enhanced PRS in individuals

with African ancestries for some diseases, such as type 2 diabetes or prostate cancer, with OR

per SD of 1.48 (95% CI 1.40–1.56) and 1.56 (95% CI 1.38–1.76) respectively, are larger than

those for individuals with European ancestries for other diseases, such as cardiovascular dis-

ease or age-related macular degeneration, with OR per SD of 1.52 (95% CI 1.49–1.55) and 1.45

(95% CI 1.39–1.51) respectively. Further, differences in baseline risk in different ancestries can

mean that, notwithstanding diminished PRS performance, high-PRS individuals in a particu-

lar non-European ancestry group can be at higher levels of absolute risk than similarly high-

PRS individuals with European ancestries (recall Fig 5, which shows much higher risk for type

2 diabetes for similar levels of PRS in individuals with South Asian compared to European

ancestries in UKB). Discussion of the application of PRS in different groups should incorpo-

rate differences not only in disease specific performance, but also in baseline disease rates.

Many health systems currently have active programmes to identify carriers of rare, high-

penetrance, mutations which increase risk for common diseases, such as familial hypercholes-

terolemia (FH) for CAD, mutations in BRCA1, BRCA2, ATM, CHEK2, and PALB2 for breast

cancer, and Lynch syndrome for bowel cancer. As others have noted [11, 12], it is now possible

to identify a different set of individuals, with equivalent levels of average risk to that of rare

mutation carriers, where the risk is also genetic, but driven by the cumulative impact of large

numbers of common variants. Continuing improvement in PRS methodology and training

data will further increase the proportion of individuals in the population at levels of risk which

would attract attention in health systems if due to rare variants. For example, with the UKB

Enhanced CAD PRS we have shown that the top 8% of individuals have a similar level of aver-

age CAD risk to FH mutation carriers (comparing individuals in UKB not on statins).

It seems untenable in the long term to offer interventions or enhanced screening to one

group of individuals at high risk because of genetics but not to another, just because the vari-

ants contributing to risk are different. This supports the case for an equivalence-of-risk princi-

ple, in which risk-based screening guidelines developed for the management of high-risk

variant carriers [33, 34] can be extended to cover individuals with equivalent risk based on

their PRS. Further, the high-PRS individuals account for many fold more disease events [11,

12], an effect which will also increase as the power of PRSs continues to improve. In the FH

example, the high PRS group is responsible for up to 30-fold more disease events compared to

FH carriers. Increasing detection of FH carriers is, appropriately, a focus of many health sys-

tems (e.g. a key metric in the current 10-year plan for the UK NHS is to increase detection

from current levels of 7% to at least 25%) [52]. These results suggest that a parallel approach to

detecting high-risk individuals via PRS could have an even greater impact on disease

prevention.

There are limitations to this study. Only the performance of PRS scores generated for UK

Biobank and 100,000 Genomes Project are assessed, and expansion to other cohorts is limited
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by the proprietary nature of the PRS algorithms used to generate these scores. While the simi-

larity in performance between these two cohorts is reassuring, further generalisability of per-

formance is not guaranteed and may be limited by shared characteristics of the two cohorts,

such as their shared UK origin.

The UK Biobank PRS Release provides well-validated PRS scores across multiple traits, and

provides opportunities for subsequent research. We expect that they will evolve in time, and

will be improved upon. We have provided a comparative evaluation tool in the expectation

that better PRS scores will be developed, as data and methodologies improve. We anticipate

the UK Biobank PRS Release will provide an ongoing platform of powerful polygenic risk

scores, to enable continuing research and clinical model development.
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S1 Fig. Predictive performance of the UK Biobank PRS Release (Standard Set) by ances-

tries. Performance (odds ratio, or effect on standardised quantitative trait, per SD of PRS,

adjusting for age and sex), measured in the independent UKB Testing Subgroup, of the disease

traits (A) and quantitative traits (C), stratified by genetically inferred ancestry. Results for

non-European ancestries are shown if at least 100 cases are available for testing. Relative

change in performance in non-European compared to European ancestries for disease traits

(B) and quantitative traits (D). Odds ratios are shown on a log scale. Bars indicate 95% confi-

dence intervals (CI). Refer to Fig 1 legend for disease and quantitative trait abbreviations.

(TIF)

S2 Fig. Predictive performance (AUC) of the UK Biobank PRS Release disease traits by

ancestries. Performance (area under the receiver operating characteristic (ROC) curve, or

AUC), measured in the independent UKB Testing Subgroup, of the disease traits in the Stan-

dard (A) and Enhanced (B) PRS sets, stratified by genetically inferred ancestry. Results for

non-European ancestries are shown if at least 100 cases are available for testing. Bars indicate

95% confidence intervals (CI). Refer to Fig 1 legend for disease abbreviations.

(TIF)

S3 Fig. Comparison of the predictive performance of the Standard and Enhanced PRS sets.

Performance (odds ratio, or effect on standardised quantitative trait, per SD of PRS, adjusting

for age and sex), measured in the independent UKB Testing Subgroup, of the disease traits (A,

C, E, G) and quantitative traits (B, D, F, H) in the Standard and Enhanced PRS sets in different

ancestries. EUR = European ancestry group (A, B). EAS = East Asian ancestry group (C, D).

SAS = South Asian ancestry group (E, F). AFR = Sub-Saharan African ancestry group (G, H).

Bars indicate 95% confidence intervals (CI). Traits with highest and lowest Enhanced PRS per-

formance are labelled. For trait codes see S1 Table.

(PNG)

S4 Fig. Relationship between disease trait predictive performance and GWAS effective

sample size across genetically inferred ancestry groups. A Relationship between the ances-

try-specific odds ratio and effective sample size (across all training GWASs) for the Enhanced

PRS Set [20]. B Relationship between relative change in odds ratio and relative change in effec-

tive sample size, comparing the Enhanced to the Standard PRS Set [20]. Effective sample size is

defined as 4∑jnjcj(1−cj), where nj and cj are respectively the total sample size and the proportion

of cases for the jth constituent GWAS for a given trait. Only those diseases with non-overlap-

ping samples in the constituent GWASs are displayed. Odds ratios are shown on a log scale.

Bars indicate 95% confidence intervals. Dashed lines indicate linear regression slopes, with p-

values and asterisks indicating the significance of the slope (* p<0.05, ** p<0.01, ***
p<0.001). Refer to Fig 1 legend for disease abbreviations.

(PNG)

S5 Fig. Relationship between quantitative trait predictive performance and GWAS sample

size across genetically inferred ancestry groups. Relationship between the ancestry-specific

effect on standardised quantitative trait, per SD of PRS, and sample size (across all GWASs)

for the Enhanced PRS Set [20]. Only those traits with non-overlapping samples in the constitu-

ent GWASs are displayed. Bars indicate 95% confidence intervals. Dashed lines indicate linear
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regression slopes, with p-values and asterisks indicating the significance of the slope (*
p<0.05, ** p<0.01, *** p<0.001). Refer to Fig 1 legend for quantitative trait abbreviations.

(PNG)

S6 Fig. Predictive performance of the UK Biobank PRS Standard Release against published

comparator PRSs. Performance (odds ratio, or effect on standardised quantitative trait, per

SD of PRS, adjusting for age and sex) in the independent UKB Testing Subgroup (European

ancestries) of the Standard PRS sets for disease traits (A) and quantitative traits (B), for those

traits for which there are published PRS algorithms (citations provided in S6 Table). Odds

ratios are shown on a log scale. Bars indicate 95% confidence intervals. Asterisks indicate sig-

nificance level for difference in performance between the Standard PRS and the nearest com-

parator PRS (5000 bootstraps): * p<0.05, ** p<0.01, *** p<0.001. Wheeler-E-A, Wheeler-E-E

and Wheeler-E-EA refer respectively to the African, European and East Asian ancestry ver-

sions of the Wheeler 2017 PRSs for glycated haemoglobin using erythrocytic variants.

Wheeler-G-A, Wheeler-G-E and Wheeler-G-EA refer respectively to the African, European

and East Asian ancestry versions of the Wheeler 2017 PRSs for glycated haemoglobin using

glycemic variants. Refer to Fig 1 legend for disease and quantitative trait abbreviations.

(TIF)

S7 Fig. Comparison of training data effective sample sizes (A) and total samples (B) for dis-

ease and quantitative traits, among Comparator, Standard and Enhanced PRS. Total training

sample sizes for the Enhanced PRS, Standard PRS, and the best-performing comparator PRS,

for disease traits (A) and quantitative traits (B) [20]. For disease traits, the x-axis is the effective

sample size, defined as 4 / ((1/n0) + (1/n1)), where n0 is the total number of controls, and n1 is

the total number of cases. Where training data came from meta-analysis of multiple GWASs,

the total numbers are used, as it was not always possible to obtain accurate per-GWAS num-

bers for the PGS Catalog PRSs. A dashed connecting line is used where the comparator PRS

sample size is larger than the Enhanced PRS sample size. Only those traits for which at least

one comparator PRS was available are displayed. Traits with overlapping samples in the Stan-

dard/Enhanced PRS training are excluded. In addition, ischaemic stroke is not shown, because

the best comparator PRS (Abraham et al 2019, doi: 10.1038/s41467-019-13848-1) was trained

using a complex combination of PRSs for 19 different diseases and quantitative traits; hyper-

tension is also excluded because the only comparator PRS (Said et al 2018, doi: 10.1001/

jamacardio.2018.1717) used a combination of disease and quantitative trait data. Refer to Fig 1

legend for disease and quantitative trait abbreviations.

(PDF)

S8 Fig. Comparative cumulative incidence plots in high-risk breast cancer gene mutation

carriers and high-PRS individuals of equivalent risk. Cumulative incidence of breast cancer

for carriers of high-risk mutations in breast cancer associated genes (red), compared to indi-

viduals in the top fraction of the PRS distribution (blue) corresponding to equivalent risk, and

the median 40–60% of the PRS (green). Carrier risks are evaluated in UKB women with Euro-

pean ancestries for whom exome sequencing data are available. PRS risks are evaluated in the

UKB Testing Subgroup (European ancestries, female). A, Incidence of breast cancer in BRCA1
+BRCA2 loss-of-function variant carriers (0.4% of evaluation group) vs top 0.3% of breast can-

cer Enhanced PRS. B, Incidence of breast cancer in combined BRCA1+BRCA2+ATM+CHEK2
+PALB2 loss-of-function variant carriers (1.34% of evaluation group) vs top 3% of breast can-

cer Enhanced PRS. Sample size details are provided in S7 Table. Shaded areas indicate 95% CI.

(TIFF)
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S9 Fig. Effects of familial hypercholesterolemia (FH) gene mutations and PRS on risk of

coronary artery disease (CAD), by age of diagnosis. The relative influence on CAD risk (haz-

ard ratio) of FH carrier vs non-carrier status (pink), and of high vs median (40–60%)

Enhanced CAD PRS status (blue). A Analyses for the top 19% of the Enhanced CAD PRS. Car-

rier risks are evaluated in UKB individuals with European ancestries for whom whole exome

sequencing data were available; PRS risks are evaluated in the UKB Testing Subgroup (Euro-

pean ancestries). B Analyses for the top 8% of the Enhanced CAD PRS. Carrier and PRS risks

are evaluated in their respective Panel A groups, additionally restricted to those with primary

care data linkage and no recorded statin prescription prior to CAD event. Sample size details

are provided in S7 Table. Bars represent 95% CI.

(TIFF)

S10 Fig. Cumulative incidence plots by ancestries for the Standard PRS Set. Cumulative

incidence plots are shown for each disease and each ancestry group in the UKB Testing Sub-

group, provided more than 40 cases are available (the number of cases is printed otherwise),

with separate curves for the highest 3% (red), lowest 3% (blue), and median 40–60% (green) of

the PRS distribution. A. Alzheimer’s disease (AD). B. Atrial fibrillation (AF). C. Age-related

macular degeneration (AMD). D. Asthma (AST). E. Breast cancer (BC), F. Bipolar disorder

(BD), G. Coronary artery disease (CAD). H. Crohn’s disease (CD). I. Coeliac disease (CED). J.

Bowel cancer (CRC). K. Cardiovascular disease (CVD), L. Epithelial ovarian cancer (EOC). M.

Hypertension (HT). N. Ischaemic stroke (ISS). O. Melanoma (MEL). P. Multiple sclerosis

(MS). Q. Osteoporosis (OP). R. Prostate cancer (PC). S. Parkinson’s disease (PD). T. Primary

open angle glaucoma (POAG). U. Psoriasis (PSO). V. Rheumatoid arthritis (RA). W. Schizo-

phrenia (SCZ). X. Systemic lupus erythematosus (SLE). Y. Type 1 diabetes (T1D). Z. Type 2

diabetes (T2D). AA. Ulcerative colitis (UC). AB. Venous thromboembolic disease (VTE).

EUR = European ancestry group. EAS = East Asian ancestry group. SAS = South Asian ances-

try group. AFR = Sub-Saharan African ancestry group. Shaded areas indicate 95% CI.

(PDF)

S11 Fig. Cumulative incidence plots by ancestries for the Enhanced PRS Set. Cumulative

incidence plots are shown for each disease and each ancestry group in the UKB Testing Sub-

group, provided more than 40 cases are available (the number of cases is printed otherwise),

with separate curves for the highest 3% (red), lowest 3% (blue), and median 40–60% (green) of

the PRS distribution. A. Alzheimer’s disease (AD). B. Atrial fibrillation (AF). C. Age-related

macular degeneration (AMD). D. Asthma (AST). E. Breast cancer (BC), F. Bipolar disorder

(BD), G. Coronary artery disease (CAD). H. Crohn’s disease (CD). I. Coeliac disease (CED). J.

Bowel cancer (CRC). K. Cardiovascular disease (CVD), L. Epithelial ovarian cancer (EOC). M.

Hypertension (HT). N. Ischaemic stroke (ISS). O. Melanoma (MEL). P. Multiple sclerosis

(MS). Q. Osteoporosis (OP). R. Prostate cancer (PC). S. Parkinson’s disease (PD). T. Primary

open angle glaucoma (POAG). U. Psoriasis (PSO). V. Rheumatoid arthritis (RA). W. Schizo-

phrenia (SCZ). X. Systemic lupus erythematosus (SLE). Y. Type 1 diabetes (T1D). Z. Type 2

diabetes (T2D). AA. Ulcerative colitis (UC). AB. Venous thromboembolic disease (VTE).

EUR = European ancestry group. EAS = East Asian ancestry group. SAS = South Asian ances-

try group. AFR = Sub-Saharan African ancestry group. Shaded areas indicate 95% CI.

(PDF)

S12 Fig. Heatmaps of correlations among PRS scores. Correlations (calculated from individ-

uals with European ancestries in the UKB Testing Subgroup) among diseases and quantitative

traits for the Standard Set (A) and Enhanced Set (B), ordered according to a hierarchical clus-

tering dendrogram (complete linkage on Euclidean distance, see hclust() function in R). See
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S1 Table for trait code mappings.

(PDF)

S13 Fig. Hazard ratios from multivariate PRS modelling of all-cause mortality in UKB par-

ticipants and their parents. Traits are shown if selected both by stepwise regression of partici-

pant’s time-to-death from first assessment and also by stepwise regression of their parents’ age

at death (maternal and paternal data entered as separate observations). Hazard ratios shown

on a log scale. See S1 Table for trait code mappings. Dashed line shows the expected parent:off-

spring log(hazard ratio) ratio of 1:2. A natural explanation for the larger than expected effect

of CAD and ISS PRSs on parental mortality is that these diseases were bigger killers in the past,

and so made up a larger proportion of all-cause mortality.

(PNG)
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28. Pain O, Glanville KP, Hagenaars SP, Selzam S, Fürtjes AE, Gaspar HA, et al. Evaluation of polygenic

prediction methodology within a reference-standardized framework. PLOS Genet. 2021; 17: e1009021.

https://doi.org/10.1371/journal.pgen.1009021 PMID: 33945532

29. UK Biobank Coordinating Centre. ACCESS PROCEDURES: Application and review procedures for

access to the UK Biobank Resource. 2011.

30. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of sociodemo-

graphic and health-related characteristics of UK Biobank participants with those of the general popula-

tion. Am J Epidemiol. 2017; 186: 1026–1034. https://doi.org/10.1093/aje/kwx246 PMID: 28641372

31. Yang J, Wray NR, Visscher PM. Comparing apples and oranges: equating the power of case-control

and quantitative trait association studies. Genet Epidemiol. 2010; 34: 254–257. https://doi.org/10.1002/

gepi.20456 PMID: 19918758

32. Tanigawa Y, Qian J, Venkataraman G, Justesen JM, Li R, Tibshirani R, et al. Significant Sparse Poly-

genic Risk Scores across 813 traits in UK Biobank. 6 Sep 2021 [cited 13 Feb 2022]. https://doi.org/10.

1101/2021.09.02.21262942

33. National Institute for Health and Care Excellence (NICE). Familial breast cancer: classification, care

and managing breast cancer and related risks in people with a family history of breast cancer. 2019.

Available: https://www.nice.org.uk/guidance/cg164

34. National Comprehensive Cancer Network. National Comprehensive Cancer Network: NCCN Clinical

Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pan-

creatic. Version 1.2021. 2020. Available: https://www.nccn.org/professionals/physician_gls/pdf/

genetics_bop.pdf

PLOS ONE Polygenic risk scores for 53 diseases and quantitative traits

PLOS ONE | https://doi.org/10.1371/journal.pone.0307270 September 18, 2024 23 / 24

https://doi.org/10.1038/s41591-020-0785-8
http://www.ncbi.nlm.nih.gov/pubmed/32251405
https://doi.org/10.1038/s41467-020-16022-0
http://www.ncbi.nlm.nih.gov/pubmed/32385265
https://doi.org/10.1002/ana.25918
https://doi.org/10.1002/ana.25918
http://www.ncbi.nlm.nih.gov/pubmed/32996171
https://doi.org/10.1001/jamapsychiatry.2021.1961
http://www.ncbi.nlm.nih.gov/pubmed/34347035
https://doi.org/10.1101/2022.06.16.22276246
https://doi.org/10.1038/s41467-019-11112-0
https://doi.org/10.1038/s41467-019-11112-0
http://www.ncbi.nlm.nih.gov/pubmed/31346163
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1038/s41588-019-0379-x
http://www.ncbi.nlm.nih.gov/pubmed/30926966
https://doi.org/10.1093/jnci/djw302
http://www.ncbi.nlm.nih.gov/pubmed/28376175
https://doi.org/10.1038/s41436-020-0862-x
https://doi.org/10.1038/s41436-020-0862-x
http://www.ncbi.nlm.nih.gov/pubmed/32665703
https://doi.org/10.1038/s41467-020-17374-3
http://www.ncbi.nlm.nih.gov/pubmed/32820175
https://figshare.com/articles/journal_contribution/GenomicEnglandProtocol_pdf/4530893/4
https://figshare.com/articles/journal_contribution/GenomicEnglandProtocol_pdf/4530893/4
https://doi.org/10.1136/bmj.k1687
https://doi.org/10.1136/bmj.k1687
http://www.ncbi.nlm.nih.gov/pubmed/29691228
https://doi.org/10.1371/journal.pgen.1009021
http://www.ncbi.nlm.nih.gov/pubmed/33945532
https://doi.org/10.1093/aje/kwx246
http://www.ncbi.nlm.nih.gov/pubmed/28641372
https://doi.org/10.1002/gepi.20456
https://doi.org/10.1002/gepi.20456
http://www.ncbi.nlm.nih.gov/pubmed/19918758
https://doi.org/10.1101/2021.09.02.21262942
https://doi.org/10.1101/2021.09.02.21262942
https://www.nice.org.uk/guidance/cg164
https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf
https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf
https://doi.org/10.1371/journal.pone.0307270


35. Abul-Husn NS, Manickam K, Jones LK, Wright EA, Hartzel DN, Gonzaga-Jauregui C, et al. Genetic

identification of familial hypercholesterolemia within a single U.S. health care system. Science.

2016;354: aaf7000. https://doi.org/10.1126/science.aaf7000 PMID: 28008010

36. Patel AP, Wang M, Fahed AC, Mason-Suares H, Brockman D, Pelletier R, et al. Association of Rare

Pathogenic DNA Variants for Familial Hypercholesterolemia, Hereditary Breast and Ovarian Cancer

Syndrome, and Lynch Syndrome With Disease Risk in Adults According to Family History. JAMA Netw

Open. 2020; 3: e203959. https://doi.org/10.1001/jamanetworkopen.2020.3959 PMID: 32347951

37. Futema M, Taylor-Beadling A, Williams M, Humphries SE. Genetic testing for familial hypercholesterol-

emia—past, present, and future. J Lipid Res. 2021;62. https://doi.org/10.1016/j.jlr.2021.100139 PMID:

34666015

38. Wray NR, Purcell SM, Visscher PM. Synthetic Associations Created by Rare Variants Do Not Explain

Most GWAS Results. PLOS Biol. 2011; 9: e1000579. https://doi.org/10.1371/journal.pbio.1000579

PMID: 21267061

39. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al. Risks of

breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA—J

Am Med Assoc. 2017; 317: 2402–2416. https://doi.org/10.1001/jama.2017.7112 PMID: 28632866

40. Forrest IS, Chaudhary K, Vy HMT, Petrazzini BO, Bafna S, Jordan DM, et al. Population-Based Pene-

trance of Deleterious Clinical Variants. JAMA. 2022; 327: 350. https://doi.org/10.1001/jama.2021.

23686 PMID: 35076666

41. Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey AK, et al. Exome sequencing

and characterization of 49,960 individuals in the UK Biobank. Nature. 2020; 586: 749–756. https://doi.

org/10.1038/s41586-020-2853-0 PMID: 33087929

42. Jackson L, Weedon MN, Green HD, Mallabar-Rimmer B, Harrison JW, Wood AR, et al. Influence of

family history on penetrance of hereditary cancers in a population setting. eClinicalMedicine. 2023;64.

https://doi.org/10.1016/j.eclinm.2023.102159 PMID: 37936660

43. Goodrich JK, Singer-Berk M, Son R, Sveden A, Wood J, England E, et al. Determinants of penetrance

and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nat Commun.

2021; 12: 3505. https://doi.org/10.1038/s41467-021-23556-4 PMID: 34108472

44. Jiang X, Holmes C, McVean G. The impact of age on genetic risk for common diseases. Manolio T, edi-

tor. PLOS Genet. 2021; 17: e1009723. https://doi.org/10.1371/journal.pgen.1009723 PMID: 34437535

45. Bernabeu E, Canela-Xandri O, Rawlik K, Talenti A, Prendergast J, Tenesa A. Sex differences in genetic

architecture in the UK Biobank. Nat Genet. 2021; 53: 1283–1289. https://doi.org/10.1038/s41588-021-

00912-0 PMID: 34493869

46. Flynn E, Tanigawa Y, Rodriguez F, Altman RB, Sinnott-Armstrong N, Rivas MA. Sex-specific genetic

effects across biomarkers. Eur J Hum Genet. 2021; 29: 154–163. https://doi.org/10.1038/s41431-020-

00712-w PMID: 32873964

47. Stringer S, Polderman TJC, Posthuma D. Majority of human traits do not show evidence for sex-specific

genetic and environmental effects. Sci Rep. 2017; 7: 8688. https://doi.org/10.1038/s41598-017-09249-

3 PMID: 28819253

48. Meisner A, Kundu P, Zhang YD, Lan LV, Kim S, Ghandwani D, et al. Combined Utility of 25 Disease

and Risk Factor Polygenic Risk Scores for Stratifying Risk of All-Cause Mortality. Am J Hum Genet.

2020; 107: 418–431. https://doi.org/10.1016/j.ajhg.2020.07.002 PMID: 32758451

49. Royston P. Explained Variation for Survival Models. Stata J. 2006; 6: 83–96. https://doi.org/10.1177/

1536867X0600600105

50. Zhang YD, Hurson AN, Zhang H, Choudhury PP, Easton DF, Milne RL, et al. Assessment of polygenic

architecture and risk prediction based on common variants across fourteen cancers. Nat Commun.

2020;11. https://doi.org/10.1038/s41467-020-16483-3 PMID: 32620889

51. International Stroke Genetics Consortium, Wellcome Trust Case Control Consortium 2, Bellenguez C,

Bevan S, Gschwendtner A, Spencer CCA, et al. Genome-wide association study identifies a variant in

HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012; 44: 328–333. https://doi.org/10.

1038/ng.1081 PMID: 22306652

52. NHS. NHS Long Term Plan. p. Chapter 3, section 3.66. Available: https://www.longtermplan.nhs.uk/

online-version/chapter-3-further-progress-on-care-quality-and-outcomes/better-care-for-major-health-

conditions/cardiovascular-disease/

PLOS ONE Polygenic risk scores for 53 diseases and quantitative traits

PLOS ONE | https://doi.org/10.1371/journal.pone.0307270 September 18, 2024 24 / 24

https://doi.org/10.1126/science.aaf7000
http://www.ncbi.nlm.nih.gov/pubmed/28008010
https://doi.org/10.1001/jamanetworkopen.2020.3959
http://www.ncbi.nlm.nih.gov/pubmed/32347951
https://doi.org/10.1016/j.jlr.2021.100139
http://www.ncbi.nlm.nih.gov/pubmed/34666015
https://doi.org/10.1371/journal.pbio.1000579
http://www.ncbi.nlm.nih.gov/pubmed/21267061
https://doi.org/10.1001/jama.2017.7112
http://www.ncbi.nlm.nih.gov/pubmed/28632866
https://doi.org/10.1001/jama.2021.23686
https://doi.org/10.1001/jama.2021.23686
http://www.ncbi.nlm.nih.gov/pubmed/35076666
https://doi.org/10.1038/s41586-020-2853-0
https://doi.org/10.1038/s41586-020-2853-0
http://www.ncbi.nlm.nih.gov/pubmed/33087929
https://doi.org/10.1016/j.eclinm.2023.102159
http://www.ncbi.nlm.nih.gov/pubmed/37936660
https://doi.org/10.1038/s41467-021-23556-4
http://www.ncbi.nlm.nih.gov/pubmed/34108472
https://doi.org/10.1371/journal.pgen.1009723
http://www.ncbi.nlm.nih.gov/pubmed/34437535
https://doi.org/10.1038/s41588-021-00912-0
https://doi.org/10.1038/s41588-021-00912-0
http://www.ncbi.nlm.nih.gov/pubmed/34493869
https://doi.org/10.1038/s41431-020-00712-w
https://doi.org/10.1038/s41431-020-00712-w
http://www.ncbi.nlm.nih.gov/pubmed/32873964
https://doi.org/10.1038/s41598-017-09249-3
https://doi.org/10.1038/s41598-017-09249-3
http://www.ncbi.nlm.nih.gov/pubmed/28819253
https://doi.org/10.1016/j.ajhg.2020.07.002
http://www.ncbi.nlm.nih.gov/pubmed/32758451
https://doi.org/10.1177/1536867X0600600105
https://doi.org/10.1177/1536867X0600600105
https://doi.org/10.1038/s41467-020-16483-3
http://www.ncbi.nlm.nih.gov/pubmed/32620889
https://doi.org/10.1038/ng.1081
https://doi.org/10.1038/ng.1081
http://www.ncbi.nlm.nih.gov/pubmed/22306652
https://www.longtermplan.nhs.uk/online-version/chapter-3-further-progress-on-care-quality-and-outcomes/better-care-for-major-health-conditions/cardiovascular-disease/
https://www.longtermplan.nhs.uk/online-version/chapter-3-further-progress-on-care-quality-and-outcomes/better-care-for-major-health-conditions/cardiovascular-disease/
https://www.longtermplan.nhs.uk/online-version/chapter-3-further-progress-on-care-quality-and-outcomes/better-care-for-major-health-conditions/cardiovascular-disease/
https://doi.org/10.1371/journal.pone.0307270

