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Intelligence model 
on sequence‑based prediction 
of PPI using AISSO deep concept 
with hyperparameter tuning 
process
Preeti Thareja 1, Rajender Singh Chhillar 1, Sandeep Dalal 1, Sarita Simaiya 2,3*, 
Umesh Kumar Lilhore 3, Roobaea Alroobaea 4, Majed Alsafyani 4, Abdullah M. Baqasah 6 & 
Sultan Algarni 5

Protein–protein interaction (PPI) prediction is vital for interpreting biological activities. Even though 
many diverse sorts of data and machine learning approaches have been employed in PPI prediction, 
performance still has to be enhanced. As a result, we adopted an Aquilla Influenced Shark Smell 
(AISSO)-based hybrid prediction technique to construct a sequence-dependent PPI prediction model. 
This model has two stages of operation: feature extraction and prediction. Along with sequence-
based and Gene Ontology features, unique features were produced in the feature extraction stage 
utilizing the improved semantic similarity technique, which may deliver reliable findings. These 
collected characteristics were then sent to the prediction step, and hybrid neural networks, such as 
the Improved Recurrent Neural Network and Deep Belief Networks, were used to predict the PPI 
using modified score level fusion. These neural networks’ weight variables were adjusted utilizing 
a unique optimal methodology called Aquila Influenced Shark Smell (AISSO), and the outcomes 
showed that the developed model had attained an accuracy of around 88%, which is much better than 
the traditional methods; this model AISSO-based PPI prediction can provide precise and effective 
predictions.

Keywords  PPI prediction, Sequence-dependent features, Gene ontology (GO), Improved recurrent neural 
network, Deep belief network, Aquilla influenced shark smell optimization (AISSO)

Amino acids comprise the bio-molecules known as proteins that cells require to survive everyday tasks. They 
are essential in biology because they connect numerous significant bioactivities of cells to Protein–Protein 
interactions (PPIs)1–3, allowing for a range of biological functions, autophagy, and immune function. Despite 
advances in genomics, proteomics, and genome biology, the functionality of more excellent sequenced proteins 
remains uncertain. The research of the interaction of a recognized target protein with unidentified proteins aids 
in discovering unknown protein functioning. The structure of protein interactions proposes developing novel 
therapeutics by supplying biological routes present in the target’s surroundings4.

Numerous fields of neurology, cell biology, and developmental biology have shown the value of optical 
regulation of protein–protein interactions5,6. Drug targets must be precisely identified and defined during the 
research and development phase. The foundation of computational formulas and system modeling is analytical 
data7,8. The tandem affinity purification9 and proteomics chips10, including microarray technologies, have been 
employed to forecast PPIs from protein complexes. Unfortunately, as protein data accumulates, these approaches 
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encounter time and expense constraints and cannot match the demands of human life scientific studies as in the 
post-genomic age. Also, it is profitable to mention that the presence of subjective or objective variables, includ-
ing activity as well as experiment error, causes experimental findings to diverge significantly from the actual 
outcomes, occasionally resulting in a high fraction of false-positive and maybe even false-negative experimental 
findings11–18.

A common method for determining the most discriminative features for multi-class classification is linear dis-
criminant analysis (LDA). Deep recognition models have performed remarkably over the last ten years19,20. Except 
for the yeast, wherein diverse characteristics have been extensively investigated, amino acid sequence-dependent 
predictors constitute a large proportion of the publications on computationally anticipating proteome-wide PPIs. 
Features derived from amino acid sequences and their physicochemical qualities are used in sequence-dependent 
predictors. Auto covariance (AC), conjoint triads (CT), and pseudo amino acid composition (PSEAAC) were 
examples of feature models that have frequently been employed for predicting PPIs21,22.

Traditional biophysical approaches for PPI detection are both time-consuming and costly. Conventional com-
putational strategies, on the other hand, demand prior knowledge of genomic and phylogenetic schematics and 
sequence interpretation to produce acceptable PPI predictive performance23. Machine learning (ML) approaches, 
such as Artificial Neural Networks (ANN)24, Support Vector Machines (SVM)25, and deep learning26,27, provide 
critical means for prudent prognosis of PPIs premised on the straightforward derivation of protein data from 
amino acid sequences, demonstrating that deep-learning systems can manage huge raw as well as complicated 
information and effortlessly learn beneficial and much more conceptual features in the task of PPI prediction. 
As a result, we created an AISSO-based deep concept with a hyperparameter tuning approach for accurate and 
reliable PPI prediction. This work’s notable contributions have been listed below.

•	 We created an enhanced semantic similarity-based feature in the feature extraction process along with other 
features, which will aid in obtaining accurate findings.

•	 To provide an accurate forecast, an Improved RNN is developed to ensure the minimization of loss.
•	 A unique Aquila Influenced Shark Smell optimization is created to adjust the two classifiers’ weights, which 

shows efficient prediction.

The coordination of this article is as follows. Section “Literature survey” offers a synopsis of prior works on 
PPI prediction, Section “Problem statement” explains the problem statement of the research, Section “Proposed 
method” describes our suggested method for AISSO PPI prediction that is sequence-dependent, Section “Results 
and discussion” illustrates the results of the experiments, and Section “Conclusion” concludes the work, and the 
following section lists references.

Literature survey
Some of the works related to PPI prediction were briefly reviewed in this section.

Patrick et al.28 created a computational strategy for developing precise protein complex structures. In this 
case, the AlphaFold2 is being used to forecast heterodimeric protein complexes. Models are created by using 
AlphaFold2 methodology and optimized multi-sequence alignment. A simple formula was built utilizing the 
projected interfaces to predict the DockQ score, separating satisfactory from wrong designs and associating non-
interacting proteins with state-of-the-art accuracy. Even though this approach can yield excellent predictions, it 
only addresses protein complex structures in their heterodimeric form, even though every protein chain in such 
complexes might also have homodimer topologies or even other higher-order modes.

Satyajit et al.29 developed the AVPSO approach for PPI prediction, which is utilized to choose the optimum 
collection of features. The ideal feature subset gets utilized to forecast the PPIs by employing the light gradient 
boosting machine (LGBM) algorithm. This suggested model AVPSO-LGBM attained around 97% accuracy rate 
as well as around 95% in the fivefold CV assessment. The AV-PSO-LGBM beats conventional methodologies 
regarding prediction accuracy, indicating its generalization capabilities.

DeepTrio, a sequence-dependent strategy for predicting PPI utilizing mask multi-parallel CNNs, was reported 
by Xiaotian et al.30. DeepTrio offers improved PPI prediction and an understandable depiction of the significance 
of every protein sequence in both online and offline implementations. DeepTrio is being upgraded to give further 
perspectives on the influence of every input node on prediction outcomes.

Yang et al.31 established multiple modal protein pre-training paradigms with three modes: sequence, struc-
tural, as well as function (S2F). Interestingly, this approach encodes the structural characteristic using the topo-
logical complexity of heavy atom point clouds. It enables the system to gain structural data regarding the back-
bones and branched chains. Furthermore, this approach integrates information from the operational descriptions 
of proteins acquired from research or hand annotations. The experimental outcomes reveal that the S2F trains 
protein embeddings and works well on a multitude of PPI tasks.

Chiara et al.32 developed a revolutionary technique that was applied in a publicly accessible tool, “Pep-
Threader,” to anticipate and analyze PPIs. PepThreader threads numerous segments produced from a full-length 
protein sequence over a secondary peptide template combined with a target protein, “spotting” promising linking 
peptides and rating it on a threading score (TS) that depends on structure and sequence. The TS process begins 
with a scoring system that depends on the sequence resembling peptides. Following that, the original hits are 
reranked utilizing structure-dependent scoring methods.

Bin et al.33 suggested a unique deep-forest-dependent strategy for predicting PPIs. PPI patterns are firstly 
retrieved and subsequently constructed in this work. Next, an elastic net is used to enhance the prediction 
effectiveness by optimizing the initial feature vectors. Ultimately, a deep forest-dependent GcForest-PPI model 
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is constructed. The finding suggests that GcForest-PPI may increase prediction accuracy, aid in supplement 
studies, and aid drug development.

Li et al.34 suggested SDNN-PPI, a PPI forecasting methodology built on self as well as deep learning. To more 
precisely forecast PPIs, this tactic employs self-attention to optimize DNN feature retrieval. There was a fivefold 
CV to assess the generalization capabilities of SDNN-PPI. The one-core and crossover networks are used exten-
sively to assess the model’s merits and drawbacks and forecast PPIs. The findings also revealed that the system 
appropriately forecasts the interaction pairings in the network.

Zeng et al.35 created Deep PPISP, a unique deep learning-dependent system for PPI site prediction that blends 
local contextual and global sequence information. A sliding window was utilized to collect characteristics of 
neighbours of a target amino acid for local contextual information. A text CNN model is being used to retrieve 
features from the entire protein sequence for global sequence characteristics. Then, the local contextual and 
global sequence information are integrated to anticipate PPI sites.

Wu et al.36 have deployed more insightful feature extraction made possible by this module’s effective capture 
of pertinent patterns and representations found in protein sequences. To ascertain the relationships between pairs 
of input proteins, the paper built a novel FRN that was incorporated into our model’s Global Feature Extraction 
module. The FRN efficiently captures the underlying relational information between proteins by enhancing 
PPI predictions. In sequence-based PPI prediction, the DL-PPI framework exhibits cutting-edge performance.

Valverde et al.37 have introduced a brand-new deep learning framework called DPPI that can be used to 
model and forecast PPIs using sequence data. Our model effectively uses evolutionary information of a protein 
pair under prediction as well as existing high-quality experimental PPI data, combining a deep, Siamese-like 
convolutional neural network with random projection and data augmentation to predict PPIs. According to our 
experimental data, DPPI performs more computationally efficiently and beats state-of-the-art approaches on 
some benchmarks regarding the area under the precision-recall curve.

Jha et al.38 have exploited the structural information and sequence properties of proteins; we apply a graph 
convolutional network (GCN) and graph attention network (GAT) to predict the interaction between proteins. 
We construct protein graphs using the PDB files, which include three-dimensional atomic coordinates. The 
protein graph represents the residue interaction network, sometimes called the amino acid network, in which 
every node is a residue. They are connected if two nodes contain two atoms (one from each node) inside the 
threshold distance. We employ the protein language model to extract the node/residue features. The protein 
sequence serves as the language model’s input, while the feature vectors for each amino acid in the underlying 
sequence serve as its output. Table 1 shows the reviews of conventional models.

Problem statement
A living thing’s necessary component is protein. Predicting PPIs significantly affects illness prevention, medicine 
development, and our comprehension of life’s behavioural processes. While the advancement of high-throughput 
technology allows for identifying PPIs in large-scale biological research, time, cost, false positive rate, and other 
constraints limit the extensive application of experimental approaches. To predict PPIs quickly and reliably, 
computational methods are therefore desperately needed as a supplement to experimental methods.

Class imbalance occurs when there are significantly fewer interacting protein pairs than non-interacting 
pairs in PPI datasets. Extracting meaningful information from protein sequences without overfitting or losing 
information is difficult. It is still difficult to interpret the predictions of sophisticated deep learning models, 
particularly in biological applications where interpretability is crucial for experimental validation and advance-
ment. The model must function effectively on unknown proteins and interactions for practical use. Although 
many elevated experimental methods have been created to predict the PPIs, those have limitations like high 
cost and time consumption, and the selected features and classifiers are inappropriate and inefficient. However, 
the protein interaction found by experimental methods can only account for a small portion of the entire PPI 

Table 1.   Reviews of conventional models.

Author Deployed schemes Features Challenges

Patrick et al.28 AlphaFold2 Modelling mono-chain protein structures with 
incredible precision

The forecasted interacting partners have a significant 
impact on system performance

Satyajit et al.29 Light Gradient Boosting Machine (LGBM) with 
embedded feature selection It is not affected by the classifiers PSO has a decreased rate of convergence in the 

iterative process

Xiaotian et al.30 DeepTrio Provide better performance in different datasets Still need improvement in PPI critical region predic-
tion

Yang et al.31 Sequence-structure–function (S2F) transformer 
model

As inputs, no structural or functional data is 
required for downstream PPI operations

Homology and structure-split Validation increase 
the system’s complexity

Chiara et al.32 PepThreader Simple and less time-consuming PepThreader cannot always distinguish the real 
binding peptide from a pool of candidate binders

Yu et al. 33 GcForest-PPI It is suitable for cross-species prediction as well The comprehensive critical characteristics of PPIs are 
yet to be known

Li et al.34 SDNN-PPI Achieves high accuracy
Results may vary. To address these problems, 
an ensemble meta-learning technique can be 
created that is adaptable to various domains and 
dependent on the datasets

Zeng et al. 35 TextCNN It uses local and global features for better prediction Bad at forecasting long-length proteins
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networks because biological experiment methods are expensive and time-consuming. Furthermore, the detection 
results may have false positives and negatives due to the experimental setup and operational procedures. Thus, 
it is essential from a practical standpoint to create trustworthy computational techniques for reliably predicting 
protein interactions.

Proposed method
Protein–protein interaction (PPI) prediction was important for understanding biological activities. Even though 
many different types of data and machine learning technologies have been employed in PPI prediction, effec-
tiveness still has to be improved. Consequently, this paper presents a unique PPI prediction approach with two 
working phases: feature extraction and prediction. In the first phase, in addition to the traditional characteristics 
such as sequence-dependent and Gene ontology, we produced additional features using the semantic similarity 
approach, which would aid in accurate prediction.

AISSO neural networks such as DBN and upgraded RNN were used in the second stage for better prediction. 
In addition, a unique optimization termed Aquila Influenced Shark Smell was developed in this work to provide 
a better and more reliable prediction by optimizing the weighting parameters. Figure 1 depicts the architectural 
design of the proposed PPI prediction approach, and a thorough description of our proposed work follows.

Feature extraction
This work extracted three features from the given inputs: sequence-based physicochemical features, Gene Ontol-
ogy (GO) based features, and semantic similarity-based features. A brief description of the feature extraction 
process is given below.

Sequence‑based physicochemical features
The proteins have been utilizing twelve physical and chemical characteristics within its combined amino acids 
as the principle for PPI prognostication: hydrophilicity, adaptability, convenience, turn the scale, external sur-
face, polarizability, antigenic tendency, hydrophobicity, net charge indicators of the side chains, polarity, sol-
vent obtainable surface region, as well as side-chain volume. Hydrophobicity and polarity were the 12 qualities 
assessed on two distinct scales. The scores of the twenty critical amino acids’ physical–chemical property scales 
are listed in35. Every amino acid gets converted into a vector of 14 numerical data, one for each physicochemical 
scale rating. Because proteins fluctuate in length, they could be depicted by a varying count of vectors.

Alternatively, classification within an ensemble Meta-learning, including an ANN, k-NN, or NB, demands 
consistent feed. To generate a unified feed for the learner’s classification of the ensemble meta-base, the protein 
description is converted in a consistent vector form with auto-covariance (AC), whereby all proteins having 
different quantities of amino acids get portrayed by the identical length vectors. The AC of a protein sequence’s 
physicochemical characteristic scale describes the average correlations among amino acids split by a specific 
spacing over the complete protein sequence. This spacing between an amino acid and its neighbour is indicated 
here as a specific count of residues. The lth physical–chemical property scale’s AC for protein P, ACl,g  is given by

where g is the preset gap, L is the P’s length,γl is the average of the lth physical–chemical scale values for P. By 
defining the maximum range to G 

(

i.e.g = 1, 2, 3, ...,G
)

 , every protein may be initialized of k × GAC elements, 
where k seems to be the physicochemical property scales count.

Original physicochemical scale data is converted into a unified vectorial format utilizing AC between amino 
acids. Consequently, irrespective of length, every protein may be described by the same length vectors. Despite 
their varied lengths, proteins P1 and P2 were expressed by vectors of 28 AC values. To eliminate variance impacts, 
set the mean of every feature to zero standard deviation to one, as shown below:

where Sl denotes the normalized value, αl represents the raw value of the lth AC, γl and SDl represents the mean 
as well as the standard deviation of the lth AC, while M denotes the multitude of AC values inside the AC vector.

Furthermore, we have used a min–max scaling approach to scale the normalized AC values to a predeter-
mined range of [0, 1] to guarantee that the ACs produced via diverse physical chemical scales were proportionate 
and will lessen the effect of outliers even more. Equation (4) describes the min–max scaling.

where Scalel seems to be the scaled value, Sl represents the lth AC’s standardized value,MAXl as well as MINl were 
the maximum as well as a minimum of the lth AC’s standardized values, respectively.

(1)ACl,g =
1

L− g

∑L−g

m=1

(

Pl,m − γl
)

×
(

Pl,m+g − γl
)

(2)γl =
1

L

∑L

m=1
Pl,m

(3)Sl =
αl − γl

SDl
, l = 1, ....M,

(4)Scalel =
Sl −MINl

MAXl −MINl
, l = 1, ...M,
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Gene ontology (GO) feature extraction
GO seems to be a systematic vocabulary for identifying gene functionalities, including their links to molecular 
functioning, cellular elements, and biological processes. Each subontology would be expressed as a grounded 
DAG, in which Every link indicates a connection of two contexts (part_of, is_a), and every node correlates to a 
GO-term. This hierarchy helps understand operational interactions among genes and has been highly beneficial 
in appraising the significance of genes’ involvement in diverse biological processes, notably PPI prediction.

We have used a method that classifies protein pairings by clustering GO terms. We explore the GO hierarchy 
from the GO terms in Gu as well as Gv up to their lowest common ancestor (ULCA), two given sets of GO terms 
Gu , and Gv tagging each of the proteins pu as well as pv in a pair. In this way, we may determine the LCA of every 
protein pairing < pu, pv > in a specified collection of protein pairings.

Fig. 1.   Architecture of the proposed AISSO-based PPI prediction model.
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The identified LCAs are stored in a list sorted according to hierarchical GO levels. Except for those already 
assigned to a pre-existing cluster, each LCA was regularly aggregated in the set of sorted lists to create a cluster. 
Consequently, the entire GO-terms DAG is split into a set of mutually exclusive subgraphs anchored by an LCA.

GO-term feature vectors were created by assessing the existence or non-presence of common GO words or by 
assigning them a weight based on the local topology and the data they contain. Alternatively, one GO-dependent 
feature is defined as a GO group referenced by LCA. To convert these annotated groups Gu and Gv for every 
protein pairing < pu, pv > into GO-based numerical values that LCA indexes, initially find the GO terms in sets 
Gu as well as Gv on every LCA-indexed subgraph. We calculate the nodes along the rising route up to the base of 
a subgraph for every GO term and add the node numbers on the subgraph. The value of the matching GO term 
feature gets allocated to this sum.

Improved semantic similarity based feature extraction
When annotations were plain texts, syntactic similarity alone cannot determine the proximity between sources. 
Tags generally struggle with heterogeneity as well as ambiguous issues, in which taggers may use multiple words 
with identical meanings or even the same word with distinct meanings. As a result, while comparing and identify-
ing resemblance, SSD retrieves semantic relations. The degree of similarity has been calculated using the Semantic 
Similarity Identification approach. Each source is mapped to compute the similarity. Specifically, the vector 
model suffers from problems including missing semantic data and word impropriety (e.g., ignore synonymy). 
The PWR approach eliminates vector semantic issues by integrating symbolic features into the matrix form. The 
SSD approach’s main focus in this application is to use a cosine similarity measure to identify the relationships 
between each pair of resources. SSD cosine similarity incorporates both syntactic and semantic similarity.

In this work, the improved semantic similarity is used to know the relation between two GO terms (Ra,Rb).

ωa is the weight generated for each protein sequence. The weight is calculated using the cubic map function.

This improved semantic similarity method was utilized in this work to obtain the best and most appropriate 
features.

Prediction phase
The prediction model applies the retrieved characteristics and uses a hybrid model incorporating the classifiers 
from Deep Belief Networks and Improved Recurrent Neural Networks. Figure 2 shows the prediction phase 
model. The idea behind the hybrid is as follows: The characteristics are first passed to each of the two classifiers 
individually, and the final result is determined by averaging the output of the classifiers using modified score-
level fusion. Here, the suggested AISSO is used to train both classifiers by adjusting the ideal weights, improving 
the prediction outputs’ performance.

Improved recurrent neural network (RNN)
RNNs are a kind of neural net wherein the links between functional blocks create a circle. Except for feed-
forward networks, RNNs may handle arbitrary sequences of inputs utilizing their internal memory. An RNN’s 
computational units each have a time-dependent actual valued activation and a configurable weight. RNNs were 

(5)Semsim(Ra,Rb) =
Rb.Ra

|Rb|.|Ra|
=

∑m
a=1(ωb ∗ SR.ωa)

√

∑m
a=1

(

ωa
b ∗ SR

)2
.
∑m

a=1ω
2
a

(6)Semsim(Ra,Rb) =
∑m

a=1

√
RaRb ∗ ωa

√
∑m

a=1(Ra)
√

∑m
a=1(Ra)

(7)Ec+1 = ρEc
(

1− E2c
)

Ec ∈ (0,1)

Fig. 2.   Prediction phase model.
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produced by iteratively integrating the very same collection of weights across a graph-like structure. Many RNNs 
use Eq. (8) to specify the values of their concealed blocks.

The learned architecture still has an identical input size because RNN has been defined from the perspective 
of migration from one stage to another. Furthermore, the design utilizes a unique transitional formula having 
identical attributes for every time interval. Long Short-Term Memory (LSTM) is another RNN in which LSTM 
cells substitute the classic hidden layers. Those cells were composed of multiple gates that could govern the input 
stream. An LSTM cell has four gates: input gateway, cell state, forget gate, and output gate. This has a sigmoid 
tier, a tanh layer, and point-wise multiplication. The following were the multiple gates as well as their operations:

•	 Input gate: This input gate is generally comprised of inputs. Some retrieved characteristics would be utilized 
as input in our work.

•	 Cell State: The system runs throughout and has gates allowing it to add and remove data.
•	 Forget gate: Specifies the level of knowledge that’ll be permitted.
•	 Output gate: LSTM’s output makes up this component.
•	 Integers from 0 to 1 are output by the sigmoid layer, indicating how much of each component can move.
•	 A new vector created by the Tanh layer is added to the state.

The cell status gets modified depending on the gate output. The accompanying formulas have been used to 
express it mathematically.

where xt seems to be the input vector,Ht indicates the vector of output, et would be the cell state vector, Ft is the 
vector for the forget gate, it is the vector for the input gate, qt has been the vector for the output gate, while W, 
d has been the parameter weight matrix and vector. The tanh activation function, which is represented in this 
paper, is

Whh denotes the recurrent neuron weight and Wxh denotes the input neuron weight.
The loss function measures the difference between an algorithm’s current and predicted output, assessing 

data mimicry. Cross-entropy is commonly used in machine learning for more robust generalization models and 
faster training. With binary and multiclass categorization issues, cross-entropy could be applied.

A binary regression model may be utilized to categorize observations into two groups. Particularly a vector 
of input characteristics x, the model’s output for a provided observation may be read as a probability that offers 
the foundation for categorizing the observation. The logistic function Q(ε) = 1

(1+e−ε)
 is being used to describe 

the likelihood in a logistic regression, wherein z represents a function of the input vector ε , most frequently a 
linear function. Throughout most instances, logistic regression improves the log loss for all of the findings on 
which it is trained, which is identical to maximizing the sample’s average cross-entropy. For example, suppose 
we have N samples with each sample indexed by n = 1, 2…N. The average of the loss function is then given by

where ẑn = h(w.χn) = 1

(1+e−w.χn)
Cross-entropy loss is another name for logistic loss. It is sometimes referred to as log loss. This work uses the 

cross-entropy loss function below to lessen the model’s loss.

Deep belief network
DBNs appear to be inventive techniques. A DBN is composed of stacked RBMs that engage in greedy applica-
tion training to achieve good performance in an unsupervised environment. Training took place layer-by-layer 
in a DBN, executing each layer as an RBM trained on top of the previous layer. As a feed-forward network that 
allows for weight fine-tuning using an alternative strategy, DBNs are a group of RBM layers used for pre-training.

(8)Ht = F
(

Ht−1, xt;ϑ
)

(9)Ft = θ(WF .[Ht−1, xt]+ dF)

(10)it = θ(Wi .[Ht−1, xt]+ di)

(11)et = tanh(We .[Ht−1, xt]+ de)

(12)qt = θ
(

Wq[Ht−1, xt]+ bq
)

(13)Ht = qt ∗ tanh(et)

(14)Ht = tanh(WhhHt−1 +Wxhxt)

(15)J(w) = 1

N

∑N

n=1
C(ζn, �n) = − 1

N

∑N

n=1

[

znlogẑn + (1− zn)log
(

1− ẑn
)]

,

(16)crossEnt =
−1

N

[

∑N

i=1

[

tilog
(

sigmoid(χ)
)

+ (1− ti)log
(

sigmoid(1− ςi)
)]

]
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Since RBMs and auto-encoders can be pre-trained on unclassified data and fine-tuned on a small quantity of 
labelled data, their significant utilization is probably due to the lack of labelled data. A DBN was trained layer by 
layer using a greedy application training technique. It was used because the greedy application method optimizes 
each layer at a time in a greedy manner. A joint supervised training algorithm is typically applied to each layer 
during the fine-tuning stage that follows unsupervised training.

A greedy tier unsupervised approach was used in the pre-training phase to train the basic features, and a 
softmax layer was added to the top layer during the fine-tuning phase to improve the characteristics of the labelled 
samples. As shown in Eq. (17), the SD was normalised to graphically depict the complexity.

In this, v is each visible unit of RBM, while h is each hidden unit. The model’s three metrics were found to 
select the strategy.:φ = {U ,�,D} . The weight matrix U, the hidden layer component bias � , as well as the visible 
layer component bias D.

Consider an RBM comprises of p hidden cells as well as q visible cells, with υr representing the rth visible 
unit &ℏr representing the jth hidden unit, with the attributes stated in Eq. (18):

Here µr,j denotes the weighted average of the rth exposed cells, as well as the jth concealed cell from Eq. (19).

Here Ar denotes the rth visible cell’s bias limit from Eq. (20);

where Cj represents the jth visible cell’s bias threshold. The RBM energy formula has been expressed in Eq. (21) 
for (v, h) via the current state, assuming concealed as well as visible layers replicate the Bernoulli distribution.

φ =
{

Vrj ,Ar ,Bj
}

 represented the attributes of the RBM prototype, and the operation of energy displayed the 
value of energy amongst estimations from every viewable node as well as every concealed layer node. Because 
of the energy function’s extension and expansion, the combined probability distribution formula was obtained, 
wherein the nodes collection of viewable layers as well as hidden layers nodes was in a particular state indepen-
dently (v, h), as shown in formula (22):

where Z(φ) the normalized aspect or distributed function displays the overall energy estimates of all available 
states for the set of hidden nodes and visible layers in the expression (23). The parameters are often obtained by 
determining the probability function. After presenting the associated likelihood distribution P(v, h|φ ) the margin 
distributions P(v|φ ) of the viewable layer node collection might be obtained by adding the overall restrictions 
of the concealed layer node collection in Eq. (24):

The marginal distributions represent the likelihood that the node configuration inside the visible layers fell 
within the designated level distribution. The RBM system’s extraordinary layer-layer connections and inter-layer 
connectionless form give it the following noteworthy requirements: The enactment conditions of every hidden 
layer cell were restrictively autonomous after the presentation of the visible cell circumstances. In this instance, 
the hidden component’s activation probability was as indicated by Eq. (25):

Consequently, upon stating the hidden components’ criterion, the visible components’ initiation probability 
likewise became uncorrelated, as seen by Eq. (26):

This was necessary to figure out the 3 model parameters before selecting the RBM model:φ =
{

Vij ,Ar ,Bj
}

 
The logarithmic probability measures were used in the parametric organization to determine the parameters’ 
subordinates. According to Eq. (24), P(v|φ ) = 1

Z(φ)

∑

he
−E(v,h|φ ) , Since energy E was determined by extending 

(17)δ∗ = δ − δmin

δminmax

(18)� =
{

µr,j ∈ ξp×q
}

(19)Z =
{

Ar ∈ ξm
}

(20)Z =
{

Cj ∈ ξn
}

(21)E
(

y, h|φ
)

= −
∑n

r=1
Arvr −

∑m

j=1
Bjhj −

∑n

r=1

∑m

j=1
vrVrjhj

(22)P(v, h|φ ) = e−E(v,h|φ )

Z(φ)

(23)Z(φ) =
∑

v,h
e−E(v,h|φ )

(24)P(v|φ ) = 1

Z(φ)

∑

h
e−E(v,h|φ )

(25)AP
(

hj = 1|φ
)

= σ

(

Bj +
∑

i
viVij

)

(26)AP(vr = 1|h ) = σ

(

Ar +
∑

j
Vrjhj

)
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P, it would be inversely related to likelihood P. The inclination increase strategy, related to parameter adjustment 
as shown by Eq. (27), was the standard method for increasing functional probability.

This repetitive approach increased the probability P while decreasing the energy E. Table 2 shows the hyper-
parameters of classifiers.

Modified score level fusion
In score-level fusion, an individual’s identity is determined by consolidating the match scores produced by various 
biometric matches. Usually, the biometric system uses the single scalar score produced due to this consolidation 
process. The conventional score level fusion is given below. The conventional score level fusion has some limita-
tions. Individual deep-learning models’ scores can be susceptible to noise or errors during prediction. These 
errors can propagate and affect the final fused score, potentially leading to misclassification. To overcome this, 
we have modified a new method for fusing scores of both deep learning prediction scores. To conventional score 
level fusion is given in Eq. (28),

	 (i)	 The map of mRNN output prediction is provided in Eq. (29)

	 (ii)	  Also, compute Mape for DBN output is given in Eq. (30).
		    yi is the actual score, SmRNN is the predicted score of modified RNN

	 (iii)	 To fuse the score by using Eq. (31),

where w1,w2 are the weights, these are provided in Eqs. (32) and (33). The weight can be calculated by 
using the above map values.

If SmRNN−Mape ≤ SDBN−Mape:

(27)φ = φ + µ
∂ lnP(v)

∂φ

(28)FS =
mRNNpredictedscore + DBNPr edictedscore

2

(29)SmRNN−Mape = 100 ∗ 1

NMRNN

NmRNN
∑

i=1

yi − SmRNN

yi

(30)SmRNN−Mape = 100 ∗ 1

NDBN

NDBN
∑

i=1

yi − SDBN

yi

(31)FS = w1 ∗ SmRNN + w2 ∗ SDBN

Table 2.   Classifier Hyper-parameters.

Classifier Parameter

DBN

learning rate:0.01
Max Iter = 50.0;
Batch Size = 200;
Step Ratio = 0.01;
Drop Out Rate = 0.1;
Verbose = ’true’;
hidden neuron: 50
Initial Momentum = 0.5; % momentum for first five iterations
Final Momentum = 0.9; % momentum for remaining iterations
Weight Cost = 0.0002; % costs of weight update
Initial Momentum Iter = 5;
Max Iter = 100;
Step Ratio = 0.01;
BatchSize = 0;
Verbose = false;

RNN

input layer-1
lstm layer-1
fullyConnectedLayer-3
activation: tanh
‘optimizer’: ‘sgdm’,…
‘MaxEpochs’,50, …
‘MiniBatchSize’,70, …
‘Verbose’, false
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This improved score level fusion technique was used to identify which deep model achieves a better predic-
tion rate than others. Based on the minimum mape weight-based fusion technique to fuse the score accurately. 
This modified fusion technique can be tailored for improved performance.

AISSO‑based optimal training of hybrid classifier
The hunting techniques of eagles, particularly those of the Aquila genus, inspire AOA. Nature-inspired algorithms 
frequently present creative answers to optimization issues by imitating natural processes. AOA usually strikes 
a good balance between exploration and exploitation. Analogously to eagles hunting for prey, it uses processes 
to efficiently explore the search space and capitalize on potential places for better answers. Applications of AOA 
can be found in many different disciplines, including engineering, finance, logistics, and more, for a wide range 
of optimization problems. It is appropriate for a wide range of real-world applications due to its versatility. Good 
convergence properties are frequently exhibited by AOA, which means it can quickly and effectively converge 
to almost ideal solutions.

For applications that require speed, this efficiency is essential. To attain optimal performance, SSO, like many 
other optimization algorithms, must have its parameters adjusted. Choosing the right parameter values can be 
difficult and might require much experimentation. Despite its exploration–exploitation balance, SSO may nev-
ertheless experience the problem of convergent to local optima, particularly in multimodal or highly nonlinear 
optimization environments. Developing escape strategies from local optima is crucial to enhancing its robustness.

Even though SSO draws inspiration from natural occurrences, its theoretical underpinnings might not be as 
solid as those of certain more known optimization techniques. Due to this lack of theoretical rigour, its behaviour 
under certain situations may be more difficult to evaluate and comprehend. The computational needs of SSO may 
become exorbitant depending on the size and complexity of the task. This could be a disadvantage, especially for 
real-time applications or large-scale optimization projects requiring much processing power. The combination 
of SSO and Aquila optimization is the proposed AISSO. SSO algorithm influences the Aquila update. The hybrid 
optimization idea outperforms the separate algorithms regarding speed and convergence rate.

Objective function and solution encoding
The solution provided as input to the proposed AISSO-based model is shown in the following Fig. 3.

This work aims to minimize mean square errors, as indicated by Eq. (34). Initially, the attributes are provided 
to each of the two classifiers separately. The outcome is obtained by averaging the classifiers’ outputs using modi-
fied score-level fusion.

Here, the MSE is the mean square error.
The shark smell technique was motivated by the shark’s capability to hunt using its keen sense of smell. 

Several assumptions are taken into account when building the mathematical formulation39. They are as follows:

(1)	 A fish gets hurt, so blood is injected into the water (the search space). Consequently, when contrasted to 
the shark’s motion velocity, the wounded fish’s velocity may be ignored; in another way, the source (prey) 
is considered to be set.

(2)	 Blood is injected into the sea in a usual manner. The impact of water movement on odour-distorting parti-
cles is overlooked. The odour particles were more significant around the damaged fish. As a result, tracking 
the odour particles aids the shark in approaching its meal.

(3)	 One damaged fish in the shark’s search area resulted in one odour source.

SSO initialization: first odour particles identification
When the shark detects an odour, the search activity starts. In reality, odour molecules from a wounded fish get 
poor diffusion (prey). A population of starting solutions for an optimization challenge in the viable search space 

(32)w1 =
SmRNN−Mape

SDBN−Mape + SmRNN−Mape

(33)w2 =
SDBN−Mape

SDBN−Mape + SmRNN−Mape

(34)Obj = Min(MSE)

Fig. 3.   Proposed AISSO-based PPI prediction technique’s solution encoding.
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is typically produced randomly to mimic this procedure. Each one of these options indicates an odour particle 
that indicates the shark’s likely location at the start of the search40,41.

Where Y1
1 denotes the population vector’s yth beginning location or yth the initial solution, while NP is the 

size of the population. The associated optimization issue is as follows:

ND = count of selection factors in the optimization issue, where Y1
y,τ = τ th dimension of the shark’s yth posi-

tion or τ th selection variable of the shark’s yth location Y1
y.The strength of the odour at every location indicates 

its proximity to the prey. This SSO methodology uses an objective function to simulate this activity. A more 
significant objective function value signifies a more extraordinary odour, considering a maximization issue and 
using the basic rule. As a result, the shark is closer to its prey because of this procedure. As per this viewpoint, 
the SSO algorithm starts.

Shark movement toward the prey
At each point, the shark accelerates to get nearer to the prey. The baseline velocity vector may be represented as 
follows using position vectors:

The velocity vectors in Eq. (38) contain elements within every dimension.

The shark tracks the odour, and the strength of the odour dictates its motion; because of the higher intensity 
of the odour, the shark’s speed increases. This motion is quantitatively characterized by an objective function’s 
gradient from the optimisation standpoint. This gradient denotes the route wherein the function grows the fast-
est. This mechanism is depicted in Eq. (39).

where VVℓ
y  = the shark’s approximate constant velocity; OF denotes the objective function; r = the objective func-

tion’s gradient; ℓmax symbolizes the shark’s maximum count of phases for forward motion; ℓ = the count of steps, 
while Rand1 = a random value in the range [0,1]. Since a shark may not be able to attain the velocity predicted by 
the gradient function,ηℓ seems to be in the range [0,1]. The SSO algorithm’s Rand1 parameter allows for a more 
random search. The gravitational search method inspired the concept of considering Rand1 (GSA). Equation 
may be used to compute velocity in each dimension (40).

Because of inertia, the shark’s velocity gets restricted, which is determined by its prior velocity. A simplified 
Eq. (41) is used to represent this process:

where ϕℓ would be the momentum or inertia coefficient rate, which will have a value inside the interval [0,1] and 
become a constant for phase ℓ; Rand2 represents the momentum term’s randomized value source with a uniform 
dispersion on the interval [0,1]. The higher the amount of ϕℓ The more inertia there is, the more dependent the 
present velocity is on the prior velocity. Using momentum contributes to clearer search pathways in the solu-
tion area from an arithmetical standpoint. The exploration in the algorithm becomes more diverse with Rand 2.

It is feasible to ignore or assign a very modest quantity to the shark’s baseline velocity before commencing 
the search strategy VV0

y,τ for the velocity during the first phase VV1
y,τ . The shark’s speed may be enhanced up to 

a certain point. Unlike other fish, sharks do not have swim bladders to keep them afloat. As a result, they can-
not stay still and must swim upward in a direction, even at a slow pace. This is accomplished by utilizing the 
powerful tail fin as a propulsion device. A shark’s typical speed is around 20 km/h, but it may reach 80 km/h 
while preparing to strike. The sharks’ peak to minimum velocities ratio is restricted. Equation (42) describes the 
velocity limiter utilized within every phase of the SSO method8,42–44.

(35)
[

Y1
1 ,Y

1
2 , ...Y

1
NP

]

,

(36)Y1
y =

[
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y,1,Y

1
y,2, ...,Y

1
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(37)VV1
1 ,VV
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2 ...,VV

1
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(38)VV1
y =

[

VV1
y,1,VV

1
y,2, ....VV

1
y,ND
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(39)VVℓ
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∣

∣

∣
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∣

∣

∣
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where βℓ is the level k velocity constraint ratio. Equation (42) calculates the value of VVℓ
r,τ that has the identi-

cal symbol as the phrase chosen by the minimal operator in Eq. (42). Owing to the shark’s forward motion, its 
updated position Iℓ+1

y  was calculated using its prior velocity as well as position.

where �tℓ is the phase ℓ time interval. For the sake of convenience, �tℓ is considered to be the same for all phases. 
Equation (42) yields every element of VVℓ

y,τ (τ = 1, ....,ND) of vector VVℓ
y .

As the proposed logic, we use the Aquila Optimization’s updation function instead of SSO’s updation func-
tion. The random variables r1 and r2 are created using the random function, while the random variable r3 is 
generated using the ICMIC map.

When a high soar locates the prey location, the Aquila orbits its prey, positions itself, and then attacks. Con-
tour flying with short glide aSSOult is the name given to this technique. In preparation for such an aSSOult, AO 
closely investigates the specified region of the intended prey. This behaviour is described numerically as Eq. (44).

where X2(t + 1) is the outcome of the 2nd search method’s subsequent recapitulation of t. The dimension area 
is D, as well as the levy flight dispersion function is Levy(DA) , that is the derivative of Eq. (44). At the fth itera-
tion,XR(t) is a randomized solution picked in the range of [1 N].

where s represents a fixed value of 0.01, RI1 and RI2 represents a random integer among 0 & 1, σ would be com-
puted with the help of Eq. (45).

where β is a fixed to 1.5. In Eq. (44), The values of y and x, which have been ascertained as follows, indicate the 
spiral pattern in the search.

where

ϒ seems to be a small number with a value of 0.00565. DA1 is an integer array that starts at one and moves 
to the search space length (Dim), and ω will be 0.005. The best shark positions were then chosen based on the 
greatest OF value.

In this study, Gauss mutation is used to provide a precise and trustworthy optimization. Gaussian mutation 
works by simply adding a random value from a Gaussian distribution to each vector member of an individual 
to create a new generation. Table 3 shows the optimization parameters.

Pseudo-code for AISSO:
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∣
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Table 3.   Optimization parameters.

Methods Parameters

Proposed

population size = 10;
ch_length = 2;
xmin = zeros(population size,ch_len);
xmax = ones(population size,ch_len);
initsol = unifrnd(xmin,xmax);
itermax = 25;
NP = size(X,1);% population size
ND = size(X,2);% number of decision variables
netak = 0.5;% a value in the interval [0,1];
alphak = 0.5;% rate of momentum or inertia coefficient that has a value in the interval of [0,1]
betak = 0.5;% velocity limiter ratio for stage k
delT = 0.1;
Leader_score = inf;
V = 0.5;
u = 0.0265;
r0 = 10;
r = r0 + u*to;
omega = 0.005;
phi0 = 3*pi/2;
sig = [0.25 0.6 1];

AO alpha = 0.1;
delta = 0.1;

PRO

ub = U(1,:); lb = L(1,:); %maximum and minimum values of solution
POP = val;
nPOP = N/2; %%%size of main population
rPOP = 0*ones(nPOP,D); %%% rice population
pPOP = 0*ones(nPOP,D); %%% poor population
gRc = 0;gPc = 0;bRc = 0;bPc = 0;

CSO

popSz = size(partMat,1);
MR = 0.75; % Mixture ratio to decide tracking or seeking mode,
% here it is the ratio of total seeking mode cats to total popSz
CDC = 0.65; % Counts of dimensions to change
SRD = 0.25; % Selected range of dimensions
SMP = 5;
c = 2.05;
wMax = 0.9;
wMin = 0.3;
% particle matrix and percentage as specified
perCnt = 0.25;

HGS VC2 = 0.03; %The variable of variation control
sumHungry = 0;%record the sum of each hungry

SSO

NP = size(X,1);% population size
ND = size(X,2);% number of decision variables
netak = 0.5;% a value in the interval [0,1];
alphak = 0.5;% rate of momentum or inertia coefficient that has a value in the interval of [0,1]
betak = 0.5;% velocity limiter ratio for stage k
delT = 0.1;
Leader_score = inf;
V = 0.5;
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Results and discussion

This section covers the results and discussion.

Simulation setup
The MATLAB tool has been used to implement the proposed work. In this research, two datasets were employed. 
The AISSO-based PPI prediction algorithm we have presented has been analyzed and its performance matrices 
compared with traditional methods like Aquila45, Cat Swarm Optimization (CSO)46, Hunger Games Search 
(HGS)47,Poor Rich Optimization (PRO)48, and Shark Smell Optimization (SSO)49.
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Dataset description and pre‑processing
We use the datasets of two species, Saccharomyces cerevisiae (SC) and Escherichia coli (EC), which each have a 
single dataset for the Biological Process (BP), Molecular Function (MF), and Cellular Component (CC) ontolo-
gies. Proteins lacking any GO annotations are removed. 10,831 and 6954 train proteins and 5436 and 1834 train 
proteins are present in SC and EC’s BP, MF, and CC databases, respectively. MetaGO Deducing Gene Ontology 
from multi-source pipelines are used40. The datasets include standard UniProt proteins annotated with experi-
mental GO and predicted structural models using I-TASSER. Further, the resultant GO terms are analyzed using 
the LCA method to find the protein pairs with positive and negative GO terms for further PPI prediction.

Convergence analysis
To assess the difference between the predicted as well as actual values, we assessed the cost functions of 0–25 
iterations for two datasets, and the findings of the proposed AISSO PPI prediction are compared with optimiza-
tions such as Aquila, HGS, PRO, CSO, as well as SSO, as seen in Fig. 4. The E. Coli findings reveal that for itera-
tions 0–5, the cost function values for PRO and HGS were high, ranging from 0.018 to 0.02, while our proposed 
AISSO strategy had a rate of 0.01 to 0.012. When the CSO and HGS methods provide cost function values ranges 
in 0.025–0.03, the proposed AISSO approach provides cost function values ranges in 0.01–0.015, demonstrating 
that the proposed AISSO Sequence-dependent PPI prediction method can provide more accurate results than 
other optimization techniques.

Performance analysis
The performance matrices MAE, MARE, MASE, MSRE, RAE, as well as RMSE of the proposed AISSO method, 
were contrasted with the conventional optimization techniques such as Aquila, CSO, HGS, PRO, and SSO for 
E. Coli, as shown in Fig. 5. When the PRO and Aquila MAE values are 0.017 and 0.015, respectively, our pro-
posed AISSO-based prediction technique achieves 0.014 at 60 learning percentage (LP), which is lower than 
other traditional methods.

For 60 and 70 LPs, our proposed AISSO-based prediction technique yields a MARE value of 1, demonstrat-
ing the efficiency of the proposed AISSO PPI prediction strategy. The SSO approach produces MSE and RMSE 
values of 0.054 and 0.2 for 60LP, respectively, which are greater than our proposed AISSO-based approach, dem-
onstrating that our AISSO-based method is more reliable and can deliver superior performance than methods.

Similarly, the MAE, MARE MASE, and RMSE values of our proposed AISSO-based approach were evaluated 
for S. Cerevisiae, and the results were compared with conventional optimization algorithms, shown in Fig. 6. 
When 60–90 LPs, the Aquila algorithm produces MAE values of 0.17, 0.18, 0.18, and 0.17, our proposed strat-
egy obtains lower values of 0.17, 0.17, 0.15, and 0.16. MARE values for S. Cerevisiae are likewise lower for all 
LPs, 1.1, 1.1, 1, and 1.5, indicating that our developed AISSO technique can deliver excellent results for this PPI 
prediction task. When the SSO and HGS techniques get greater MAE and MARE values, our proposed AISSO 
approach produces lower values, demonstrating that our AISSO-based PPI prediction strategy outperforms 
other traditional methods.

Fig. 4.   Cost Function comparison of the proposed AISSO strategy with conventional algorithms for (a) E. Coli 
and (b) S. Cerevisiae.
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Analysis of different classifiers and ablation studies
For multiple cases, we compared the effectiveness of the proposed AISSO-based approach with E. Coli and S. 
Cerevisiae, and the results are shown in Tables 4 and 5. Without optimization, our AISSO-based prediction 
strategy produces MAE and RMSE values of 0.1385 and 0.1921, respectively, but with cosine similarity, the 
rates are 0.1684 and 0.2190. When LSTM, GRU, CNN, and SVM acquire high MARE values of 2.4469, 2.2261, 
2.9994, and 1.9701, respectively, our proposed AISSO-based prediction strategy yields a lower value of 0.1539.

Similarly, for S. Cerevisiae, performance indices including MAE, RMSE, MARE, and MSE values were exam-
ined for multiple situations, and the outcomes are shown in Table 4. With S. Cerevisiae, our proposed approach 

Fig. 5.   Comparison of our proposed AISSO-based PPI prediction model with standard optimization 
algorithms in terms of (a) MAE, (b) MARE, (c) MSE, as well as (d) RMSE (e) MSRE, (f) RAE for E. Coli.
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yields MAE and RMSE values of 0.17534 and 0.23042, whereas other networks such as LSTM, GRU, CNN, and 
SVM reach rates of 0.27209, 0.42922, 0.23714, and 0.34126 and 0.33928, 0.50627, 0.27504, and 0.44073, demon-
strating that our novel approach surpasses other scenarios.

Statistical analysis
Statistical analysis is typically used in a data set to assess and comprehend results and explain data fluctuations. 
In our work, we conducted statistical analyses including best, worst, mean, median as well as STD of several 

Fig. 6.   Comparison of the proposed AISSO-based PPI prediction approach with traditional optimization 
algorithms for S. Cerevisiae in terms of (a) MAE, (b) MARE, (c) MSE, (d) RMSE, (e) MSRE, (f) RAE.
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optimization algorithms, including Aquila, HGS, PRO, CSO, and SSO for E. Coli and S. Cerevisiae, and also 
the outcomes were compared with our proposed AISSO approach as seen in Table 6, 7. When Aquila and HGS 
optimizations yield best and worst values of (0.0102, 0.0102) as well as (0.0100, 0.0167), respectively, for E. Coli, 
our proposed AISSO based prediction technique obtains best and worst values of 0.0100 and 0.0106.

Also, the mean and median values of our proposed AISSO-based prediction technique were 0.0101 and 
0.0100, respectively, lower than those of the other optimisation methods’ mean and median values. Similarly, for 
S. Cerevisiae, our AISSO-based prediction strategy obtains statistical analysis values of 0.0100, 0.0126, 0.0104, 
0.0103, and 0.0006, whereas traditional methods produce high values, demonstrating that our AISSO-based 
prediction approach outperforms existing optimization algorithms.

Analysis of accuracy
The projected model’s performance is evaluated for E. Coli and S. Cerevisiae using different learning percentages, 
namely 60, 70, 80, and 90. According to the findings collected, the projected model has achieved the maximum 
accuracy for varying learning percentages compared to the conventional models. The obtained results are illus-
trated in Fig. 7. At 60 percent of the learning percentage, the developed model has attained enhanced accuracy 
(~ 87.37), which is much better than the conventional approaches such as Aquilla, CSO, HGS, PRO and SSO, 

Table 4.   Performance comparison of our proposed AISSO strategy with E. Coli for diverse scenarios.

Parameter
Proposed with 
cosine similarity

Proposed without 
optimization LSTM GRU​ CNN SVM

Proposed PPI 
prediction GCN DL-PPI

MAE 0.168 0.138 0.297 0.276 0.238 0.344 0.136 0.204 0.1932

RMSE 0.219 0.192 0.357 0.328 0.275 0.423 0.198 0.2545 0.2409

MARE 1.896 1.607 2.446 2.226 2.999 1.970 1.153 1.4191 1.3434

MSE 0.047 0.036 0.128 0.108 0.076 0.179 0.039 0.0863 0.0817

Table 5.   Performance comparison of our proposed AISSO strategy with S. Cerevisiae for diverse scenarios.

Parameter
Proposed with cosine 
similarity

Proposed without 
optimization LSTM GRU​ CNN SVM AISSO based GCN DL-PPI

MAE 0.166 0.182 0.272 0.429 0.237 0.341 0.175 0.185 0.256

RMSE 0.234 0.248 0.339 0.506 0.275 0.407 0.230 0.2307 0.322

MARE 1.396 1.861 1.892 1.258 2.926 2.783 1.732 1.2867 1.844

MSE 0.054 0.06 0.115 0.256 0.075 0.165 0.053 0.0783 0.102

Table 6.   Statistical analysis of our proposed AISSO-based strategy vs. other optimization algorithms for 
E. Coli.

Statistical analysis Aquila HGS PRO CSO SSO AISSO

Best 0.010222 0.010091 0.01019 0.010276 0.010084 0.010097

Worst 0.010222 0.016729 0.018511 0.019461 0.015773 0.010663

Mean 0.010222 0.011111 0.013114 0.012393 0.010934 0.010188

Median 0.010222 0.010342 0.012275 0.010276 0.010927 0.010097

STD 7.08E-18 0.002015 0.002613 0.003249 0.001282 0.000212

Table 7.   Statistical comparison of our proposed AISSO-based strategy to extant optimization algorithms for S. 
Cerevisiae.

Statistical analysis Aquila HGS PRO CSO SSO AISSO

Best 0.010284 0.010106 0.010102 0.010485 0.010138 0.010012

Worst 0.015891 0.029087 0.026908 0.012794 0.019354 0.012694

Mean 0.010671 0.014784 0.013799 0.010762 0.010614 0.010425

Median 0.010284 0.013719 0.013134 0.010485 0.010167 0.010323

STD 1.11E-03 0.004046 0.003787 0.000766 0.001833 0.000697
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respectively for E. Coli. Also, based on the accuracy of the developed model for S. Cerevisiae at LR 80, the devel-
oped model obtained the highest accuracy compared to the traditional methods.

Local and global optima analysis
An extrema (highest or minimum) point of the objective function for a specific area of the input space is known 
as a local optimum. The maximum or lowest value the objective function can accept throughout the whole input 
space is known as the global optimum. The global optimum is best for the system’s overall performance, whereas 
the local optimum is best for the performance of a single component. Figure 8 shows the local and global optima. 
Finding the minimum or maximum over the specified set, as opposed to local minima or maxima, is how global 
optimization differs from local optimization. Using traditional local optimization techniques, determining an 
arbitrary local minimum is quite simple.

Computational time analysis
Table 8 shows the computational time analysis. For dataset 1, the proposed model shows the minimum compu-
tational time (~ 23.084) when compared to the other existing methods like AO (~ 73.78), CSO (~ 27.596), HGS 
(~ 64.284), PRO (~ 51.407) and SSO (~ 51.44). In addition, for dataset 2, the proposed model is 5%, 41%, 34%, 

Fig. 7.   Comparison of the proposed AISSO-based PPI prediction approach with traditional optimization 
algorithms (a) E. Coli and (b) S. Cerevisiae.

Fig. 8.   Analysis of Local and Global Optima.
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21%, and 5.5% better than the traditional methods like AO, CSO, HGS, PRO, and SSO. Thus, the proposed model 
is better than the other existing methods.

Conclusion
Protein–protein interaction prognostication is a subject that combines genomics with systems biology to detect 
and classify physical connections among protein groups or pairs. While numerous high-throughput experimental 
methods have been created to forecast PPIs, they have drawbacks, such as being expensive, time-consuming, and 
using incorrect and ineffective data and classifiers. Therefore, we introduce a novel PPI prediction methodology 
in this research that comprises two working phases: feature extraction and prediction. In the first step, we used 
the semantic similarity technique to provide new features that will help in accurate prediction, in addition to 
the conventional characteristics such as sequence-dependent and Gene ontology. AISSO neural networks like 
DBN and improved RNN were utilized in the second stage for better prediction.

Furthermore, this work created a unique optimization termed Aquila Influenced Shark Smell (AISSO) to 
deliver a better and more trustworthy prediction by optimising the weighting factors. The outcomes of the pro-
posed PPI prediction strategy were contrasted with traditional methodologies, demonstrating that our novel 
method potentially delivers better results.

Future scope
Additional pre-trained language models will be investigated in future work to produce protein sequence embed-
dings. We will also investigate the application of other protein information sources, like gene co-expression, 
which can be used as a node feature vector in a PPI network graph. Combine sequence data with other biological 
data types like structural details, gene expression profiles, or functional annotations for more thorough predic-
tions. Improve the interpretability of your models to shed light on the underlying processes that underlie your 
forecasts. Examine how PPI prediction models are used in personalized medicine and medication development.

Human subject
This study does not involve human subjects.

Data availability
The dataset is available with the corresponding author and available at individual request.
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