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Background. Hepatocellular carcinoma (HCC), ranking as the second-leading cause of global mortality among malignancies,
poses a substantial burden on public health worldwide. Anoikis, a type of programmed cell death, serves as a barrier against the
dissemination of cancer cells to distant organs, thereby constraining the progression of cancer. Nevertheless, the mechanism of
genes related to anoikis in HCC is yet to be elucidated.Methods. Tis paper’s data (TCGA-HCC) were retrieved from the database
of the Cancer Genome Atlas (TCGA). Diferential gene expression with prognostic implications for anoikis was identifed by
performing both the univariate Cox and diferential expression analyses. Trough unsupervised cluster analysis, we clustered the
samples according to these DEGs. By employing the least absolute shrinkage and selection operator Cox regression analysis
(CRA), a clinical predictive gene signature was generated from the DEGs. Te Cell-Type Identifcation by Estimating Relative
Subsets of RNA Transcripts (CIBERSORT) algorithm was used to determine the proportions of immune cell types. Te external
validation data (GSE76427) were procured from Gene Expression Omnibus (GEO) to verify the performance of the clinical
prognosis gene signature. Western blotting and immunohistochemistry (IHC) analysis confrmed the expression of risk genes.
Results. In total, 23 prognostic DEGs were identifed. Based on these 23 DEGs, the samples were categorized into four distinct
subgroups (clusters 1, 2, 3, and 4). In addition, a clinical predictive gene signature was constructed utilizing ETV4, PBK, and
SLC2A1. Te gene signature efciently distinguished individuals into two risk groups, specifcally low and high, demonstrating
markedly higher survival rates in the former group. Signifcant correlations were observed between the expression of these risk
genes and a variety of immune cells. Moreover, the outcomes from the validation cohort analysis aligned consistently with those
obtained from the training cohort analysis. Te results of Western blotting and IHC showed that ETV4, PBK, and SLC2A1 were
upregulated in HCC samples. Conclusion. Te outcomes of this paper underscore the efectiveness of the clinical prognostic gene
signature, established utilizing anoikis-related genes, in accurately stratifying patients. Tis signature holds promise in advancing
the development of personalized therapy for HCC.

1. Introduction

In the context of liver cancer, the most common malignant
tumor is hepatocellular carcinoma (HCC), which is its
predominant subtype. It ranks second in global mortality
rates and represents the fourth major cause of mortality
worldwide [1, 2]. Tis underscores the substantial burden
HCC places on global public health [3]. Recent advances in
therapeutic strategies have contributed to a gradual

reduction in both the incidence and mortality rates asso-
ciated with HCC. However, addressing the high post-
operative recurrence rate and the relatively low fve-year
survival rate of HCC remains imperative [4, 5]. HCC
progression is characterized by distinct early and late stages.
Te accurate risk stratifcation of patients with HCC is
crucial for determining the clinical prognosis and treatment
recommendations for individuals with HCC. Despite the
development of multiple staging and prognostic systems,

Wiley
Genetics Research
Volume 2024, Article ID 8217215, 19 pages
https://doi.org/10.1155/2024/8217215

https://orcid.org/0009-0008-2138-4345
https://orcid.org/0009-0006-0775-6670
mailto:13809085661@163.com
mailto:xycdtc@ntu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


achieving consensus on a unifed survival-prediction system
has proven elusive [6–8]. Terefore, elucidating the mo-
lecular mechanisms underlying HCC development,
screening potential tumor-specifc biomarkers, and estab-
lishing novel prognostic models are critical for risk strati-
fcation, early diagnosis, treatment, and personalized
therapy development for patients with HCC.

Anoikis, a type of programmed cell death, is initiated by
the disruption of the interaction between cells and extra-
cellular matrix (ECM) [9, 10]. Prior research has reported
that anoikis is critically involved in cancer cell invasion and
metastasis [11, 12]. Anoikis can prevent cancer cell dis-
semination to distant organs, limiting cancer progression
[13]. In the course of tumor progression, a protective barrier
shields tumor cells, exerting protective efects against cell
death by inhibiting the activation of molecules that initiate
anoikis.Tis confers resistance against anoikis and promotes
tumor cell survival [14, 15]. Terefore, multiple types of
invasive metastatic cancer may acquire and maintain anoikis
resistance through diferent mechanisms. Previous studies
have reported that the activated NF-κB regulates the PI3K/
Akt pathway, a survival-promoting pathway that signif-
cantly contributes to tumor growth and metastasis. Tus,
targeting the PI3K/AKT pathway emerges as a viable ther-
apeutic strategy for cancer [16, 17]. In addition, the PI3K/
AKTpathway can suppress anoikis through the inhibition of
BCL2L11, BAD, and TMPRSS9 by promoting their pho-
phorylation [12, 16]. NTRK2, a type of NF-κB, is an anti-
apoptotic molecule that confers anoikis resistance. Previous
research has reported the involvement of NTRK2 in the
development and metastasis of multiple cancer types,
encompassing cervical, colorectal, and gastric cancers
[18–20]. Furthermore, Mak et al. suggested that miR-141 can
upregulate surviving in ovarian cancer by downregulating
KLF12, contributing to tumor metastasis and anoikis re-
sistance [21]. Nevertheless, the underlying mechanisms and
pathways regulating anoikis in the advancement and in-
vasion of HCC remain unclear. It is imperative to unravel
the mechanisms conferring resistance to anoikis in HCC to
enhance treatment outcomes and prognosis for patients with
this disease.

Tis investigation employed bioinformatics analysis to
identify pivotal regulatory factors associated with anoikis in
HCC. Anoikis-associated genes linked to the prognosis were
clustered, and diferent anoikis-related subgroups were
identifed using unsupervised clustering algorithms [22].
Diferent subgroups underwent Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis
to elucidate potential biological pathways associated with
their distinct characteristics. Finally, prognostic genes were
screened, and a prognostic risk model was constructed
utilizing the least absolute shrinkage and selection operator
(LASSO) regression, as well as both univariate and multi-
variate Cox regression analyses. Tis research highlighted
that the predictive model, utilizing genes related to anoikis,
could stratify the risk among patients with HCC, accurately
predicting their prognosis. Tis model contributes signif-
cantly to the clinical management and personalized treat-
ment strategies for individuals with HCC.

2. Methods

2.1. Acquisition and Processing of Data. Te integration of
comprehensive data resources was fundamental to this re-
search, wherein RNA sequencing (RNA-seq) data, along
with clinical details of individuals diagnosed with HCC, were
retrieved from the Cancer Genome Atlas (TCGA).
TCGA-HCC cohort comprised the data of 50 noncancerous
samples and 374 HCC samples. Moreover, the GSE76427
dataset, comprising 115 HCC and 52 noncancerous samples,
was acquired from the Gene Expression Omnibus (GEO).
TCGA-HCC and GEO datasets were merged to obtain the
HCC dataset. Te batch efects in various datasets were
eliminated using the ComBat function with the R “SVA.”
Te HCC cohort was randomly split into validation and
training groups by the “caret.”Te TCGA database provided
data on somatic mutation and copy number variation
(CNV) for individuals with HCC. Genes related to anoikis
were sourced from GeneCards [23].

2.2. Unsupervised Clustering Analysis. Te isolation of ex-
pression levels for genes related to anoikis within the
TCGA-HCC cohort preceded the determination of difer-
entially expressed genes (DEGs) linked to anoikis in the
comparative analysis between HCC and noncancerous
samples. Subsequently, unsupervised clustering analysis,
facilitated by the R “ConsensusClusterPlus,” was utilized to
unveil expression patterns of these DEGs within the HCC
cohort. Diferential expression analysis between distinct
subtypes was then conducted utilizing the R “limma.”

2.3. Functional Enrichment Analysis and Gene Set Variation
Analysis (GSVA). Te gene sets labeled as “c2. cp. kegg. v6.2.
symbols” were retrieved from MSigDB and used in GSVA
via the R “GSVA” to discern the diferential biological
pathways between diferent subgroups of anoikis [24]. Te R
“clusterProfler” was utilized with the signifcance criterion
P< 0.05 to screen for potential biological processes and
KEGG pathways enriched with the DEGs [25]. Te Gene Set
Enrichment Analysis (GSEA) software was utilized to
conduct a diferential KEGG pathway analysis, comparing
the pathways between high-risk (HR) and low-risk (LR)
groups. Te nominal P value and normalized enrichment
score (NES) were determined to analyze enrichment levels
and signifcance, respectively.

2.4. Single-Sample GSEA (ssGSEA). Te ssGSEA algorithm
was applied to determine the infltration level of 23 immune
cells in HCC and their correlation with the NES.

2.5. Establishment and Verifcation of a Prognostic Gene
Signature. DEGs underwent univariate CRA to determine
anoikis-associated genes with prognostic value as per the
criterion of P< 0.05. Trough the LASSO Cox regression
model, the candidate genes were further narrowed down
using the LASSO Cox regression model to develop
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prognostic gene signatures. Te risk score was derived as
mentioned in the following.

Risk score� (gene 1 expression level× β1)+ (gene 2 ex-
pression level× β2)+ (gene 3 expression level× β3)+ . . .+(gene
N expression level× βN), where β depicts the regression
coefcient.

Te training and validation sets have a median risk score.
In this case, the patients diagnosed with HCC were classifed
into risk groups, specifcally LR and HR.

A comparison of the survival rates of individuals in both
risk groups was carried out utilizing Kaplan–Meier (KM) curve
analysis.Te visualization of risk gene expression levels in these
groups was accomplished through the application of heatmaps.
Te model’s predictive performance was assessed through the
(a) ROC (receiver operating characteristic) curve analysis and
(b) the AUC (area under the ROC curve). By performing
multivariate and univariate CRA, we established the risk score’s
prognostic signifcance, which is independent.

2.6. Nomogram Development. We devised a nomogram
model through the amalgamation of the risk score alongside
various clinical characteristics. Moreover, in view of the
HCC patients, we used the nomogram in conjunction with
the “rms” and “survival” tools to forecast their 5-, 3-, and 1-
year survival rates. Te utilization of the calibration curve
allowed for the assessment of the precision and dis-
tinguishing ability of the nomogram.

2.7.TumorMicroenvironment (TME) InfltrationandSomatic
Mutations in Distinct Risk Groups. Concerning the RNA
(CIBERSORT) algorithm, the approximation of its relative
subsets took place. Alternatively, it is also called cell-type
identifcation. Accordingly, we identifed the risk score’s link
to infltrating immune cells. Te R “maftools” was utilized to
assess somatic cell variation. Te waterfall plot was
employed to present the mutation profle of individuals with
HCC in both risk groups.

2.8. Drug Sensitivity Analysis. Te drug response was pre-
dicted using the Cancer Drug Sensitivity Genomics database
with the R “pRRophic”. Ridge regression was employed for
estimating the half-maximal inhibitory concentration (IC50)
values of drugs for all individuals. Estimation of the predictive
accuracy was achieved through 10-fold cross-validation [26].

2.9. Single-Cell RNA-Seq Data Analysis. Te single-cell
RNA-seq dataset GSE166635, encompassing the data of
two HCC samples, was retrieved from GEO. Te R “Seurat”
was used to preprocess the original dataset, ensuring data
quality. Subsequently, cells were clustered utilizing fltered
principal components. For visual classifcation purposes, the
dimensionality reduction techniques of the Unifed Mani-
fold Approximation and Projection (UMAP) were used.
With a threshold of corrected P< 0.05, with regard to the
immune cells, the screening of marker genes was carried out.
Following that, to ascertain the category group of immune
cells, we extracted marker genes associated with immune

cells from PanglaoDB and cross-referenced them with the
genes of every category group. Finally, this paper examined
the risk genes’ correlation with the single-cell subpopulation.

2.10. Western Blotting. Cells in the culture fask were sub-
jected to a phosphate-bufered saline (PBS) rinse, followed
by lysis using ice-cold lysis bufer (Solarbio, China). Te
resulting lysates underwent centrifugation at 12,500 rpm and
4°C. Te supernatant was boiled in the supersampling bufer
for 10minutes. Following that, the protein samples un-
derwent the process of sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, utilizing a gel with
a concentration of 12.5%. Subsequently, the separated
proteins were transferred onto a polyvinylidene difuoride
membrane, characterized by a specifc pore size of 0.2 µm. To
block nonspecifc binding sites, the membrane was exposed
to 5% skim milk. Following the aforementioned steps, the
membrane underwent an overnight incubation on a shaker
at 4°C. During this incubation, primary antibodies, including
anti-ETV4, anti-PBK, anti-SLC2A1 (all 1 :1000, CST), and
antiaction (1 : 5000, CST) were applied. Te appropriate
dilutions were made following the provided guidelines to
ensure accurate and efective antibody-antigen interactions.
Subsequently, the membrane underwent a subsequent phase
involving a 2-hour incubation at room temperature. During
this interval, secondary antibodies were employed, and the
incubation was carried out with a slow shaking technique.
After washing the membrane thrice with PBS, immunore-
active signals were developed using the ECL Plus kit.
Normalization of the expression levels of target proteins to
the corresponding levels of action was conducted.

2.11. Clinical Specimen Collection and Immunohistochemical
(IHC) Analysis. Tis study obtained eight paired HCC tu-
mor tissues and their corresponding noncancerous lung
tissues from the Afliated Hospital of Nantong University.
Approval of this investigation was provided by the Ethics
Committee of Nantong University Hospital. Te provision
of informed consent was considered necessary for inclusion
in the study and for the use of the samples.

Te sections were dewaxed and subjected to antigen
retrieval. Following blocking with bovine serum albumin,
the sections were exposed to anti-PDXK primary antibodies
(1 : 200) at 4°C overnight, followed by three rinses with PBS.
Subsequently, the sections underwent incubation with
secondary antibodies for 30minutes at 37°C. Ten, the
sections underwent staining with 3,3′-diaminobenzidine for
5–10minutes and hematoxylin for 10 seconds. IHC staining
scores were calculated as per the intensity and amount of
staining. Te staining intensity was assessed utilizing the
following distinct scores: score 0 signifying a negative result,
score 1 signifying a weak intensity, score 2 signifying
a moderate intensity, and score 3 representing a strong
intensity. In addition, the scoring system for immuno-
positive cell proportions ranged from 1 to 4, with score 1
signifying 0–25% immunopositive cells, score 2 signifying
26–50% immunopositive cells, score 3 signifying 51–75%
immunopositive cells, and score 4 signifying 76–100%
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immunopositive cells. Tis comprehensive scoring meth-
odology aimed to capture both the intensity and extent of
immunopositivity, providing a nuanced assessment of the
staining results.

2.12. Statistical Analysis. R v 4.01 was used for all statistical
analyses. Te comparison of means between two groups was
conducted through the Wilcoxon test, while the comparison
of means among multiple groups was performed utilizing
the Kruskal–Wallis test. In addition, the survival rates
among various groups were compared using KM analysis
and the logarithmic rank test. Pearson correlation analysis
was utilized to verify the correlation. Te “limma” package
was utilized to construct principal component analysis
(PCA) plots for diferent subgroups and risk groups. For
ROC curve analysis, the R “survival” and “timeROC” were
utilized. Te statistical signifcance was set at P< 0.05.

3. Results

3.1. Anoikis-Related Gene Expression and Variation in
HCC. From the TCGA-HCC dataset, 217 anoikis-related
DEGs were extracted (Figures 1(a) and 1(b)). In the HCC
cohort, 208 anoikis-related genes were acquired utilizing 217
DEGs. Univariate Cox regression analysis revealed
23 anoikis-related prognostic genes (Figure 1(c)).
Figure 1(d) illustrates the changes in the CNV of anoikis-
related regulatory factors. Among the 23 anoikis-related
regulatory factors, genes such as S100A11, BIRC5, EZH2,
HMGA1, CDK2, and RAC1 exhibited signifcant copy
number amplifcation, whereas genes such as SLC2A1,
CDX2, BRCA1, RHOC, SPP1, ETV4, MAP3K7, and PBK
exhibited signifcant copy number deletion (Figure 1(e)).
Figure 1(f) illustrates the interaction correlation between
23 anoikis-related genes.

3.2. Identifcation of Anoikis-Related Subgroups in HCC.
Unsupervised cluster analysis based on 23 anoikis-related
genes revealed four subgroups (clusters A, B, C, and D)
(Figures 2(a), 2(b), and 2(c)). Te KM survival curve shows
the survival rates of patients in the four subgroups. Cluster A
was associated with the worst survival outcome
(Figure 2(d)). PCA demonstrated that the four subgroups
exhibited distinct clustering (Figure 2(e)). Te heatmap
revealed the diferential gene expression levels among
clusters A, B, C, and D (Figure 2(f)).

3.3. Correlation between Diferent Subgroups and
Immune Cell Infltration and the Biological Pathways between
Distinct Subgroups. Te tumor-infltrating immune
cells in the four subgroups were analyzed. Te immune cell
infltration levels signifcantly varied between the four
subgroups (Figure 3(a)). GSVA was executed to examine the
diferential biological pathways among the four subgroups.
Cluster A was remarkably correlated with various pathways,
including PPAR signaling and peroxisome pathways. Cluster
B was signifcantly associated with pathways, including

homologous recombination and cell cycle. Cluster C was
signifcantly correlated with metabolic pathways, including
tyrosine, histidine, and tryptophan metabolism. Cluster
D was signifcantly associated with energy metabolism
pathways, including fatty acid metabolism and nitrogen
metabolism (Figures 3(b), 3(c), 3(d), 3(e), 3(f), and 3(g)).

3.4. Construction of Prognostic Gene Signature. A clinical
prognostic gene signature was constructed as per 23 anoikis-
related prognostic genes. Finally, three genes (ETV4, PBK, and
SLC2A1) were identifed to generate the gene signature
(Figures 4(a) and 4(b)).Te risk score was derived as follows. In
this case, “expression level” is written as EL: risk score� ((ETV4
EL× 0.1303)+ (PBK EL× 0.2025)+ (SLC2A1 EL× 0.2592)).

Subjects were grouped according to their risk, specif-
cally low or high. As observed in the training cohort, this
approach follows the median risk score. KM analysis
revealed that the overall survival (OS) of LR individuals was
elevated relative to the HR individuals (P � 0.007)
(Figure 4(c)). Scores of individuals under the latter displayed
a reduced probability of survival and poorer survival status
relative to those under the former. Te heatmap illustrated
remarkable variations in the expression of risk genes be-
tween two risk groups (Figure 4(d)). Te corresponding
AUC values predicting 5-, 3-, and 1-year OS rates across
were 0.716, 0.677, and 0.726, respectively (Figure 4(e)).

Based on the risk scores within the validation cohort,
individuals were sorted according to their risks, specifcally
HR or LR. Tose in the former exhibited lower OS rates in
comparison to individuals in the latter (P � 0.001)
(Figure 4(f)). Individuals with HR scores exhibited a lower
probability of survival and a worse survival status relative to
those exhibiting LR scores. Te heatmap indicated notable
variations in risk gene expression between the two risk
groups (Figure 4(g)). Te corresponding AUC values to
predict the 5-, 3-, and 1-year OS were 0.641, 0.628, and 0.753,
respectively (Figure 4(h)).

3.5. Establishment of the Nomogram. A nomogram, com-
bining risk scores and other clinical pathological parameters,
was constructed to predict the 5-, 3-, and 1-year OS of
individuals with HCC, aiming to enhance the predictive
accuracy of the gene signature (Figure 5(a)). Calibration
curves for 5-, 3-, and 1-year survival were constructed
(Figure 5(b)). Te cumulative risk for HR individuals was
substantially higher than those with LR (Figure 5(c)).

3.6.Association betweenGene Signature and ImmuneCell and
Somatic Cell Mutations. Subsequently, we delved into the
correlation of risk genes with immune cells. Te ETV4
expression showed a negative link to the proportion of
resting natural killer cells. PBK expression displayed
a considerable negative association with the proportions of
immune cells, encompassing resting memory CD4+ T cells.
Meanwhile, PBK expression exhibited a remarkable positive
association with the proportions of immune cells, such as
resting memory CD4+ Tcells. SLC2A1 expression exhibited
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Figure 3: Continued.
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(b)

(c)
Figure 3: Continued.
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(d)

(e)

(f )
Figure 3: Continued.
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a notable negative correlation with the proportions of im-
mune cells, such as resting memory CD4+ Tcells and resting
mast cells. In contrast, SLC2A1 expression displayed
a considerable positive association with the percentage of
diferent immune cells, encompassing neutrophils and ac-
tivated memory CD4+ T cells (Figure 6(a)). Te diferential
somatic mutation profles between the LR and HR groups in
the TCGA-HCC cohort were examined utilizing the
“maftools.” As depicted in the fgure, the tumor mutation
burden (TMB) in HR individuals surpassed that in low-risk
individuals. Furthermore, TP53 mutation frequency was
39% in the HR individuals and 15% in the LR individuals
(Figures 6(b) and 6(c)). Te survival outcomes were more
favorable for individuals with low TMB in comparison to
those with high TMB (P � 0.031) (Figure 6(d)). In addition,
the OS of individuals with low TMB was elevated relative to
the individuals with high TMB (P< 0.001) irrespective of HR
or LR groups (Figure 6(e)).

3.7. Drug Sensitivity Analysis. To evaluate the therapeutic
efects of chemotherapy drugs and targeted drugs in in-
dividuals with HCC in both risk groups, the IC50 values of
various commonly used drugs were quantifed using R
“pRRophic.” Te response to erlotinib in the HR individuals
was higher than the LR individuals (Figure 7(a)). In contrast,
HR individuals displayed remarkably improved responses to
5-fuorouracil, cediranib, dasatinib, navitoclax, and sor-
afenib (Figures 7(b), 7(c), 7(d), 7(e), and 7(f )).

3.8. Single-Cell RNA-Seq Data Analysis. Te single-cell
RNA-seq dataset GSE166635 was analyzed to examine
ETV4, PBK, and SLC2A1 expression levels in the TME. For

quality control, unqualifed cells were fltered out
(Figure 8(a)). Sequencing depth was positively correlated
with gene quantity (coefcient� 0.89) (Figure 8(b)). After
data normalization, the top 2000 highly variable genes were
selected (Figure 8(c)). Te PCA technique was utilized to
reduce dimensions (Figure 8(d)). Based on the elbow plot, 12
optimal principal components were selected (Figure 8(e)). A
resolution of 1.5 was selected based on the clustering tree
results (Figure 8(f )). Te UMAP algorithm displayed the
abundance of 27 cell subpopulations (Figure 8(g)). Te
Cellmaker database was used to query relevant genes, an-
notating 27 diferent cell subpopulations (Figure 8(h)).
ETV4, PBK, and SLC2A1 expression levels were analyzed in
various cell subpopulations (Figure 8(i)). SLC2A1 was sig-
nifcantly upregulated in the macrophage subpopulation
(Figure 8(j)).

3.9. Validation of Risk Genes. Te protein expression levels
of risk genes were validated using IHC analyses and western
blotting. IHC analysis demonstrated that the ETV4, PBK,
and SLC2A1 levels in HCC samples were upregulated when
compared with those in paracancerous samples
(Figures 9(a), 9(b), and 9(c)). Consistently, Western blotting
revealed that the ETV4, PBK, and SLC2A1 levels were
upregulated in HCC samples (Figures 9(d), 9(e), and 9(f )).

4. Discussion

Tis research delved into the mechanism of genes related to
anoikis in HCC and established a clinical predictive model.
Utilizing the prognostic genes linked to anoikis, the HCC
study cohort was stratifed into four subtypes (clusters A, B,

(g)

Figure 3: Te diferential immune landscape characteristics and biological pathways between hepatocellular carcinoma (HCC) subtypes.
(a) Te diferential abundances of infltrating immune cells in the tumor microenvironment between HCC subgroups. (b–g) Gene set
variation analysis revealed the activation status of biological pathways in diferent subgroups. Heatmaps are used to visualize these biological
processes (red and blue represent activated and inhibited pathways, respectively). B: cluster A vs. cluster B; C: cluster A vs. cluster C; D:
cluster A vs. cluster D. E: cluster B vs. cluster C; F: cluster B vs. cluster D; G: cluster C vs. cluster D.
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Figure 4: Construction of a clinical prognosis model. (a)Te coefcient distribution of anoikis-related prognostic genes from least absolute
shrinkage and selector operator (LASSO) regression analysis. (b) Ten-fold cross-validation of tuning parameter selection in LASSO analysis.
(c) Diferential survival rates between the high-risk and low-risk groups. (d) Te distribution of risk scores and survival status among
diferent risk groups in the training group, as well as the expression levels of risk genes in the high-risk and low-risk groups. (e) Receiver
operating characteristic (ROC) curve analysis for predicting the 1-year, 3-year, and 5-year survival rates in the training group. (f ) Dif-
ferential survival rates between the high-risk and low-risk groups in the validation group. (g) Te distribution of risk scores and survival
status among diferent risk groups in the validation group, as well as the expression levels of risk genes in the high-risk and low-risk groups.
(h) ROC curve analysis for predicting the 1-year, 3-year, and 5-year survival rates in the training group.
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Figure 5: Construction and evaluation of a prognostic nomogram for hepatocellular carcinoma (HCC). (a) A nomogram was established to
evaluate the 1-year, 3-year, and 5-year survival rates. (b)Te calibration curve of the nomogram. (c) Cumulative incidence rate based on risk
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Figure 6: Continued.
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Figure 6: Te correlation between prognostic gene signature and immune cell and somatic cell mutations. (a) Te correlation between the
risk genes and immune cells (b-c) was represented as a waterfall plot of tumor somatic mutations between the high-risk and low-risk groups.
Each upper bar chart displays tumor mutation burden (TMB), while the number on the right represents the mutation frequency of each
gene.Te columns represent individual patients. B: high-risk group; C: low-risk group. (d)Te diferential overall survival rates between the
high-TMB and low-TMB groups. (e) Te overall survival of the low-TMB group was higher than that of the high-TMB.
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Figure 7: Drug sensitivity analysis. (a) Te half-maximal inhibitory concentration (IC50) values of erlotinib, 5-fuorouracil, cediranib,
dasatinib, navitoclax, and sorafenib varied between the low-risk and high-risk groups. (a) Erlotinib; (b) 5-fuorouracil; (c) cediranib;
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C, and D). Cluster A was associated with the worst survival
outcome. Subsequently, a clinical prognostic model was
developed, comprising three genes (ETV4, PBK, and
SLC2A1) selected from the pool of 23 prognostic genes
related to anoikis, utilizing the LASSO regressionmodel.Te
model accurately risk stratifed patients with HCC. LR in-
dividuals displayed elevated survival rates relative to HR
individuals. Strong positive and negative correlations were
observed between the risk score and the percentages of
activated and resting memory CD4+ Tcells, respectively. LR
individuals were predicted to beneft from erlotinib therapy.
Meanwhile, HR individuals were predicted to beneft from
5-fuorouracil, cediranib, dasatinib, navitoclax, and sor-
afenib therapies. Hence, the clinical predictive model de-
veloped in this study demonstrates robust predictive
capabilities, providing valuable guidance for clinical
decision-making. Moreover, this clinical prognostic model
accurately stratifes patients according to risk, facilitating

accurate disease monitoring and treatment guidance. It aids
in the selection of appropriate and targeted interventions,
potentially improving treatment outcomes for patients
with HCC.

GSVA demonstrated that cluster A exhibited a remark-
able association with various pathways, encompassing the
PPAR signaling and peroxisome pathways. Cluster B was
signifcantly associated with diferent pathways, including
homologous recombination and cell cycle pathways. Cluster
C exhibited a remarkable association with metabolic path-
ways, including tyrosine, histidine, and tryptophan meta-
bolism.Te PPAR signaling pathway has been reported to be
critically involved in multiple cellular processes, encom-
passing cell diferentiation, infammatory responses, mod-
ulation of glucose and lipid metabolism, immune
modulation, and the intricate processes of tumorigenesis
[27, 28]. PPAR comprises three main isoforms (PPARα,
PPARβ, and PPARc). Prior research has revealed that the
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Figure 8: Single-cell RNA sequencing data analysis of risk genes for constructing gene signatures. (a) Quality control of single-cell RNA
sequencing data. (b) Correlation analysis between sequencing depth and mitochondrial genes. (c) Red represents 2000 highly variable genes
and highlights the top 10 highly variable genes. (d) Principal component analysis (PCA). (e)Te single-cell gene expression profle was used
to determine the elbow plot of the optimal principal component. (f ) Te appropriate resolution was selected based on the clustering tree.
(g)Te uniformmanifold approximation and projection (UMAP) algorithm was used to display 25 cell subpopulations. (h) Twenty-fve cell
subpopulations were annotated as 10 subpopulations. (i) Te expression of risk genes in various cell subpopulations. (j) Te correlation
between risk genes and cell subpopulations.
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dysregulation of the PPAR signaling pathway promotes the
onset of diferent cancers, encompassing renal clear cell
carcinoma, bladder cancer, and HCC [29–33]. Shuzhen
Chen reported that 4-phenylbutyric acid upregulates PPAR-
α through the activation of β-catenin signaling to initiate
HCC stem cell formation [34]. Huayuan Liu et al. dem-
onstrated that FNDC5 induces the transformation of tumor-
associated macrophages from M1-type to M2-type. Tis
transition is achieved by suppressing the initiation of NLRP3
infammatory vesicles and facilitating the PPARc pathway,
ultimately promoting the development of HCC [35]. Tis
observation may elucidate the rationale behind the un-
favorable survival outcomes observed in cluster A.

A clinical prognostic model containing three genes (ETV4,
PBK, and SLC2A1) was developed. Te clinical prognosis-
predictive capability of the model was validated using ROC
analysis. ETV4, PBK, and SLC2A1 expression levels in HR
individuals were elevated relative to LR individuals. Consis-
tently, IHC analysis highlighted that the expression of ETV4,
PBK, and SLC2A1 in HCC samples was elevated relative to
those in paracancerous samples. ETS transcription factors,
which are members of an evolutionarily conserved family of
transcription factors, have conserved ETS DNA-binding do-
mains. Prior research has revealed that ETS transcription
factors are involved in physiological activities, including cell
diferentiation, proliferation, development, and apoptosis
[36, 37]. ETV4, a member of a subfamily of ETS transcription
factors, is upregulated in HCC. In addition, ETV4 expression
exhibits a negative association with the survival outcomes of

individuals withHCC [38]. Previous research has demonstrated
that ETV4 can facilitate the development of HCC by activating
several key oncogenes and related signaling pathways, including
the MMP1, uPAR, and Wnt/β-cyclin pathways [38–41]. Su
et al. reported that ETV4 can enhance the angiogenic capacity
of endothelial cells in the HCC microenvironment by modu-
lating the transcriptional level of MMP14, promoting the de-
velopment of HCC [42]. PBK, which functions as a mitotic
kinase, regulates cell survival, proliferation, growth, apoptosis,
and infammation [43–45]. PBK upregulation exhibits di-
agnostic and prognostic relevance in cancers. PBK upregulation
is linked to the development of ovarian plasma membrane and
unfavorable prognosis in patients with ovarian plasma cystic
adenocarcinoma, esophageal cancer, and gastric adenocarci-
noma [46–48]. Previous studies have reported that PBK
knockdown or treatment with PBK inhibitors suppresses tu-
morigenicity and exerts growth-inhibitory efects [49, 50]. Yang
et al. demonstrated that PBK promotes HCC cell invasion and
migration by the ETV4-uPAR signaling pathway [39]. Te
expression of SLC2A1 is upregulated in human tumors, such as
colon and gastric cancers [51, 52]. SLC2A1 upregulation was
signifcantly associated with poor prognosis in patients with
HCC [53]. Peng et al. demonstrated that YAP1 inhibition
decreased the SLC2A1-mediated Warburg efect, suppressing
the development of HCC [54].

Somatic mutation analysis highlighted that the mutation
frequency of TP53 in HR individuals was elevated relative to
LR individuals. Wild-type TP53 protein initiates and pro-
motes apoptosis in cells with DNA damage to prevent the
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Figure 9: Validation of the protein expression levels of risk genes. (a–c) Immunohistochemical analysis of the ETV4, PBK, and SLC2A1
levels in tumor and noncancerous samples. (d–f) Western blotting analysis of ETV4, PBK, and SLC2A1 expression levels. A, D: ETV4; B,E:
PBK; C,F: SLC2A1.
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aberrant proliferation of damaged cells [55]. However, TP53
mutations inhibit apoptosis mechanisms, transforming
damaged cells into cancer cells owing to apoptosis evasion.
Mutant TP53 proteins lose their wild-type function and are
unable to mediate apoptosis and cell cycle regulatory pro-
cesses. Additionally, the nucleus may witness an accumu-
lation of mutant TP53 proteins, a characteristic often
regarded as a highly specifc marker of malignancy [56]. Te
most common mutations in HCC are TP53 mutations [57].
TP53 assumes a crucial role in preserving genomic stability.
A defciency in the functional aspects of TP53 can result in
centromere expansion, proliferation of aneuploid cells, and
chromosomal instability (CIN) [34]. When TP53 mutations
coexist with functional defects in the oncogene pRb or
defects in the spindle checkpoint, it may contribute to the
upregulation of CIN and genomic instability [58]. Previous
studies have demonstrated that mutant TP53 proteins lose
their tumor suppressor functions while acquiring functions
that promote tumorigenesis [59]. Tese mutations may lead
to enhanced tumor cell proliferation, invasion, metastasis,
and treatment resistance. Tis suggests that the outcomes of
the current research are consistent with those of earlier
research, demonstrating the prognostic relevance of TP53
mutations in HCC. Terefore, the detection and evaluation
of TP53 mutations are important for treatment decisions
and prognostic assessment in HR patients.

Several limitations are associated with this study. Te
analysis relied on data from public databases, and the
available datasets provided limited information on the
clinicopathological characteristics of patients. Consequently,
it is essential to incorporate practical and critical factors for
accurate predictions of survival outcomes in patients with
HCC. Furthermore, the validation of risk gene expression
levels was conducted through only IHC and western blotting
analyses. To enhance the robustness of the fndings, in-
creasing the sample size is imperative, and the clinical value
of this prognostic model should be verifed through pro-
spective studies.

5. Conclusions

In this research, four distinct anoikis-associated subgroups
were identifed in HCC, and a clinical prognostic model
comprising three risk genes was established. Tis model
demonstrated a high degree of accuracy in stratifying HCC
patients, exhibiting excellent performance in predicting their
survival outcomes. Te insights gained from this research
contribute valuable knowledge to the understanding of
anoikis mechanisms in HCC, ofering potential guidance for
the development of personalized treatments for individuals
with this disease.
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