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Titration of RAS alters senescent state and 
influences tumour initiation

Adelyne S. L. Chan1,13, Haoran Zhu1,13, Masako Narita1, Liam D. Cassidy1, Andrew R. J. Young1, 
Camino Bermejo-Rodriguez2, Aleksandra T. Janowska1, Hung-Chang Chen1, Sarah Gough1, 
Naoki Oshimori3, Lars Zender4,5,6,7, Sarah J. Aitken1,8,9, Matthew Hoare1,10,11 & Masashi Narita1,12 ✉

Oncogenic RAS-induced senescence (OIS) is an autonomous tumour suppressor 
mechanism associated with premalignancy1,2. Achieving this phenotype typically 
requires a high level of oncogenic stress, yet the phenotype provoked by lower 
oncogenic dosage remains unclear. Here we develop oncogenic RAS dose-escalation 
models in vitro and in vivo, revealing a RAS dose-driven non-linear continuum of 
downstream phenotypes. In a hepatocyte OIS model in vivo, ectopic expression  
of NRAS(G12V) does not induce tumours, in part owing to OIS-driven immune 
clearance3. Single-cell RNA sequencing analyses reveal distinct hepatocyte clusters 
with typical OIS or progenitor-like features, corresponding to high and intermediate 
levels of NRAS(G12V), respectively. When titred down, NRAS(G12V)-expressing 
hepatocytes become immune resistant and develop tumours. Time-series 
monitoring at single-cell resolution identifies two distinct tumour types: early- 
onset aggressive undifferentiated and late-onset differentiated hepatocellular 
carcinoma. The molecular signature of each mouse tumour type is associated  
with different progenitor features and enriched in distinct human hepatocellular 
carcinoma subclasses. Our results define the oncogenic dosage-driven OIS 
spectrum, reconciling the senescence and tumour initiation phenotypes in early 
tumorigenesis.

Senescence is a state of stable exit from the cell cycle with functional 
alterations, represented by an altered composite of secretory factors 
(senescence-associated secretory phenotype (SASP))1,2,4. This shift 
in cellular function can be in the form of loss, gain and/or augmenta-
tion. Cellular function is largely dictated by lineage-specific genes, 
and our recent studies have suggested that senescent cells adapt an 
epigenetic mechanism akin to terminal differentiation for altering 
lineage-specific gene expression5,6. This suggests that senescence is 
another layer of the dynamic fate-determination process, but how 
the senescence phenotype evolves is not entirely clear7. This idea 
is particularly relevant in OIS. RAS is frequently mutated in human 
cancer, but an oncogenic RAS allele alone is insufficient for cancer 
development; instead, a further increase in the activity of mutant RAS 
and its downstream effectors, such as the MAPK pathway, appears 
necessary8–11. Of note, OIS also requires excessive RAS activity12. The 
relationship between OIS and tumour initiation remains elusive, and 
we reasoned that it can be modelled by the phenotype conferred by a 
range of oncogenic RAS levels in a normal or non-transformed diploid 
cellular context.

 
RAS dose and non-linear gene regulation
To test this, we first utilized a mouse liver model, which involves stable 
delivery of transposable elements containing oncogenic NRASG12V by 
hydrodynamic tail-vein injection (HDTVi), in which the transgenes are 
taken up by a subset of hepatocytes. These cells have been reported 
to become OIS by day 6 post-injection, which is followed by a CD4+ 
T lymphocyte-dependent and macrophage-dependent clearance of 
NRAS(G12V)-expressing cells by days 12–30 post-injection3,13.

Immunohistochemical (IHC) analysis for RAS on day 6 post-injection, 
before immune clearance, demonstrated substantial heterogeneity 
in RAS intensity (Fig. 1a). Next, we asked whether this heterogeneity 
in NRAS dose translates to downstream transcriptomic differences  
at a single-cell level, we performed single-cell RNA sequencing 
(scRNA-seq) on flow-sorted mVenus (thus NRAS-mutant)-expressing 
hepatocytes on day 6 in control (non-oncogenic NRAS(G12V/D38A)) 
and experimental (NRAS(G12V)) mice. In t-distributed stochastic 
neighbour embedding (t-SNE) space by single-cell gene expression 
profile, control and a subset of experimental cells showed a good 
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separation from the rest of the experimental cells; overall, they 
formed four clusters by similarity of expression pattern (Fig. 1b). Both 
NRAS and mVenus expression increased across the clusters (Fig. 1c). 
Pseudotime analysis-exhibited progression of pseudotime values 
corresponded well with these cell clusters and NRAS was one of the 
top 50 hits driving the pseudotime, suggesting that NRAS dose is a 
primary driver of the observed clustering (Extended Data Fig. 1a–c). 
Genes associated with cell-autonomous effects of senescence, such 
as CDK inhibitors and chromatin modulators, tended to linearly cor-
relate with the NRAS level, indicating that cluster 4 has typical OIS 
features, whereas SASP genes had a more heterogeneous expression 
pattern across clusters 3 and 4 (Fig. 1d). Using a previously annotated 
secretome gene set13,14, these cell clusters with relatively high levels of 
NRAS expressed genes associated with the ‘cytokine–cytokine recep-
tor interaction’ term in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway database, including known SASP factors: Il1a, Il1b 
and Ccl2 (Extended Data Fig. 1d). Both oncogenic stress and the SASP 
have been linked to the DNA damage response15–17. Although DNA 
damage-related gene sets were often higher in clusters 3 and 4, than in 
cluster 1 or 2, overall differences were modest (Extended Data Fig. 1e).

For a more unbiased view of gene expression differences across 
the clusters, we defined markers for each cluster and then performed 
pathway enrichment. Cluster 2 enriched for a hepatoblast signa-
ture, with upregulated progenitor genes represented by Afp, Prom1 
and Dlk1 (Fig. 1d,e). This cluster also exhibited an upregulation of 
hepatocyte-specific markers, such as Alb (Fig. 1d), suggesting a func-
tionally augmented state alongside the more progenitor state. The func-
tional augmentation of hepatocytes is consistent with the secretome 
analysis, where cluster 2 was associated with the term ‘complement and 

coagulation cascade’ (Extended Data Fig. 1d). Of note, both progenitor 
and functionally augmented states exhibited a non-linear trend with 
increasing dose of NRAS (Fig. 1c,d). Using MSigDB18,19 hallmarks, we 
found that MYC target genes were downregulated in cluster 2, whereas 
a subset of MYC targets was unchanged, or rather upregulated, in the 
OIS cluster 4 (Fig. 1f). Of note, MYC is a direct downstream transcrip-
tion factor in the RAS–MAPK (ERK) pathway, where MYC is a nuclear 
substrate of ERK20. Signatures of other ERK substrate transcription 
factors or downstream kinases showed, unlike MYC targets, a largely 
linear upregulation along the cell clusters (Extended Data Fig. 1f).

To evaluate pathway-level changes along the pseudotime, we com-
puted module scores for each cell between RAS and MYC signatures 
and found an overall negative correlation except for the OIS cluster 
4, where it switched to a positive correlation in both MYC target gene 
sets, indicating a complex non-linear relationship between RAS and 
MYC signatures (Fig. 1g).

We then asked whether a similar dose-dependent trend exists in 
tissues expressing oncogenic RAS from the endogenous locus in a 
different premalignancy model. We used publicly available data21 in a 
KRAS(G12D)-driven pancreatic tumour model, Ptf1a-CreER;LSL-Kras-G
12D;LSL-tdTomato (PRT) mice, in which, upon 4-hydroxytamoxifen 
(4-OHT) administration, acinar cells are genetically labelled (with tdTo-
mato) and express oncogenic KrasG12D from the endogenous locus21. In 
this dataset, mice were sampled at different timepoints encompassing 
different disease stages, in which OIS was previously implicated in 
pancreatic intraepithelial neoplasia22–24, and, consistently, a Cdkn2a+ 
(encoding p16) OIS cluster has been identified by the original authors.

We reanalysed this scRNA-seq data, focusing on the oncogenic 
Kras-expressing tdTomato+ cluster, and first located this cluster of 
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Fig. 1 | Single-cell transcriptomics reveals OIS spectrum driven by oncogenic 
dosage in vivo. a, Schematic of the HDTVi setup. IHC shows consequent 
heterogeneity in expression levels of ectopic NRAS(G12V) in experimental  
mice used for scRNA-seq. Scale bar, 100 μm. Schematic in a was created with 
BioRender.com. b–d, t-SNE embeddings of single-cell-sequenced hepatocytes 
(n = 2,179 cells from n = 2 NRAS(G12V) and n = 1 NRAS(G12V/D38A) mice), 
coloured by experimental condition: cluster (b), expression of Nras or  
mVenus (c) and selected genes (d) as indicated. e,f, Changes in expression of 

hepatoblast-associated signature (Descartes Cell Types and Tissue library, 
Enrichr; e) and two versions of MYC target genes (MSigDB Hallmark) across 
clusters (f). g, Correlation between expression levels of MYC (V1 and V2) and  
RAS signatures (KRAS_SIGNALLING_UP, MSigDB Hallmark) over pseudotime 
calculated with AddModuleScore in Seurat. The height of the dot indicates  
the curated gene set score derived from senescence-associated genes. a.u., 
arbitrary units.
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OIS cells (Extended Data Fig. 2a,b). Consistent with the idea that both 
senescence and tumorigenesis require a high level of oncogenic RAS11,12, 
spontaneous upregulation of Kras level was detected with disease stage, 
in which the OIS cluster exhibited higher expression than both their 
non-senescent pancreatic intraepithelial neoplasia counterparts and 
the more advanced pancreatic ductal adenocarcinoma stage (Extended 
Data Fig. 2c–e). The spontaneous increase in oncogenic RAS expres-
sion during tumorigenesis was also supported by the analysis of The 
Cancer Genome Atlas (TCGA) datasets25, in which RAS transcript in 
human pancreatic ductal adenocarcinoma (KRAS) and other types of 
tumours tended to be higher in tumours with mutant RAS than with 
wild-type RAS (Extended Data Fig. 2f). KRAS upregulation in cancer 
cells was also found in public scRNA-seq data in human pancreatic 
and lung cancer26,27 (Extended Data Fig. 2g,h). Furthermore, although 
levels of some progenitor markers, such as Prom1, Pdx1 and Notch1, 
were upregulated during tumorigenesis, this upregulation was weaker 
in the OIS cells than in cells in the same stage (Extended Data Fig. 2e), 
suggesting an inverse correlation between the progenitor and senes-
cent states. MYC basal levels in control cells were generally low in the 
pancreas but, similar to the liver model, a subset of MYC targets were 
higher in the OIS cluster (Extended Data Fig. 2d). Together, these results 
suggest that oncogenic RAS provokes a dose-dependent, non-linear 
spectrum of phenotype in preneoplastic conditions.

To systematically explore the response to differing levels of RAS in 
a more homogeneous manner, we developed an in vitro and in vivo 
system for titrating down the dose of ectopic RAS expressed in cells. 
For both, we co-expressed the fluorescent marker mVenus and a mutant 
RAS on the same open reading frame, separated by P2A, a self-cleaving 
peptide that mediates co-translational cleavage into the constituent 
proteins.

RAS triggers slow-cycling RPE1 cells
In vitro, we chose RPE1 cells, an hTERT-immortalized diploid epithelial 
cell line of human retinal pigment origin, because they are resist-
ant to flow-sorting stress, yet maintain a diploid karyotype28,29. We 
used a predictive form of our reporter construct; although mVenus 
is constitutively expressed, mutant HRAS is introduced in the form 
of an inducible ER–HRAS(G12V) fusion protein, which is only stabi-
lized upon 4-OHT administration26 (Fig. 2a). We then added 4-OHT 
to induce HRAS(G12V) and sampled cells for analysis by flow cytom-
etry at defined timepoints post-HRAS(G12V) induction. Population 
fluorescence intensity gradually shifted towards a distinct peak, cor-
responding to a relatively low level of mVenus, suggesting that this 
level of HRAS(G12V) provides the optimal selective advantage in this 
RPE1 cell system (Fig. 2b). This provides direct evidence for non-linear 
dose-dependent effects of oncogenic RAS on non-transformed cells 
in culture12,30.

This system permits sorting of this heterogeneous cellular popu-
lation into highly homogeneous subpopulations differing in the 
expression level of mVenus before inducing HRAS(G12V) (Fig. 2c). The 
HRAS(G12V)-induced phenotype was characterized in four subpopula-
tions, selected to maximize separation between them (denoted ‘S’, ‘M’, 
‘L’ and ‘XL’ to indicate increasing mVenus intensities) and plain RPE1 
cells (‘N’ denotes no mVenus-P2A-ER–HRASG12V transduction; Fig. 2c,d). 
We first validated that this separation is stable in long-term culture 
(Extended Data Fig. 3a). The low-RAS ‘S’ subpopulation remained 
proliferative with no significant increase in senescence-associated 
β-galactosidase (SA-β-gal) activity after HRAS(G12V) induction. By 
contrast, higher HRAS(G12V)-expressing subpopulations (‘M’, ‘L’ and 
‘XL’) exhibited a significant increase in SA-β-gal activity and reduction 
in cell-cycle progression compared with matched uninduced control 
cells (Fig. 2e,f and Extended Data Fig. 2b).

Of note, despite this dose-dependent decrease in proliferative capac-
ity, a substantial number of BrdU-positive cells remained in the high 

HRAS(G12V)-expressing subpopulations (Fig. 2f). The existence of OIS 
escapers within a population would lead to their eventual grow-out in a 
heterogeneous context, but this property is not expected in sorted sub-
populations; indeed, we observed no sign of eventual grow-out in (X)L 
cells. To assess the fate of these residual BrdU-incorporating XL cells 
on day 6 post-induction, using membrane-permeable Hoechst-33342 
quantification of DNA content as a proxy of cell-cycle phase in live cells, 
we flow-sorted cells of the S and XL subpopulations that were in mid-S 
phase on day 6 post-induction, returned them to culture and reassessed 
their phenotype 3 days later (in the presence of 4-OHT throughout; 
Fig. 2g). As expected, S cells showed a slight increase in BrdU incorpora-
tion, probably due to a synchronization effect (Fig. 2h). However, in XL 
cells, there was no such increase but rather a slight decrease in the num-
ber of BrdU-positive cells. These cells stained positive for IL-8 (Extended 
Data Fig. 3c), demonstrating that they remain functionally viable. The 
data reinforce that the OIS-like state with reduced, but not complete 
loss of, proliferative capacity is stable and that the slow-cycling state is 
not due to proliferation of a rare subset of cells. We conducted similar 
experiments in TIG3 human diploid fibroblasts. In a mixed population 
of TIG3 cells with a wide range of HRAS(G12V) levels, the survival benefit 
of the low-RAS TIG3 cells was recapitulated, and high-RAS TIG3 cells 
showed senescence-like phenotype, including reduced proliferation, 
increased SA-β-gal activity and upregulation of the SASP components 
IL-6 and IL-8 (Extended Data Fig. 3d–f). Of note, an increased DNA dam-
age response (a classic senescence marker), probed by phosphorylated 
H2AX (γH2AX) immunostaining, in high-RAS-expressing TIG3, but not 
RPE1, cells was detected, supporting the slow-cycling nature of the RPE1 
system (Extended Data Fig. 3g).

To further characterize the sorted subpopulations in the RPE1 
system, we performed RNA-seq analysis, pre-induction and on day 
6 post-induction. Principal component analysis demonstrated that 
the induced subpopulations were transcriptionally distinct from 
one another (Extended Data Fig. 4a). Pathway enrichment analysis 
of differentially expressed (FDR < 0.05, |log fold change| > 1.2) genes 
showed increased numbers of pathway terms associated with higher 
HRAS(G12V) subpopulations (Extended Data Fig. 4b,c), particularly 
pathways related to the inflammatory response, largely driven by 
genes encoding well-described SASP factors31–33, although not all 
other classical OIS markers, including Cdkn2a (encoding p16), were 
upregulated, even in the XL cells (Fig. 2i). Among the MSigDB hallmark 
gene sets19 (Extended Data Fig. 4d), reduction of MYC and cell-cycle 
signatures represented the most notable changes in each subpopula-
tion, including S cells, albeit more modestly (Fig. 2j,k), suggesting that 
the survival benefit observed in S cells in a heterogeneous population 
does not merely reflect their better growth capacity. Other RAS–MAPK 
substrate transcription factors examined failed to show such reduced 
activity in RAS-expressing RPE1 cells (Extended Data Fig. 5a). This 
unique suppression of MYC activity is unlike typical OIS cluster 4 of 
the liver dataset, but rather reminiscent of the progenitor-like clus-
ter 2 (Fig. 1e–g). Indeed, publicly available data generated from OIS 
fibroblasts (Supplementary Table 2) also showed globally intact or 
often an increased MYC signature (Extended Data Fig. 5b). We also 
performed scRNA-seq analysis in these RPE1 subpopulations (n = 2) 
and found that, in t-SNE space, RAS signalling and the cell-cycle profile 
were orthogonal, in which MYC signatures appeared inversely cor-
related with the former; thus, the negative correlation between RAS 
and MYC signatures in RPE1 cells was not simply due to reduced cell 
proliferation (Extended Data Fig. 5c,d). Furthermore, markers of neural 
progenitors, which are RPE precursors, NES and PAX6 were upregulated 
with RAS induction, whereas a number of RPE differentiation markers 
were downregulated, although some RPE-functional genes, such as 
BEST1, were upregulated (Fig. 2l). Thus, similar to subsets of oncogenic 
RAS-expressing cells in vivo (for example, cluster 2; Fig. 1b), in RPE1 
cells, oncogenic RAS promotes a unique progenitor-like state, which 
we postulated is a part of the OIS spectrum.
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Tumour initiation by sub-OIS RAS dose
Such an overlapping feature of ‘OIS intermediates’ with increased 
progenitor markers and reduced levels of MYC targets is reminiscent 
of recently identified tumour-initiating cells (TICs), which are char-
acterized by a TGFβ-responding slow-cycling state in a mouse model 
of ectopic HRAS(G12V)-driven early squamous cell carcinoma34. We 
reanalysed RNA-seq datasets derived from this mouse model and found 
a lower level of MYC and E2F targets in TICs than in the rest of the tumour 
cells, a trend that was also unique to MYC among the downstream tran-
scription factors of the RAS–MAPK pathway examined (Extended Data 
Fig. 5e). Furthermore, similar to the pancreas, TCGA analysis25 suggests 
a spontaneous upregulation of RAS in oncogenic RAS-driven head and 
neck squamous cell carcinoma in humans (Extended Data Fig. 2d).

To directly investigate the long-term implications of sub-OIS dosage 
oncogenic RAS in vivo, we applied our dose-titrating strategy in the 
mouse liver model. For this, we expressed the mVenus-P2A-NRASG12V 
construct under different promoters (Fig. 3a). We first validated 

this dose difference by IHC analysis for RAS on day 6 post-injection; 
compared with the original strong promoter, CAGGS, the weaker 
PGK and UBC promoters resulted in lower and more homogenous 
expression levels of mutant NRAS (CAGGS > PGK > UBC; Fig. 3b). We 
assessed γH2AX-positive DNA damage foci and, in line with the subtle 
changes at the transcriptomic level (Extended Data Fig. 1e), found no 
significant increase in the frequency of cells with DNA damage foci in 
NRAS(G12V)-expressing hepatocytes at day 6, although more com-
prehensive measurements are still required (Extended Data Fig. 6a). 
Consistent with previous studies4,15, NRAS-expressing cells were cleared 
by approximately days 12–30 post-injection in the CAGGS-NRASG12V 
mice (Fig. 3b). However, such senescence surveillance was weaker or 
absent in PGK-NRASG12V or UBC-NRASG12V mice, respectively, leading 
to persistent immune cell clusters around NRAS-expressing hepato-
cytes beyond day 12 (Fig. 3b and Extended Data Fig. 6b,c). Mice injected 
with PGK-driven or UBC-driven NRASG12V developed liver tumours with 
nearly 100% penetration (19 out of 20 mice) by 300 days post-HDTVi 
(Fig. 3c). By contrast, there was no tumour growth in mice injected 
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with CAGGS-NRASG12V (Fig. 3c). Senescence surveillance in this context 
has previously been reported to depend on an intact CD4+ T cell and 
bone marrow-derived macrophages3. To focus on the cell-autonomous 
aspect of those RAS-expressing cells, we repeated this long-term experi-
ment in an immunocompromised context in SCID mice lacking the 
entire adaptive immune component and found that this dose depend-
ency was maintained, with the largest fraction of tumours found in 
the UBC-NRASG12V mice (Fig. 3d). These data suggest that, in addition 
to attenuating immune-mediated clearance, low-dose oncogenic RAS 
promotes tumorigenesis through the acquisition of cell-autonomous 
alterations such as increased plasticity.

To gain mechanistic insights into the resistance of immune surveil-
lance in PGK-NRASG12V or UBC-NRASG12V mouse livers, we conducted 

immune cell profiling using flow cytometry. Consistent with previous 
studies3, we detected a significant increase in the numbers of CD4+ 
and CD8+ T cells, natural killer (NK) cells (CD3− and NK1.1hi), imma-
ture monocytes (iMCs; Ly6Chi, F4/80low, CCR2hi, CD11bhi, CD11clow and 
Gr1low) and macrophages (F4/80hi, CCR2hi, CD11b+ and CD11clow) in the 
CAGGS-NRASG12V livers at day 9 (Fig. 3e). However, such immune-cell 
recruitment was minimal in PGK-NRASG12V or UBC-NRASG12V livers. This 
is consistent with our secretome analysis, which suggested a weaker 
cytokine signature in hepatocyte clusters with lower NRAS(G12V) 
expression (Fig. 1d and Extended Data Fig. 1d), including Ccl2, which 
is required for recruitment of iMCs and thus senescence surveillance 
in this liver OIS model35. In addition, our recent study has shown that 
Ptgs2 (encoding COX2) is also critical for senescence surveillance in 
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this model36. COX2 is an enzyme involved in the generation of pros-
taglandins, modulating the inflammatory SASP36–38, and loss of Ptgs2 
promotes accumulation of immunosuppressive regulatory T (Treg) 
cells in CAGGS-NRASG12V livers36–38. At the single-cell level, Ptgs2 was 
only detected in the cluster 4 (OIS) hepatocytes at day 6 (Fig. 1d), 
and, consistently, we found a progressive accumulation of Treg cells 
in PGK-NRASG12V and UBC-NRASG12V livers (Extended Data Fig. 6d). These 
results suggest that insufficient activation of SASP regulators in hepato-
cytes that exhibit lower NRASG12V expression might in part contribute 
to their immune resistance.

To capture these dynamic changes during tumorigenesis, we per-
formed scRNA-seq on flow-sorted hepatocytes from UBC-NRASG12V 
mice euthanized at different timepoints post-HDTVi (Fig. 3f). In the 
t-SNE space, there were two distinct clusters expressing a relatively 
high level of NRAS (Extended Data Fig. 7a). One of these, consisting 
of early timepoint cells, expressed markers of senescence including 
Cdkn2b (encoding p15), consistent with an OIS cluster. This cluster 
also showed elevated expression of MYC targets, reinforcing the 
positive correlation between RAS and MYC signatures in the OIS 
state (Extended Data Fig. 7b). The other high-NRAS cluster, which 
included tumour cells, exhibited elevated Notch1 and TGFβ signal-
ling (Extended Data Fig. 7a,b). Consistently, we and others have 
previously shown that NOTCH and TGFβ signalling is dynamically 
activated during OIS13,39 and that co-introduction of NRAS(G12V) and 
a constitutively active form of NOTCH1 (intracellular domain; N1ICD) 
leads to liver tumour development in mice13. Within the population 
of lower-NRAS cells, we also identified a small cluster of cells, highly 
enriched for markers of hepatoblasts, such as Dlk1 and Afp, with 
prominent upregulation of hepatocyte markers, such as Alb (Extended  
Data Fig. 7a).

When projected into a pseudotime, cells were mainly arranged 
into three developmental branches (Fig. 3g): two corresponded to 
the OIS (branch 3) and Notch1 (branch 2) clusters described above, 
and the other branch contained the highest proportion of tumour 
cells, which expressed high Afp (branch 1; Fig. 3g,h). Serum AFP is a 
widely used hepatocellular carcinoma (HCC) biomarker and, in the 
Afphi branch 1, we identified an intermediate cellular state, largely cor-
responding to the Dlk1+/Gpc3+ ‘hepatoblastic cluster’ (Fig. 3h, bottom). 
Upregulation of DLK1 and GPC3 has been associated with HCC40,41. 
Thus, the Dlk1+/Gpc3+/Afp+ progenitor-like cells potentially represent 
a tumour-initiating state for branch 1 tumours. These distinct clus-
ters were also recapitulated by other trajectory inference methods 
(Extended Data Fig. 7c). Consistently, IHC analysis at early timepoints 
(days 6 and 9) identified a significantly higher Dlk1+ fraction of hepato-
cytes in the tumour-prone PGK-NRASG12V or UBC-NRASG12V mice than in 
CAGGS-NRASG12V mice (Extended Data Fig. 7d).

Although a large proportion of tumour cells were found along this 
Dlk1/Gpc3/Afphi branch, there were a small but substantial number of 
tumour cells along Notch1/Tgfb1hi branch 2, which was characterized 
by another progenitor and stem marker: Nes (which encodes nestin; 
Fig. 3h, middle). Nestin has been implicated in undifferentiated liver 
tumorigenesis42, thus we postulated that the Neshi cells along this 
branch represent a distinct population of TICs. This prompted us to 
re-evaluate the NRAS(G12V)-N1ICD-driven mouse liver tumour sam-
ples13, and we found that all of these tumours stained positive for nestin 
(n = 6) and were poorly differentiated (Extended Data Fig. 8a). Although 
we observed that there were Afp+ hepatocytes in some lesions (in two 
of six mice), these were exclusive from the nestin+ areas and showed 
barely detectable NRAS and NOTCH1 staining (Extended Data Fig. 8a, 
right), suggesting that they arose due to a local stress response or very 
low levels of the ectopic genes.

We next examined the spatial relationship of Dlk1+ or Notch1+ 
hepatocytes with immune cell clusters and found that most Notch1+ 
hepatocytes were within immune cell clusters, whereas Dlk1+ hepat-
ocytes were largely excluded (Fig. 3i and Extended Data Fig. 8b,c). 

Consistently, we previously showed that inhibiting Notch signalling 
in CAGGS-NRASG12V-expressing hepatocytes promotes OIS surveil-
lance13, suggesting that sustained activation of Notch signalling may 
also contribute to the resistance of NRAS(G12V)-expressing hepato-
cytes against immune surveillance. Then, we treated UBC-NRASG12V 
mice with sorafenib, an approved multi-kinase inhibitor that disrupts 
the RAS–MAPK cascade by targeting RAF and several upstream recep-
tor tyrosine kinases43. At day 30 following NRASG12V transduction, as 
expected, lowering RAS–MAPK signalling did not affect immune 
surveillance, but the F4/80+ macrophage aggregation, which was 
associated with Notch1+ hepatocytes, was reduced by the treat-
ment (Extended Data Fig. 8d), further reinforcing the correlation 
between oncogenic RAS levels and their immunogenic activities in  
mouse livers.

Dichotomous HCC tumour-initiating states
These results suggest that a modest level of oncogenic RAS leads to 
the development of liver tumours associated with at least two distinct 
tumour-initiating events. We next asked how we can translate this infor-
mation to the tumours developed in PGK-NRASG12V or UBC-NRASG12V 
cohorts (Fig. 3c). Histologically, these tumours captured a wide range of 
histopathological differentiation (Fig. 4a), and the differentiation score 
was negatively correlated with the latency period (Fig. 4a,b). Tumours 
that developed early were predominantly undifferentiated (DS4), with 
pleomorphic tumour cells and sarcomatoid features. Although these 
tumours all stained positively for the biliary and progenitor marker 
CK19, they lacked specific histological features of cholangiocarcinoma 
(Extended Data Fig. 9a). By contrast, late-onset tumours were more 
well-differentiated HCC (Fig. 4b). Similar to NRAS(G12V)-N1ICD-driven 
tumours (Extended Data Fig. 8a), early-onset tumours with DS3–4 
were mostly positive for nestin and NOTCH1, whereas the majority 
of late-onset differentiated tumours (DS1–2) were negative for nes-
tin/NOTCH1 (Fig. 4a,b). Consistent with the scRNA-seq data (Fig. 3), 
the ectopic NRAS level tended to be higher in the NOTCH1/nestin+ 
tumours (Fig. 4a and Extended Data Fig. 9b,c). By contrast, Dlk1+ cells 
were detected in all tumours irrespective of time of onset (n = 15) but 
retained their hepatocytic morphology and were spatially distinct from 
NOTCH1/nestin+ regions, where Dlk1+ cells tended to exhibit lower NRAS 
expression (Extended Data Fig. 9b,c). This reinforces that although 
both types of TICs exist in the early stages, they develop tumours with 
different latency periods.

Together, our data suggest that, in the PGK- and UBC-NRASG12V mod-
els, a relatively high level of RAS can induce either senescence or a 
progenitor-like state (Notch1 and Nes), the latter leading to aggressive 
undifferentiated tumours, whereas a low level of RAS induces a distinct 
progenitor-like state (Dlk1, Gpc3 and Afp), developing more differ-
entiated HCC with a longer latency period. We next investigated any 
relevance of our findings in human liver tumours. Two representative 
groups of human liver cancer cell lines have been proposed to mimic 
‘early-stage’, well-differentiated (AFP+) and ‘late-stage’, poorly differ-
entiated (AFP−) HCC, respectively44,45. Gene set enrichment analysis 
for tumour cells from each branch against those dichotomous data-
sets of human liver cancer cell lines44,45 has revealed that genes driv-
ing the branch 1 and branch 2 tumours were significantly associated 
with well-differentiated and poorly differentiated states, respectively 
(Extended Data Fig. 9d). Similarly, when compared with previously 
defined human HCC subclasses46, we observed a striking correlation: 
our branch 1 and branch 2 cells highly expressed genes associated with 
subclass S3 (well-differentiated HCC with better overall survival) and 
subclass S1 (typified by TGFβ and WNT activity), respectively, in a mutu-
ally exclusive manner (Fig. 4c). Next, we performed Kaplan–Meier 
analysis of patients with HCC from the TCGA dataset25, comparing 
between patients in the top and bottom quartiles of expression levels 
for each of the subclass signatures. We found that we could improve 
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the diagnostic value of the subclass signatures, particularly in S1, by 
enriching for genes that we identified in branch 2 (or branch 1, for S3; 
Extended Data Fig. 9e).

Finally, we asked whether the distinct progenitor-like states identi-
fied in our scRNA-seq data could be detected in human liver cirrhosis, 
a major risk factor for liver tumour development (Supplementary 
Table 3). We identified positive DLK1 staining within the hepatocytes 
of 17 out of 28 cirrhotic human livers, whereas NOTCH1 staining was 
identified in 15 out of 28 cirrhotic human livers (Extended Data Fig. 10a). 
Of note, nine patients exhibited positive staining for both markers 
in spatially different regions (Extended Data Fig. 10b). Furthermore, 
NOTCH1+ hepatocytes were invariably surrounded by immune cells, 
including CD68+ myeloid cells, CD4+ T cells and CD8+ T cells; by con-
trast, NOTCH1− cells did not evoke an immune response. These findings 
highlight that the two distinct molecular features of TICs identified 
in our mouse model may exist in human liver cirrhosis, both hepatitis 
C virus-related (Fig. 4d) and non-viral steatotic liver disease-related 
(Extended Data Fig. 10c).

We propose that our dose-titrating systems can model a non-linear 
OIS spectrum, including senescence intermediates such as slow-cycling 
(RPE1 cells) and immune-resistant tumour-initiating states (mouse 
livers), both characterized by increased progenitor features and a 
reduced MYC signature. The liver model provides insights into a RAS 
dose-associated evolution of senescence and immune microenviron-
ment, revealing at least two distinct paths towards tumorigenesis in 
the liver: the Dlk1/Afp branch, corresponding to differentiated HCCs 
with longer latency, and the Notch1/Tgfb1/Nes branch, corresponding 
to undifferentiated tumours and associated with short latency and 
poor prognosis. These undifferentiated tumours were associated with 

a relatively high level of oncogenic RAS activity, underscoring that 
oncogenic dosage is critical to define not only the senescence depth 
but also types of tumour-initiating states. The persistent immune cell 
clusters might also contribute to shaping a tumorigenic niche. Thus, 
beyond directly targeting specific TICs, modulating RAS–MAPK sig-
nalling or other crucial pathways at an early stage, such as NOTCH 
signalling, may have clinical relevance. Senescence is a dynamic pro-
cess: at the end of the spectrum, OIS is a fate-determined state with 
tumour-suppressive properties, whereas more intermediate cellular 
states are associated with increased cell plasticity, a distinct immune 
reaction and a tumour-initiating capacity. Although our preclinical 
models are focused on young female mice, a separate long-term cohort 
in both sexes validated the similar tumorigenic activity of low-RAS 
expression in male mice (Extended Data Fig. 10d). A better understand-
ing of specific TICs and their microenvironments, along with other 
factors such as sex, age and background chronic liver diseases, may 
offer therapeutic insights for early intervention in tumorigenesis.
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Methods

Cell culture
hTERT-RPE1 cells (a telomerase-immortalized human retinal pigment 
epithelial cell line; CRL-4000, American Type Culture Collection) were 
grown in DMEM/F12/10% FCS, and TIG3 cells (a primary human embry-
onic lung fibroblast line; JCRB0506, JCRB Cell Bank)47 were grown in 
DMEM/10% FCS in a 5% O2/5% CO2 atmosphere. Cells were obtained 
directly from the respective source cell banks. No authentication was 
performed by the authors of this paper. Cells were regularly tested 
for mycoplasma contamination. Of 4-OHT (H7904, Sigma), 100 nM 
was used for all ER–RAS induction experiments in vitro. Of etoposide 
(E1383, Sigma), 50 μM was used for the DNA damage experiments in 
RPE1 and TIG3 cells.

BrdU incorporation and SA-β-gal assays
Cellular proliferation by BrdU incorporation and SA-β-gal analysis have 
been previously described48. RPE1 and TIG3 cells were incubated with 
BrdU for 2 h for the BrdU incorporation assay.

Mice
HDTVi was performed as previously described3. In brief, at 6–8 weeks of 
age, 25 μg of appropriate vector and 5 μg of SB13 transposase-containing 
plasmid were diluted in sterile-filtered normal saline to a total volume 
of 10% of the body weight of the animal, before being injected into the 
lateral tail vein in under 10 s. Mice were randomized into control and 
experimental groups. C57BL/6 and Fox Chase SCID mice used in this 
study were purchased from Charles River. All mice used in these experi-
ments were female, apart from the long-term monitoring cohort for 
identifying sex differences in tumour formation. All procedures were 
conducted in accordance with the UK Animal (Scientific Procedures) 
Act 1986, approved by the CRUK Cambridge Institute Animal Welfare 
and Ethical Review Body (AWERB) and conducted under the authority 
of the Project Licence number PP3912882.

Mice were housed in individually ventilated cages (Tecniplast) at a 
temperature of 19–23 °C, humidity of 45–65%, with up to 75 air exchanges 
per hour in the cages, and a 12–12-h light–dark cycle with the lights on at 
07:00. The maximum caging density was five mice from the same litter 
and sex starting from weaning. As bedding, Aspen woodchip (Datesand) 
were provided. Mice were fed a standardized mouse diet LabDiet 5R58 
breeding and maintenance diet or 5053 high-fat diet (IPS) and provided 
drinking water ad libitum. All materials, including individually ventilated 
cages, lids, feeders, bottles, bedding and water were autoclaved before 
use. Sentinel mice were negative for at least all Federation of Laboratory 
Animal Science Associations (FELASA)-relevant murine infectious agent 
as diagnosed by our health monitoring laboratory, Surrey Diagnostics.

Tumour monitoring
The health of mice and impact of internal tumours were judged by exter-
nal signs (for example, abdominal distension or weight gain exceed-
ing 10% of normal body weight), clinical signs (for example, laboured 
breathing, rough hair coat, piloerection, inactivity, failure to eat or 
drink, fluid retention, neurological signs and digestive disturbances), 
aided by post-mortem assessment of morphological abnormalities in 
previously killed or deceased animals. To ensure early identification 
of health problems, animals with known or suspected pathologies 
received enhanced levels or surveillance (for example, hand checks). 
Primarily, mice were palpated, usually once a week, to detect the liver 
tumours. In the majority of cases, the liver tumours are detected before 
the development of clinical signs, and the animal was humanely culled 
by a schedule one method to alleviate any potential suffering. Occa-
sionally, mice may develop clinical signs, as above, and were culled 
by a schedule one method to alleviate any further potential suffering. 
Limits specified by the project license were not exceeded in any of the 
experiments conducted.

Plasmids
Predictive reporter plasmids for the in  vitro experiments: NLS- 
mVenus-P2A-ER–RAS on either the pLNCX2 (retroviral, Clontech) 
and the pRRL.SIN-18 (lentiviral, described in ref. 49) backbones. The 
nuclear localization signal on all of these constructs is derived from 
SV40 large T-antigen (PKKKRKV). Plasmids for HTVIs: pPGK-SB13; pT/
CAGGS-NRASG12V-IRES-mVenus, pT/CAGGS-NRASG12V/D38A-IRES-mVenus15, 
pT/CAGGS-mVenus-P2A-NRASG12V, pT/PGK-mVenus-P2A-NRASG12V, pT/
UBC-mVenus-P2A-NRASG12V and UBC-mVenus-P2A.

Single-cell immune suspensions
Dissected livers were homogenized (130-105-807, Miltenyi Liver Dis-
sociation Kit) and passed through a 70-μm filter. After centrifugation, 
samples were washed twice in PEB buffer (PBS, 5 μM EDTA and 0.5% 
BSA). Immune cells were enriched using an OptiPrep gradient (07820, 
STEMCELL Technologies). Immune cells along the gradient interphase 
were washed and resuspended in FACS buffer (PBS, 5 mM EDTA and 5% 
BSA) and individually placed within a 96-well round-bottomed tissue 
culture plate. Pellets were incubated with TruStain FcX Fc-blocking 
solution (101319, BioLegend) and then treated with cell-surface panels 
of fluorophore-conjugated antibodies: (1) CD45–BV510 (563891, BD), 
CD3–AF647 (100209, BioLegend), CD4–BUV496 (612952, BD), CD8a–
BV711 (100747, BioLegend) and NK1.1–BV421 (108731, BioLegend); 
(2) CD45–BV510 (563891, BD), CD11b–Super Bright 645 (64-0112-82, 
eBioscience), CD11c–BV421 (117329, BioLegend), Ly6C–PerCP-Cy5.5 
(128011, BioLegend), F4/80–PE-Cy7 (123113, BioLegend), Gr-1–FITC 
(108405, BioLegend), CCR2–BV785 (150621, BioLegend), MHC-II–Spark 
UV 387 (107670, BioLegend) and PDL1–APC (124312, BioLegend). The 
samples of all flow cytometric studies were incubated with a Fixable 
Viability Dye eFluor 780 (65-0865-14, eBioscience). Stained cells were 
analysed using an LSRFortessa Cell Analyzer (BD), and acquired results 
were analysed using FlowJo software (v10.9.0, FlowJo, BD). AccuCheck 
Counting Beads (PCB100, Invitrogen) were used for absolute cell num-
ber assessment.

Flow cytometry
mVenus quantification was performed using a MACSQuantVYB (Milte-
nyi Biotech) flow cytometer. When DNA content quantification was 
required, Hoechst 33342 (stock 10 μg ml−1) was added to the media of 
adherent cells in culture to a final concentration of 1 ng ml−1. Cells were 
incubated on Hoechst-containing medium for 45 min before analysis.

Intrahepatic immune cells were prepared as above and then run on 
a BD Fortessa flow cytometer (Becton Dickinson); data were analysed 
using FlowJo v10. The gating strategy is provided in the Supplementary 
Information.

Protein expression by immunoblotting and 
immunofluorescence
Immunofluorescence and immunoblotting, on SDS–PAGE on gels of 
various concentrations, were performed as previously described48.

The primary antibodies (and their dilutions) for immunoblot-
ting included: anti-β-actin (A5441, Sigma; AC15, mouse monoclonal, 
1:5,000); anti-HRAS (sc29, Santa Cruz Biotechnology; F235, mouse 
monoclonal, 1:1,500); anti-GFP (632377, Clontech; rabbit polyclonal, 
1:1,000); anti-IL-6 (MAB2061, R&D Biosystems; clone #1936, mouse 
monoclonal, 1:250); anti-IL-8 (MAB208, R&D Biosystems; clone #6217, 
mouse monoclonal, 1:500); anti-cyclin A (c4710, Sigma; CY-A1, mouse 
monoclonal, 1:1,000); and anti-p21 (sc-6246, Santa Cruz; F5, mouse 
monoclonal, 1:1,000). The primary antibodies (and their dilutions) 
for immunofluorescence included: anti-IL-8 (MAB208, R&D Biosys-
tems; clone #6217, mouse monoclonal, 1:250); anti-BrdU (555627, BD 
Biosciences; 3D4, 1:500); and anti-phospho-histone H2A.X (Ser139) 
(05-636, Merck; JBW301, mouse monoclonal, 1:200, pH 8.0 for 
formalin-fixed paraffin-embedded sections).



The secondary antibody used was goat anti-mouse IgG (Alexa Fluor 
555, 1:1,000; A-11034, Thermo Fisher) in PBS-T. Cells were counter- 
stained with DAPI at 1 μM in the secondary antibody solution. Fluores-
cence images were obtained using Leica DMI6000B epifluorescence 
light microscope or Leica Stellaris 8 confocal microscope, using LAS X 
software versions 3.7.5.24914 or 4.7.0 (Leica), respectively. Uncropped 
immunoblot images can be found in the Supplementary Information.

IHC
Formalin-fixed paraffin-embedded mouse and human tissues were 
stained with the primary antibodies listed at the concentrations below, 
after heat-induced epitope retrieval in citrate (pH 6) or Tris-EDTA  
(pH 9) buffers before visualization manually using the ImmPRESS IHC 
detection kit according to the manufacturer’s instructions and coun-
terstaining with haematoxylin. Alternatively, automated chromogenic 
immunohistochemical staining was performed on a Leica Bond Max 
(Leica) using the polymer refine detection and refine red detection 
kits (Leica). All tissue sections were scanned on a Leica AT2 at ×20  
or ×40 magnification and a resolution of 0.5 μm per pixel.

The following primary antibodies (and their dilutions) were used: 
anti-GFP (ab13970, Abcam; chicken polyclonal, 10 μg ml−1, pH 6.0); 
anti-RAS (ab52939, Abcam; EP1125Y, rabbit monoclonal, 1:1,000, pH 
6.0); anti-p-ERK1/2 (9101, Cell Signaling Technology; rabbit polyclonal, 
1:800, pH 6.0); anti-CK8 (MABT329, DSHB; TROMA-1, rat monoclonal, 
2.98 μg ml−1); anti-CK19 (MABT913, DSHB; TROMA-III, rat monoclonal, 
0.058 μg ml−1); anti-mouse nestin (MAB353, Chemicon; rat-401, mouse 
monoclonal, 1:200, pH 6.0); anti-human nestin (MAB5326, Chemicon; 
10C2, mouse monoclonal, 1:120, pH 6.0); anti-AFP (sc-8399, Santa Cruz; 
C3, mouse monoclonal, 1:50, pH 6.0); anti-mouse DLK1 (FAB8634T, R&D 
Systems; 1168B, rabbit monoclonal, 1:200, pH 9.0); anti-human DLK1 
(MAB1144, R&D Systems; 211309, mouse monoclonal, 4 μg ml−1, pH 9.0); 
anti-NOTCH1 (3608, Cell Signaling Technology; D1E11, rabbit monoclo-
nal, 1:200, pH 6.0); anti-TGFβ (3709, Cell Signaling Technology; 56E4, 
rabbit monoclonal, 1:100, pH 6.0); anti-mouse CD4 (ab183685, Abcam; 
EPR19514, rabbit monoclonal, 0.3205 μg ml−1, pH 9.0); anti-mouse CD8α 
(98941, Cell Signaling Technology; D4W2Z, rabbit monoclonal, 1:200, 
pH 9.0); anti-mouse F4/80 (MCA497, Serotec; CLA3-1, rat monoclonal, 
1:20, pH 6.0); anti-mouse FOXP3 (14-5773, eBioscience; FJK-16s, rat mon-
oclonal, 5 μg ml−1, pH 9.0); anti-human CD4 (M7310, Dako; 4B12, mouse 
monoclonal, 1:50, pH 9.0); anti-human CD8 (RM-9116-S, Thermo Fisher 
Scientific; SP16, rabbit monoclonal, 1:100, pH 9.0); and anti-human 
CD68 (NCL-L-CD68, Novocastra; 514H12, mouse monoclonal,  
1:50, pH 9.0).

The following horseradish peroxidase (HRP) polymer kit was used 
for manual IHCs: M.O.M. ImmPRESS HRP Polymer Kit (MP-2400, Vec-
tor Laboratories); ImmPRESS HRP Horse Anti-Rabbit IgG Polymer Kit 
(MP-7401, Vector Laboratories); and ImmPRESS HRP Goat Anti-Rat IgG 
Polymer Kit (MP-7404, Vector Laboratories).

Image analysis and quantification
For in vitro slides, quantification of γH2AX was performed in Fiji 
(ImageJ2 v2.14.0). In brief, a nuclear mask was applied based on the DAPI 
channel, and then the mean γH2AX intensity was measured per cell.

For in vivo liver tissue sections, quantification of γH2AX was per-
formed manually after scanning using Axioscan 7 (Zeiss) at ×40 mag-
nification. Random areas were selected and at least 100 NRAS+ or 
NRAS− cells per liver section were counted. Representative images 
were taken using TCS SP5 confocal microscope (Leica). For measuring 
the perecnt of positive tissue areas, image analysis was performed 
using the HALO (Indicalabs, v3.3.2541) with the Area Quantification 
v1.0 algorithm following the digitization of tissue sections. IHC images 
were trained independently to provide the best accuracy for the posi-
tive area and all the slides were reviewed manually following analysis 
to assess accuracy. In brief, the total section area was highlighted using 
the Flood fill annotation tool, and a minimum tissue optical density at 

0.035 was used to eliminate non-tissue areas. Percentage stain-positive 
tissue was used as readout for statistical analysis performed using 
GraphPad Prism 10.2.1 (339).

Tumour scoring
Haematoxylin and eosin (H&E)-stained tissue sections were reviewed by 
a board-certified pathologist (S.J.A.) who was blinded to the experimen-
tal design. Tumours were graded according to the WHO classification 
of digestive system tumours50. Differentiation scores were assigned: 
DS1, well differentiated; DS2, moderately differentiated; DS3, poorly 
differentiated; and DS4, undifferentiated. For morphologically hetero-
geneous tumours, or where multiple lesions were present in the same 
liver, tumours were classified based on the worst grade.

Bulk RNA-seq
RNA was extracted from five biological replicates per condition using 
the Qiagen RNeasy plus kit according to the manufacturer’s instruc-
tions and quality checked using a Bioanalyser Eukaryote Total RNA 
Nano Series II chip (5067-1511, Agilent). Libraries were prepared using 
the TruSeq Stranded mRNA Library Prep Kit (20020594, Illumina) 
according to the manufacturer’s instructions and sequenced using 
the HiSeq-4000 platform (Illumina). Reads were aligned to the human 
genome version GRCh38 (downloaded from https://www.ensembl.org/
Homo_sapiens/Info/Index) using STAR51, and per-gene read counting 
was performed using the featureCounts function of the subread pack-
age in R52. Low-quality reads (mapping quality less than 20) and known 
adapter contamination were filtered out using Cutadapt53. Differential 
expression analysis was performed with edgeR54,55, comparing each of 
the induced samples with their uninduced equivalent. Differentially 
expressed genes were identified using edgeR’s glmTreat function using 
a fold change of 1.2 in either direction and a false discovery rate cut-off 
of 0.05.

Gene set enrichment and pathway analysis
Rank-based gene set enrichment analysis and generating the associ-
ated random-walk plots were performed using the fgsea R package56. 
Expression values were tested against gene sets curated as part of the 
MSigDB, a collection of gene sets representing coherently expressed 
signatures designed to represent well-defined biological states or pro-
cesses57. Overlap-based pathway and gene ontology enrichment was 
performed using the web-based Enrichr platform58,59.

All summary plots were generated in R, mostly using the ggplot2 
package60. Upset plots were generated using the UpSetR package61, 
and heatmaps were generated using the pheatmap package, which 
also implements hierarchical clustering for the ordering of columns 
and rows where indicated.

Cancer Cell Line Encyclopedia and TCGA
Cancer Cell Line Encyclopedia expression data were downloaded 
from the DepMap Portal62. The liver cell lines were grouped into 
well-differentiated and poorly differentiated lines based on previous 
classification44,45. When projected into two dimensions, differentiation 
status of the cell lines was the primary driver of the first principal com-
ponent. As such, genes were ranked from well to poorly differentiated 
based on their loadings along this principal component. TCGA expres-
sion and mutation data were downloaded from the GDC data portal25. 
Survival analysis and visualization of this data were performed using 
the survminer R package. For the diagnostic value of gene signatures, 
an intersect was taken between gene lists associated with the indicated 
Hoshida subclasses and either the Notch1-associated or Dlk1-associated 
branches in our data.

Human premalignant liver patient cohort
All biological samples were collected with informed consent from 
Addenbrooke’s Hospital, Cambridge, UK, according to procedures 
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approved by the Office for Research Ethics Committees Northern Ire-
land (ORECNI; 20/NI/0109). All participants consented to publication 
of research results.

scRNA-seq and analysis
For hepatocyte scRNA-seq, livers were perfused with 0.05% colla-
genase in Hank’s balanced salt solution (HBSS) to partial dissocia-
tion, then cut into pieces with a razor blade or scalpel, in HBSS with 
0.015% collagenase and 0.2% dispase. The resulting cell suspensions 
were incubated with 0.02% DNase in HBSS before red blood cell lysis 
(00-4333-57, eBioscience; 5 min on ice) and then washed with HBSS 
with 0.02% DNase (centrifuged for 7 min at 400g at 4 °C) to isolate 
hepatocytes. For RPE1 scRNA-seq, cells were trypsinized into single-cell  
suspension.

Cells isolated from the different conditions (RPE1) or mice (hepato-
cytes) were individually labelled with 1 μg of BioLegend TotalSeq Cell 
Hashing antibodies diluted in cell staining buffer (PBS, 3% FBS and 
0.05% azide) for 30 min at 4 °C, and then washed three times with cell 
staining buffer (centrifuged for 7 min at 400g at 4 °C). Hepatocytes 
were flow sorted for mVenus positivity according to the gating strategy 
in Supplementary Information. In each cohort (Figs. 1 and 3), we used 
two mice per condition, except for non-oncogenic CAGGS-NRASG12V/D38A 
(one mouse) in the first cohort (Fig. 1). For RAS-induced RPE1 cells (day 
6 post-4-OHT treatment), we used both individual subpopulations and 
a mixed population, with a mixed population (no 4-OHT treatment) as 
control. This allowed us to pool all conditions into the same experimen-
tal run. Cells were then pooled and resuspended to a concentration of 
800 cells per microlitre for single-cell encapsulation using the Chro-
mium Single Cell B Chip Kit (PN-1000073, 10X Genomics), followed by 
library prep using the Chromium Single Cell 3′ GEM Library & Gel Bead 
Kit v3 (PN-1000075, 10X Genomics) for the gene expression library and 
the Chromium Single Cell 3′ Feature Barcode Library Kit (PN-1000079, 
10X Genomics) for the hashtag-oligo library. Both libraries were then 
pooled for paired-end sequencing on the HiSeq-4000 (OIS dataset 
and RPE1 dataset) or the Illumina NovaSeq 6000 platform (tumours 
dataset).

Hashtags used for each sample were: for the liver OIS dataset 
(TotalSeq-A anti-mouse), G12V-1 hashtag 1 (ACCCACCAGTAAGAC); 
G12V-2 hashtag 2 (GGTCGAGAGCATTCA); and D38A hashtag 3 (CTTG 
CCGCATGTCAT).

For the RPE1 dataset (TotalSeq-A anti-human), monoculture  
‘S’ d6 hashtag 1 (GTCAACTCTTTAGCG); monoculture ‘M’ d6 hashtag 
2 (TGATGGCCTATTGGG); monoculture ‘L’ d6 hashtag 3 (TTCCGCC 
TCTCTTTG); monoculture ‘XL’ d6 hashtag 4 (AGTAAGTTCAGCGTA); 
co-culture d0 hashtag 5 (AAGTATCGTTTCGCA); and co-culture d6 
hashtag 6 (GGTTGCCAGATGTCA).

For the liver tumours dataset (TotalSeq-B anti-mouse), mVenus only-1 
hashtag 1 (ACCCACCAGTAAGAC); mVenus only-2 hashtag 2 (GGTCG 
AGAGCATTCA); day 12-1 hashtag 3 (CTTGCCGCATGTCAT); day 12-1 
hashtag 4 (AAAGCATTCTTCACG); day 30-1 hashtag 5 (CTTTGTCTT 
TGTGAG); day 30-2 hashtag 6 (TATGCTGCCACGGTA); tumour-1 hashtag 
7 (GAGTCTGCCAGTATC); tumour-2 hashtag 8 (TATAGAACGCCAGGC); 
non-tumour-1 hashtag 9 (TGCCTATGAAACAAG); and non-tumour-2 
hashtag 10 (CCGATTGTAACAGAC).

Resulting reads were aligned using the CellRanger pipeline to the 
mm10 genome assembly for the hepatocyte datasets and hg38 for the 
RPE1 dataset. Demultiplexing based on expression of hashtag oligos was 
performed using the CITE-seq-Count command, with no mismatches 
allowed. As all conditions to be compared were pooled into the same 
experimental run, direct analysis could be performed without the need 
for integration or batch correction. After quality-control filtering to 
remove low-quality sequenced cells, all downstream analysis, including 
pseudotime analysis, a technique that models single-cell transcrip-
tional change as a continuum, was performed using the Seurat63,64, 
Monocle65 or dynverse66 implementations in R.

Statistical analysis
Statistical analyses were carried out in R (v4.1.1) or using the Prims10 
built-in analysis (v10.1.1). The number (n) of biologically independent 
samples is described in the figure legends and Methods, and the data 
points are shown with the bar charts. Tests used to assess statistical 
differences between conditions are described in the respective figure 
legends. See Source Data.

For the mouse scRNA-seq experiments, in each cohort (Figs. 1 
and 3), we used two mice per condition, except for non-oncogenic 
CAGGS-NRASG12V/D38A (one mouse) in the first cohort (Fig. 1). The western 
blot in Fig. 2d was repeated in three independent experiments, and 
results were reproduced. Figure 4e shows representative images from 
a cohort of 13 patients with hepatitis C (further patient details are in 
Supplementary Table 3). The immunofluorescence in Extended Data 
Fig. 3b was repeated in three independent experiments. The IHCs in 
Extended Data Figs. 6 and 10 were repeated for the number of n mice 
as indicated on the figure, and results were reproduced as shown in 
the associated quantifications.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Details of publicly available datasets are provided on the respec-
tive figure panels, and in the Methods and Supplementary Table 2  
(refs. 13,67–74). The scRNA-seq datasets were downloaded from 
https://www.ncbi.nlm.nih.gov/query/acc.cgi?acc=GSE141017 (mouse 
premalignant pancreas), https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE155698 (human pancreas) and https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE131907 (human lung), respec-
tively. The URLs for downloading the bulk RNA-seq datasets used in 
this study are provided in Supplementary Table 2. TCGA data were 
downloaded from the GDC portal (https://portal.gdc.cancer.gov/). 
The RNA-seq and scRNA-seq data generated in this study have been 
deposited in the Gene Expression Omnibus under the accession code 
GSE222951. Source data are provided with this paper.
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Extended Data Fig. 1 | Characterisation of dose-dependent response to RAS 
expression at single cell level in the liver model. a,b, Projection of single cells 
coloured by pseudotime (a) or cluster as in Fig. 1b (b). c, Top 50 genes driving 
pseudotime ordering, arranged in order of similarity of expression pattern 
across pseudotime. d, Heatmap of average gene expression across single cells 
in each cluster for 899 secretome genes. The top 5 enriched KEGG pathways in 
each of the clusters are shown. Values, -log10(FDR), red dotted line indicates 

significance level of 0.05. e, Expression of all DNA damage-related gene sets 
from entire MsigDB across clusters. Terms were manually trimmed but the full 
descriptions are in Supplementary Table 1. GOBP = Gene Ontology Biological 
Process, REAC = Reactome, GOMF = Gene Ontology Molecular Function,  
WP = WikiPathways. f, Distribution of geneset scores for target genes of the 
indicated RAS downstream transcription factors across clusters.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | RAS dose-dependency in non-liver contexts. a,b, tSNE 
projection of tdTom+ cells from the pancreas model coloured by sample-of-
origin (a) and cluster (b). Schematic in panel a was created using BioRender 
(https://biorender.com). c,d, Distribution of expression levels at single-cell 
level for the indicated genes (c) and gene signature (d) in endogenous KrasG12D-
driven pancreatic tumour model (PRT mice). Values for preneoplastic “Early” 
and “PanIN” were divided into two based on the clustering in Extended Data 
Fig. 1b, as indicated by the colour of the box/violin. Cells from the Cdkn2a/p16 
positive Cluster 11 were designated as “OIS”, whilst all the other “Early”  
and “PanIN” cells were designated as “non-OIS”. PDAC, pancreatic ductal 
adenocarcinoma. n values indicate number of cells. e, tSNE projections coloured 
by indicated genes-of-interest. f, Expression of KRAS or HRAS in TCGA samples 

of the indicated tumour types, separated by RAS mutation status. wt, wild-type; 
mt, mutant. n values indicate number of patients. g,h, Upregulation of KRAS in 
human pancreatic (g) and lung (h) cancer cells, compared to normal epithelial 
cells, in public scRNA-seq datasets. Ductal cell clusters were identified using 
KRT19 expression, acinar cell clusters by CPA1 and CPA2 (e). KRAS expression  
in lung epithelial cells of human lung adenocarcinoma samples, comparing 
between adjacent normal and tumour cells from different disease stages (f). 
Lung epithelial cell subset is based on annotation by the original authors.  
n values indicate number of cells. All boxplot centre line indicates median, box 
limits indicate first- and third-quartiles and whiskers indicate largest values 
within 1.5 * interquartile range.

https://biorender.com


Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Characterisation of the in vitro predictive reporter 
system. a, Flow cytometry analysis for mVenus intensity in uninduced cells,  
at different timepoints post-sorting in RPE1 cells. b, Representative phase 
contrast pictures of SA-β-gal assay (quantifications in Fig. 2e). Scale bar = 50 μm. 
c, IL-8 immunofluorescence for ‘S’ and ‘XL’ RPE1 cells on Day 9 comparing 
unsorted cells and cells, which were sorted on Day 6 to enrich for S-phase cells. 
d, Distribution of mVenus intensity over time by flow cytometry for a mixed 
population of TIG3 cells expressing the predictive reporter construct.  
e,f, Senescence phenotype of the TIG3 sorted subpopulations was assessed by 
Western blotting for the indicated proteins (e), SA-β-gal positivity and BrdU 
incorporation (f). Error bars, s.d. Statistical significance was determined using 

two-way pairwise student’s t-test with no correction for multiple testing.  
g, γH2AX staining (left) and quantification of mean γH2AX intensity within  
a nuclear mask for the indicated conditions (right) in RPE1 and TIG3 cells. 
Images are representative from n = 2 per condition where n = independent 
experiments. N, plain. Etop, Etoposide (50 μM) treatment for 24 h as positive 
controls. Individual replicates are shown in quantification. Boxplot centre line 
indicates median, box limits indicate first- and third-quartiles and whiskers 
indicate largest values within 1.5 * interquartile range. One-way ANOVA followed 
by Tukey’s HSD test. ***p < 0.001. Statistical significance was calculated between 
the indicated conditions, pooling values from both replicates.



Extended Data Fig. 4 | RNA-seq analysis for individual cell populations in 
RPE1 cells expressing predictive reporter construct. a-c, Principal component 
analysis (a), number of differentially expressed (DE) genes (b), and pathway 
enrichment analysis (c) for the sorted subpopulations. N, plain RPE1 cells  
(no mVenus-P2A-ER:HRASG12V transduction). n = 5 independent samples for 

each condition. d, Distribution of log-2-fold change values for genes in MsigDB 
Hallmark genesets for each of the subpopulations, comparing each Day 6 
condition with its respective uninduced control. MYC targets and cell cycle 
genes are highlighted in red.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Meta-analysis of senescence-associated 
transcriptomic changes of MYC target genes. a, Differential expression of  
TF-targets in each RPE1 subpopulation as well as indicated IMR90 cells. Known 
downstream TFs in the RAS-MAPK pathway were analysed. MYC (v1, v2) in RPE1 
were duplicated from Fig. 1j for comparison. b, Gene expression datasets were 
downloaded from NCBI GEO (Supplementary Table 2), comparing different 
stress-induced cellular phenotypes associated with reduced cell cycling.  
* indicates IMR90 datasets that were utilised in (a). The datasets were processed 
using the same analysis pipeline, colours indicate log2-fold change of individual 
MYC-target genes (MSigDB Hallmark) between each of the conditions and their 
corresponding growing controls. PD = Population Doubling. Samples are in  
the order detailed in Supplementary Table 2. c,d, scRNA-seq analysis in RPE1 

subpopulations (n = 9,047 cells). For RAS-induced samples, we used both 
individual subpopulations (n = 1/subpopulation) and a pooled sample of all 
subpopulations (n = 1) as a replicate. Control was a mix of all subpopulations  
(no 4OHT, n = 1). Each sample was Hashtagged, pooled and run as the same run. 
Cell-cycle phases were annotated using Seurat’s inbuilt CellCycleScoring 
function and gene markers for S- and G2/M-associated genes (c). Indicated  
gene signatures (MsigDB Hallmarks) were scored (d). e, Changes in expression 
levels of MYC- and E2F-target genes (MSigDB Hallmark) in tumour-initiating  
cells (TGFβ-reporter positive) compared to the rest of the tumour cells (TGFβ-
reporter negative) in a HRASG12V-driven mouse squamous cell carcinoma model 
(Supplementary Table 2). The downstream TFs in the RAS-MAPK pathway were 
included as a comparison.
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Extended Data Fig. 6 | Characterisation of DNA damage and immune cell 
clusters in NRASG12V-injected livers. a, NRAS-positive hepatocytes with 
γH2AX foci. Cells with >1 foci within the nucleus were counted as positive. Note 
nonspecific autofluorescence mainly from red blood cells. Values, mean (s.d.). 
p-values are Two-way mixed-effects ANOVA followed by post-hoc t-tests with 
Bonferroni correction. Scale bars = 20 μm. b, Persistent immune cell clusters  
in sub-OIS-NRASG12V livers. Selected areas of NRAS IHC Day 12 post-HDTVi in 

Fig. 3b are magnified. c, Representative IHC for indicated immune cell markers 
in persistent immune cell clusters. Each row consists of serial sections.  
d, Representative IHC for FoxP3 (Treg marker) in indicated samples. Values, 
mean (s.d.). p-values are Two-way ANOVA followed by post-hoc t-tests with 
Bonferroni correction. Scale bars = 100 μm. Arrows indicate immune cell 
clusters (c-d). n = number of mice (a,d).



Extended Data Fig. 7 | Additional characterisation of hepatocyte response 
to different oncogenic NRAS dosages. a,b, tSNE embeddings coloured by 
sample of origin (as in Fig. 3f) and genes of interest (a), and geneset score (b). 
Arrows indicate cell clusters expressing high NRAS (with either OIS or Notch/
TGFβ signature, left) or progenitor markers (right). c, Alternative trajectory 
inference analyses to Fig. 3i for scRNA-seq, using different algorithms on the 

same data as derived from the time series cohort of mice injected with low-dose 
NRAS. Branches indicated on the left-most panel in dotted circles are numbered 
according to Fig. 3g. d, IHC validation for Dlk1 on Day 9 post HDTVi (left) and 
quantification of % Dlk1 positive area (right, n represents number of mice). 
Values, mean (s.d.). p-values are two-way ANOVA followed by post-hoc t-tests 
with Bonferroni correction. Scale bar = 100 μm.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Characterisation of tumours associated with distinct 
TIC events. a, Representative IHC for the indicated proteins in tumours 
induced by HDTVi of NRASG12V-IRES-N1ICD construct in mice (n = 6), showing 
co-expression of Notch1 and Nestin and mutual exclusivity between Notch1+ 
tumours and Afp+ cells (high magnification panels, right). Of note, while the 
tumour cells were poorly differentiated, the Afp+ cells maintained histological 
features of hepatocytes. b,c, Representative IHC for the indicated proteins on 
Day 9 (b) or Day 12 (c) livers after NRASG12V-HDTVi with the indicated dosages. 
Each column (b) represents serially sectioned images (n ≥ 5 mice). Magnified 

images from Fig. 3k are shown in (c) (n ≥ 6 mice). Scale bars = 100 μm (b) or 
200 μm (c). Arrows indicate immune cell clusters. Dlk1 was mostly excluded 
from immune cell clusters. Notch1 staining was typically clearer in Day 12 (c), 
involved in ‘persistent’ immune cell clusters. d, Sorafenib treatment led to 
reduced accumulation of macrophage in UBC-NRASG12V-livers. Representative 
IHC for indicated proteins (n = 7 mice per condition). Serial sections were 
utilised in each condition. Scale bars = 100 μm. Values, mean (s.d.). p-values  
are unpaired t-test.
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Extended Data Fig. 9 | Validation of gene signatures in two TIC branches. 
(a-c) Representative serially sectioned IHC images of indicated tumours for  
the indicated proteins. All undifferentiated (DS 4) tumours (n = 5 mice) were 
CK19-positive (a). Dichotomous expression of either Notch1 or Dlk1 are shown 
even in the same tumour (b). 5 out of 6 Notch1-positive tumours were Tgfβ1- 
positive (c). Scale bars = 100 μm. Arrows indicate Dlk1-positive cells within  
the Notch1/Nestin-tumour. Of note, the Dlk1-positive cells tend to be 

well-differentiated and express low level of NRAS. (d) Random walk plots for 
geneset enrichment analysis for the indicated genesets against ranked genes 
between poorly- and well-differentiated HCC based on human liver cancer cell 
lines. (e) Kaplan-Meier analysis for the indicated gene signatures in TCGA-LIHC 
(Liver hepatocellular carcinoma) dataset. n values indicate number of genes in 
signature. HR = Hazard ratio for top quartile vs. bottom quartile, p = Log-rank 
p-value.



Extended Data Fig. 10 | Immune cell clusters around NOTCH1-positive 
hepatocytes in human cirrhotic livers. a, Frequency of NOTCH1 and/or 
DLK1-positive hepatocytes in liver cirrhosis patients examined. Steatotic liver 
disease (SLD) includes both non-alcoholic fatty liver disease (NAFLD) and 
alcohol-related liver disease (ALD). b, Representative IHC for the indicated 
proteins in a patient with SLD-related cirrhosis, showing dichotomous 
expression of NOTCH1 and DLK1 in the same liver. Scale bar = 500 μm in the 

centre panels and 50 μm in the magnified panels. c, Representative IHC for  
the indicated proteins in patients with steatotic liver disease-related cirrhosis. 
Serial sections were utilised for all patients in (a). Selected area is magnified 
with arrows, indicating DLK1-positive hepatocytes. (d) Kaplan-Meier analysis 
for male and female mice injected with the UBC-NRASG12V plasmids (n = 8 per 
condition). IHCs were performed in all patient samples (Supplementary 
Table 3). Scale bars = 100 μm.
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