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Complex trait associations in rare diseases
and impacts on Mendelian variant
interpretation

Craig Smail 1,2 , Bing Ge3, Marissa R. Keever-Keigher 1,
Carl Schwendinger-Schreck1, Warren A. Cheung 1, Jeffrey J. Johnston 1,
Cassandra Barrett1, Genomic Answers for Kids Consortium*, Keith Feldman2,4,
Ana S. A. Cohen 1,2,5, Emily G. Farrow 1,2,6, Isabelle Thiffault 1,2,5,
Elin Grundberg 1,2 & Tomi Pastinen 1,2

Emerging evidence implicates common genetic variation - aggregated into
polygenic scores (PGS) - in the onset and phenotypic presentation of rare
diseases. Here, we comprehensively map individual polygenic liability for 1102
open-source PGS in a cohort of 3059 probands enrolled in the Genomic
Answers for Kids (GA4K) rare disease study, revealing widespread associations
between rare disease phenotypes and PGSs for common complex diseases and
traits, blood protein levels, and brain and other organ morphological mea-
surements. Using this resource, we demonstrate increased polygenic liability
in probands with an inherited candidate disease variant (VUS) compared to
unaffected carrier parents. Further, we show an enrichment for large-effect
rare variants in putative core PGS genes for associated complex traits. Overall,
our study supports and expands on previous findings of complex trait asso-
ciations in rare diseases, implicates polygenic liability as a potential mechan-
ism underlying variable penetrance of candidate causal variants, and provides
a framework for identifying novel candidate rare disease genes.

The Genomic Answers for Kids (GA4K) study at Children’s Mercy
Research Institute is a large-scale, phenotypically diverse pediatric rare
disease cohort comprising patient cases referred from 22 different
hospital specialties1,2. Comprehensive clinical genome assessment
utilizing structured rare disease phenotypes and prioritized variants
from whole-exome or whole-genome sequencing are further com-
bined with additional omic approaches with the goal of improving
understanding of the genetics of rare diseases.

One such strategy is the integration of polygenic scores (PGS) to
assess the contribution of common genetic variants to rare disease
phenotypes. PGS approaches have beenpreviously applied to estimate

disease risk attributed to inherited common variant polygenic back-
ground—such as in severe neurodevelopmental disorders3; and in
integrating trait-matched PGS to understand differences in disease
penetrance among carriers of monogenic risk variants4–7. Further,
differences in individual PGS liability can help resolve variable
expressivity of complex, multi-phenotype rare disorders, such as risk
for schizophrenia among carriers of the 22q11.2 deletion8.

PGS effect estimates have also highlighted a sharing of underlying
causal genes in monogenic and matched common diseases and other
correlated complex traits9,10, providing opportunities for expanded
discovery of large-effect variants underlying rare disease patient cases.
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Integrating common variant PGSs derived from population-scale
resources available from PGS Catalog11, here we systematically map-
ped the impacts of >1000 PGSs for common complex diseases,
laboratory tests, organ morphological, and anthropometric traits in >
500 groupings of probands defined by their rare disease phenotypes.

Results
Systematic assessment of PGS associations across diverse rare
disease phenotypes
To map associations between rare disease phenotypes and common
complex diseases, traits, and measurements we first generated a fil-
tered set of PGS obtained from PGS Catalog (N PGS = 1102;Methods).
Pairwise correlation across the filtered PGS set was low (median
absolute correlation coefficient = 0.019 (SD =0.068)). Individual
scores for each PGS were calculated using imputed genotype data in a
subset of 3059 probands enrolled in GA4K (Fig. S1; Table 1;Methods).
We further defined a set of probands with EUR ancestry (N = 2641) for
HPO-PGS association analysis to reflect the demographic background
of the majority of individuals currently comprising PGS training
cohorts (Methods; Fig. S2). The proportion of PGS variants recovered
in theGA4K imputedgenotype callsetwas high (median=96%;Fig. S3).

We quantified the contribution of each of the 1102 PGS in 626 rare
disease phenotype (HPO) case/controls cohorts (N pairwise compar-
isons = 689,852; HPO median case N = 11; median HPO terms per pro-
band = 6; Fig. S4) using a phenome-wide association study (PheWAS)
approach, mapping each PGS to binary HPO phenotype cohorts. For
each of these cohorts, we constructed a logistic regression model
comprising PGS, sex, and first five principal components of ancestry,
and further compared observed results with null distributions from
permutation testing (N permutations = 10,000), yielding an empirical
P-value for each HPO-PGS pair (Methods). From this approach we
identified 897 significant HPO-PGS pairs (FDR 20%) comprising 525
PGS and 154 HPO cohorts.

Categorizing HPO and PGS into tissue- and/or physiology-specific
measurements and disorders, we observed the greatest number of
associations for nervous systemmorphology HPOs with brain volume
PGSs (N = 95 HPO-PGS pairs) and growth disorder HPOs associated
with body measurement PGSs (N = 49 HPO-PGS pairs) (Fig. 1; Supple-
mentary Data 1). Overall, we observed at least one significant (FDR <
20%) PGS association for 1775 of 2641 (67%) probands in the study
cohort. Median regression model fit (Nagelkerke’s pseudo-R2) was
0.62% (range = 0.21–3.30%) (Figure S5). At more stringent FDR

thresholds, we observed 391 (FDR 10%) and 178 (FDR 5%) significant
HPO-PGS pairs. Summary statistics for all tested HPO-PGS pairs are
provided in Supplementary Data 2.

We performed a trans-ancestry analysis of available non-EUR
GA4K probands (N = 418), observing high concordance of PGS liability
across diverse ancestry groups (Fig. S6). We further performed a
replication analysis using case data from an external rare disease
cohort (Deciphering Developmental Disorders (DDD)) (N = 1416;
Methods; Fig. S7). We observed a replication rate for HPO-PGS pairs
(defined as matching PGS coefficient direction of effect and nominal
P-value (P ≤0.05)) of 17% (FDR 20%), 26% (FDR 10%), and 44% (FDR 5%),
which increased for larger DDD sample sizes (Fig. S8).

Impact of PGS liability on clinical diagnosis
We next assessed the impact of PGS on clinical diagnostic status for
probands with at least one PGS association and who had completed
clinical diagnostic testing at time of study (N = 984).We used a logistic
regressionmodel to quantify the contribution of an increasing burden
of rare disease phenotypes (HPOs) linked to PGS to the likelihood of
having a clinical diagnostic status including “diagnostic”, “VUS/GUS”,
“negative”, or “other” (partial genotype or partial diagnosis) classifi-
cation. We repeated this analysis for increasingly stringent proband
PGS Z-score thresholds. For each additional rare disease phenotype
(HPO) significantly associated with a PGS (FDR 20%), we observed a
modest decrease in the likelihood of diagnostic status (Fisher’s Exact
Test (two-sided); odds ratio = 0.97 [CI 0.94–0.99], P = 0.01) and
increase in the likelihood of VUS/GUS status (Fisher’s Exact Test (two-
sided); odds ratio = 1.03 [CI 1.00–1.06], P = 0.009) (Fig. 2). However,
for themost stringent PGS Z-score threshold, this effect was increased
(Fisher’s Exact Test (two-sided); diagnostic: odds ratio = 0.90 [CI
0.85–0.96], P =0.001; VUS/GUS: odds ratio = 1.08 [CI 1.01–1.14],
P =0.01). No differences were observed for negative cases across any
PGS Z-score threshold. We next asked whether observed results could
be explained by potential challenges with clinical diagnosis of more
complex patient cases (that is, a relatively larger number of rare dis-
ease phenotypes irrespective of any PGS associations). Again, using a
logistic regression model, we quantified the likelihood of each clinical
diagnostic status associated with a count of all HPOs per proband and
observed no significant associations.

Increased polygenic liability in VUS probands compared to
unaffected carrier parents
Given previous reports showing modification of monogenic disease
penetrance and severity associated with trait-relevant polygenic
liability4,6, we hypothesized that significantly associated PGS in pro-
bands with a candidate—but presently non-diagnostic—inherited var-
iant in a known rare disease gene (variant of unknown significance
(VUS)) would exhibit increased polygenic liability compared with the
PGS of their unaffected carrier parent (Fig. 3A). We identified a subset
of probands who had completed clinical diagnostic testing which had
identified an inherited, autosomal dominant (partial penetrance) VUS
and who had significantly associated PGS available for proband,
mother, and father (N= 62 HPO-PGS pairs; Methods). We observed a
significant difference in associated PGS (FDR 20%) liability between
probands and carrier parents (proband median PGS =0.23, carrier
parent median PGS = −0.50; Wilcoxon Rank Sum test (two-sided),
P = 5 × 10−04) but not between probands and non-carrier parents (pro-
band median PGS = 0.23, non-carrier parent median PGS =0.02; Wil-
coxon Rank Sum test (two-sided), P = 0.2) (Fig. 3B), where values > 0
indicate increased PGS liability for the associated trait. This effect was
more pronounced for more stringent HPO-PGS significance (FDR)
thresholds (Fig. 3B). We repeated this analysis for unaffected siblings,
where available, observing similar increased PGS liability for probands
compared to unaffected carrier siblings (proband median PGS =0.10,
carrier sibling PGS = −0.82; Wilcoxon Rank Sum test (two-sided),

Table 1 | Summary of GA4K probands in study cohort

Probands, N 3059

Sex (Female), N (%) 1434 (46.9)

Ancestry, N (%):

EUR 2641 (86.3)

AMR 254 (8.3)

AFR 114 (3.7)

EAS 37 (1.2)

SAS 13 (0.5)

Age in years at enrollment, mean (SD) 8.8 (6.2)

Number of HPO terms, mean (SD) 6.7 (4.7)

Diagnostic statusa, N (%):

Diagnostic 776 (47.1)

VUS/GUS 461 (28.0)

Negative 233 (14.1)

Otherb 178 (10.8)
a Diagnostic status for 54%ofGA4K cohort who had completed clinical genetic testing at timeof
this study.
b “Other” diagnostic category includes (N): partial diagnosis (117); partial genotype (61).
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P = 8 × 10−05) but not when comparing probands with unaffected non-
carrier siblings (proband median PGS = 0.10, non-carrier sibling
PGS =0.13; Wilcoxon Rank Sum test (two-sided), P =0.94) (Fig. S9A).

We next performed a within-trio analysis, quantifying the dif-
ference in PGS liability between a proband and each of their parents
and compared this quantity with repeated random sampling from
nominally significant PGS with matching direction of effect and not
linked to proband VUS HPOs (N permutations = 10,000; median PGS
per proband = 168). PGS liability for PGSs associated with a VUS
HPO(s) (FDR 20%) was significantly increased between probands and
carrier parents compared to background selected PGS (median

difference in PGS liability = 0.58, empirical P = 1 × 10−04), but not
between probands and non-carrier parents (median difference in
PGS liability = 0.19, empirical P = 0.24) (Fig. 3C). This difference was
stronger for more stringent HPO-PGS significance (FDR) thresholds.
We repeated this analysis for unaffected siblings, where available,
and observed the same trend in PGS liability by carrier/non-carrier
status (Fig. S9B).

Enhanced rare disease phenotyping through PGS integration
Next, we used clinical observation data from the electronic medical
record (EHR) at the GA4K study site to compare individual PGS with
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growth trajectories recorded at clinical visits. Previous research has
demonstrated that individual polygenic liability for relevant complex
traits can be useful for risk stratification of rare disease patient
cases12. We observed moderate positive correlation comparing
CDC age- and sex-adjusted height and body mass index (BMI)
Z-scores (Methods) with a significantly associated PGS for height
(PGS ID = PGS000998) (N = 2091; Pearson’s correlation (two-sided),
r = 0.36, P < 1 × 10−16) (Fig. 4A) and body mass index (PGS ID =
PGS000027) (N = 2091; Pearson’s correlation (two-sided), r = 0.23,
P < 1 × 10−16) (Fig. 4B).

For height, we further integrated rare disease phenotypes (HPO
terms) to annotate “short stature” (HP:0004322), “tall stature”
(HP:0000098), and control cohorts. For case probands, we observed
a partial overlap in height growth chart values exceeding the CDC-
recommended outlier threshold for short or tall stature (height
Z-score ≤ 2 or ≥ 2, respectively). For the short stature cohort
(N = 222), 103 (46%) passed the threshold, and for tall stature cohort
(N = 35), 20 (57%) passed the corresponding threshold. For probands
with observed outlier height Z-scores we found that their trait-
relevant PGS liability tended to stratify into expected direction of
effect. Specifically, for the short stature cohort with outlier height
Z-score (N = 103), 84 (82%) had a PGS ≤0 and 19 (18%) > 0. For tall
stature (N = 20), 19 (95%) had a PGS ≥0 and 1 (5%) <0 (Fig. 4A). We
replicated this finding in an external rare disease cohort (Deciphering

Developmental Disorders (DDD) (N = 766). For the short stature
cohort with outlier height observations (N = 52), 44 (85%) had a
PGS ≤0 and 8 (15%) > 0. For tall stature (N = 7), all probands had
PGS ≥0 (Fig. S10). Focusing on the obesity HPO cohort (N = 123), we
found that 64 of 95 (67%) probands with a BMI Z-score passing the
CDC threshold of obesity had a BMI PGS ≥0, and 42 of 52 (81%) with
BMI Z-score passing the threshold for severe obesity had a BMI
PGS ≥0 (Fig. 4B). These findings highlight the potential for enhanced
rare disease phenotyping through integrating EHR and PGS
information.

Enrichment for rare disease variants in putative core PGS genes
We next assessed the overlap of clinical diagnostic or candidate
(VUS) rare disease variants in genes that are also present in sig-
nificantly associated PGS. Across all PGS genes previously linked to
the associated HPO rare disease phenotype in OMIM or Orphanet
(HPO gene associations; seeData Availability), we observed a 6-fold
increase in cases having a diagnostic or candidate rare disease var-
iant in a PGS gene compared to controls (N = 538; Fisher’s Exact Test
(two-sided), odds ratio = 6.23 [CI 5.85–6.63], P < 1 × 10−16) (Fig. 5A).We
further implemented a method for ranking PGS genes to define a set
of core/key genes where a rare variant has the potential to exert a
relatively larger effect on disease risk, as postulated in the omnigenic
model of complex traits13. Previous studies have shown that GWAS

Fig. 2 | Change in likelihood of indicated clinical diagnostic status as a function
of PGS-associated HPO phenotype burden for probands who have completed
diagnostic testing (N = 984). Results are displayed across more stringent PGS
Z-score thresholds (frombottom to top of each diagnostic category). Dots indicate

the odds ratio from logistic regression (two-sided), error bars indicate 95% con-
fidence interval. P-values passing a threshold of P ≤0.05 are indicated in figure. No
adjustments were made for multiple comparisons.
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effect sizes tend to be larger for genes overlapping known disease-
matched monogenic disorder genes10; given this finding, we ranked
genes in each PGS using summarized effect weights for variants in a
PGS that are within or proximal (± 10 Kb) to any protein coding gene
(Methods). We observed for case probands an increasing enrich-
ment in overlap in clinical diagnostic or candidate variants in genes
with higher rank in the PGS. For example, for the top 0.01% effect
rank of PGS genes we observed a 30-fold increase in clinical diag-
nostic or candidate variant overlap in cases compared to controls
(Fisher’s exact test (two-sided), odds ratio = 31.03 [CI 16.04–57.63],
P < 1 × 10−16). This effect was stronger when increasing the stringency
of HPO-PGS significance (Fisher’s Exact Test (two-sided): FDR 10%:
odds ratio = 65.37 [CI 29.01–151.06], P < 1×10−16; FDR 5%: odds ratio =
79.00 [CI 29.33–246.59], P < 1 × 10−16) (Fig. S11A). We observed a
similar trend using data from an external rare disease cohort (Deci-
phering Developmental Disorders (DDD)) (Fig. S11B).

Using an orthogonal metric to define putative trait-relevant core/
key PGS genes, we focused on trait-matched expression quantitative
trait scores (eQTS) genes (eQTLGen Consortium, see Data

Availability), currently available for several complex traits and dis-
eases. eQTS measures the correlation between the expression of a
given gene and a polygenic score, aggregating regulatory effects on
expression for both cis- and trans-acting variants14. The genes with the
strongest correlation for a given trait are thendefined asputative core/
key genes. We assessed the likelihood of a proband harboring a
potential large-effect rare variant (ACMG severity category 2 or 3;
Methods) in an eQTS gene across increasingly more stringent PGS
liability thresholds.

Focusing on a subset of the HPO obesity case/control cohort
with clinical sequencing data available (N = 970), we identified can-
didate rare variants in a set of eQTS genes significantly associated
with obesity or extreme body mass index (N genes = 34; Methods).
Across the full cohort, 32 of 68 (47%) cases harbored a potential
large-effect rare variant in a trait-relevant eQTS gene and 380 of 902
(42%) controls. When we then integrated individual polygenic liabi-
lity for a significantly associated PGS trait (PGS = “body mass index”)
in addition to rare variant burden, we observed an increasing
enrichment in the proportion of cases with rare variants in trait-

Fig. 3 | Differences in trio polygenic liability for probands with an
inherited VUS. a Proposedmodel of variable rare disease penetrance for inherited
candidate pathogenic variant (VUS) in proband and unaffected carrier parent as a
function of polygenic liability for an associated complex trait PGS.bDistribution of
PGS for probands, carrier (Het) parents, and non-carrier (Ref) parents. PGS with
association direction of effect less than zero are inverted to enable visualization.
Results are stratified across HPO-PGS significance (FDR) thresholds (from right to
left: FDR 20%, 10%, 5%). Cross bars indicate median, error bars indicate standard
deviation. P-values are from Wilcoxon Rank Sum test (two-sided). No adjustments
were made for multiple comparisons. Results are from 62 HPO:PGS associations
across 6 trios (i.e. proband, mother, father) for FDR threshold 20%, 33 HPO:PGS
associations across 5 trios for FDR threshold 10%, and 26 HPO:PGS associations
across 4 trios for FDR threshold 5%. c Proband minus parent PGS Z-score/standard
deviation for significantly associated PGS in probands with a clinical variant of
unknown significance (VUS) compared to carrier (Het) and non-carrier (Ref) par-
ents. Points above zero indicate PGS liability is greater in probands and points

below zero indicate PGS liability is greater in indicated parent. Pairwise differences
for PGS with association direction of effect less than zero are inverted to enable
visualization. Diamonds denote median PGS for PGS linked with VUS HPO(s) for
probands compared to carrier parents (orange) and probands compared to non-
carrier parents (blue). Box and violin plots denote distribution of median PGS for
randomly selected PGS not associated with VUS HPO(s), where – for boxplots - the
middle line corresponds to the median, the lower and upper edges of the box
correspond to the first and third quartiles, the whiskers represent the interquartile
range (IQR) ×1.5 and beyond the whiskers are outlier points. P-values are derived
from the empirical distribution of these background PGS (N permutations =
10,000). No adjustments were made for multiple comparisons. Results are strati-
fied across HPO-PGS significance (FDR) thresholds (from right to left: FDR 20%,
10%, 5%). Observed results (indicated by diamonds) are from 62 HPO:PGS asso-
ciations across 6 trios (i.e. proband, mother, father) for FDR threshold 20%, 33
HPO:PGS associations across 5 trios for FDR threshold 10%, and 26 HPO:PGS
associations across 4 trios for FDR threshold 5%.
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Fig. 4 | Integrating PGS and clinical growth chart data. a Individual height
observations indicate age- and sex-adjusted Z-scores (CDC benchmarks) and are
displayed on the y-axis. Individual scores for a significantly associated height PGS
are displayed on the x-axis. Red horizontal line indicates short stature threshold
(CDC). Blue horizontal line indicates tall stature threshold (CDC). Probands with a
short stature HPO in GA4K are indicated by a red triangle if observed height value
passes CDC threshold for short stature, or a red cross if not passing this threshold.

Probands with tall stature HPO are indicated by a blue triangle if observed height
value passes CDC threshold for tall stature, or a blue cross if not passing this
threshold. Gray indicates control (no short or tall stature HPO terms present in
GA4K). Pearson correlation coefficient test (two-sided) and associated P-value is
indicated in figure. Pearson correlation coefficient P = 2 × 10−64. b As in (a) for
obesity probands compared with controls, and PGS and growth chart Z-scores for
body mass index. Pearson correlation coefficient P = 2 × 10−26.
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relevant eQTS genes as a function of trait-relevant polygenic liability,
but a depletion in controls (logistic regression, interaction
P = 3 × 10−03). At an outlier PGS Z-score threshold of ≥ 2, 10 of 14 (71%)
cases were found to have a potentially impactful rare variant, and 7 of
24 (29%) controls (Fig. 5B). Increasing the PGS Z-score outlier
threshold further (PGS Z-score ≥ 2.5), we observed 5 of 6 (80%) cases
with potentially impactful rare variants in trait-relevant eQTS genes
and 0 of 6 controls. We repeated this analysis using the same patient
cohort across six eQTS gene sets for non-matched complex diseases
or traits and observed no significant differences between cases and
controls (Figure S12). Notably, of the 34 obesity-associated eQTS
genes used in this analysis, only one has been previously linked to a
rare Mendelian obesity disorder in OMIM or Orphanet (HPO gene
associations; see Data Availability).

We repeated this analysis in a smaller set of available eQTS
genes for height (N genes = 10) for the short stature HPO case/
control cohort (N = 944), observing a similar interaction between
height PGS liability and frequency of rare variants in cases and
controls (logistic regression, interaction P = 4 × 10−03). Across the
full cohort, 4 of 78 (5%) cases and 26 of 866 (3%) controls harbored a
potential large-effect rare variant in a height eQTSgene, and 14% for
cases and 0% for controls at PGS Z-score ≤ 2 (Fig. 5B). Again, using
eQTS gene sets from non-matched complex diseases or traits, we
observed no significance differences between cases and controls
(Fig. S13). These findings suggest a potential framework for the
discovery of novel rare disease genes integrating rare disease-
associated PGS liability, PGS gene effect estimates, and clinical rare
variant annotations.

Discussion
Recent studies have shown that integrating PGS information can aid in
understanding the genetic basis of rare diseases3,15–18. Here, we imple-
mented a pipeline for the systematic assessment of PGS associations in
a large-scale, phenotypically diverse pediatric rare disease cohort,
mapping patient phenotypes to over 500 complex trait PGSs. We
demonstrated how individual polygenic liability is enriched in proband
carriers of inherited, clinically prioritized variants of unknown sig-
nificance (VUS) compared to unaffected carrier parents. Furthermore,
using two separate metrics to define putative core/key PGS genes, we
identified strong overlap between clinical diagnostic or candidate rare
disease genes and those with large estimated effects in significantly
associated PGS.

The accurate classification of VUSpathogenicity is an ongoing and
growing problem in the field19. Our findings provide evidence that
integrating information from proband and parent polygenic back-
grounds for associated complex traits could be a useful addition to
variant annotationworkflows.We focusedona set of inherited variants
with high clinical suspicion of pathogenicity resulting from an expert
clinical geneticist review, suspected to cause disease through auto-
somal dominance with partial penetrance. An explanation for why
some phenotypes comprising the nominated syndrome are not
observed in unaffected carrier parents could be helpful in the further
annotation of these candidate diagnostic variants. For the set of
inherited VUS studied here, observed differences in polygenic back-
ground between probands and unaffected carrier parents and siblings
might explain variable presentation of the candidate rare disorder, but
further work should be conducted using a larger variant set than was

Fig. 5 | Quantifying overlap between rare disease variants and putative core/
key genes in associated PGS in cases and controls. a Enrichment for HPO cases
versus controls (total N = 538) with a diagnostic or candidate (VUS) rare disease
variant in an associated PGS gene with indicated effect rank percentile in PGS. Dots
indicate the odds ratio from logistic regression (two-sided), error bars indicate 95%
confidence interval. P-values for PGS gene rank percentile: All, P =0; 90,
P = 3 × 10−127; 95, 5 × 10−89; 99, 1 × 10−45; 99.5, 1 × 10−31; 99.9, 1 × 10−17. No adjustments
were made for multiple comparisons. b Proportion of cases (top: obesity cohort;

bottom: short stature cohort) and controlswith rarevariants prioritized in toACMG
severity categories 2 or 3 in trait-relevant eQTS gene as a function of individual
liability for significantly associated polygenic scores. P-values are derived from
logistic regression (two-sided), testing for an interaction between case/control
cohort and PGS Z-score on rare variant burden in indicated eQTS gene set. Ext.
denotes maximum outlier PGS cutoff that could be assessed where the cohort
contained at least one case with a selected rare variant in an eQTS gene.
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available at the time of this study. Additionally, with relevance to
ongoing efforts to experimentally catalog the functional impact of VUS
and other possible disease variants usingmultiplexed assays of variant
effect (MAVEs) or similar platforms20,21, our results suggest that the
utility of these approaches might be maximized when using patient-
specific cell lines to reflect potentially relevant polygenic background
associated with variable rare disease phenotype presentation. Our
findings integrating eQTS annotations to define putative core genes
suggests that future diagnostic approaches for rare diseases would
benefit from jointly considering patient rare variants and their poly-
genic liability for associated complex traits.

We partially replicated PGS associations from GA4K using data
from an external rare disease cohort comprised of individuals with a
known or suspected neurodevelopmental disorder (Deciphering
Developmental Disorders (DDD) study). We could attempt to replicate
only a subset of HPO phenotypes tested in GA4K, with a bias toward
neurodevelopmental disorder-related HPO phenotypes given the
composition of DDD. We observed that the frequency of HPO term
usage could vary substantially between GA4K and DDD for patients
with similar disorders, potentially due to differences in clinical phe-
notyping protocols. Future improvements for defining the same or
similar patient populations might benefit from utilizing the HPO
hierarchy to capture more generalized phenotype terms, or in the use
of quantitative measures such as metabolites or affected organ
morphology.

One key limitation of our approach is the focus on the subset of
GA4K samples of European ancestry. This constraint reflects bias
toward this ancestry group in available GWAS and PGS training
cohorts11, as well as in the GA4K study cohort itself. Although we show
high consistency of associated PGS liability across non-European
ancestry cohorts available in GA4K, future updates to our work will
benefit from ongoing efforts in multi-ancestry PGS development22 and
targeted approaches for equitable outreach and enrollment in GA4K23

to increase available non-European cohort sizes. Furthermore, our
approach associates single standardized phenotype terms (HPO) with
PGS, whereas our results showing a mismatch in growth disorders
HPOs and height growth chart Z-scores from EHR data suggest an
opportunity for improved rare disease phenotyping through inte-
grating multiple data modalities.

Combined, our study suggests that future advances in the diag-
nosis of rare diseases will be enabled by considering the full frequency
spectrum of genetic variation present in patient cases.

Methods
Ethical declaration
The GA4K study was approved by the Children’s Mercy Institutional
Review Board (IRB) (Study # 11120514). Informed written consent was
obtained from the parent/guardian of all participants prior to study
inclusion. Additionally, assent is obtained from participants if age 7 or
older unless the participant has a condition that would limit
comprehension.

GA4K genotype imputation. Genotyping of the full available GA4K
study cohort was performed using the Avera Global Screening Array
(24v1-0_A1, stranded). Genotyping array variant calls in hg38 build for
samples with genotyping call rate >= 90% were then used as input for
imputation using the TOPMed imputation server with the r3 (1.0.0)
reference panel24. The final proband study cohort comprised 1434
female and 1625 male samples.

GA4K ancestry inference. Principal component analysis was per-
formed on a subset of LD andMAF pruned variants from chromosome
1 using plink (version 2)25 (“indep-pairwise” flag, values: 1000, 50, 0.05;
“maf” flag, value: 0.01) andflashpcaR (version 2.0.1)26. Using a subset of
known ancestry labels, the full GA4K cohort was filtered to define a

European (EUR) ancestry cohort used for association analysis com-
prised of probands with known EUR ancestry and those inferred from
manual inspection of a principal components plot (PC1 > 0,
PC2 <0.005).

FilteringPGSandcalculating individual scores. Individual-level PGSs
for GA4K participants were calculated using PGS weights obtained
from The Polygenic Score (PGS) Catalog11 (see Data Availability).
From a starting set of 3334 PGS downloaded from PGS Catalog (Feb-
ruary 2023), PGS measuring the same trait or disease were filtered by
retaining the PGS with the greatest number of variants. Further, PGS
measuring lifestyle phenotypes such as diet were removed. PGS con-
taining duplicated variants (more than one weight listed for the same
variant) were removed. PGS variants were converted to hg38 coordi-
nates using dbSNP27 (version 155) where necessary. PGS with < 25
variants were removed. 1102 PGS remained after applying these fil-
tering criteria. PGS were linked to category labels using the PGS
ontology ID and trait category annotations available fromPGSCatalog.
PGS variants were restricted to autosomes only. Individual PGSs were
calculated using plink (version 1.9)25 (“sum” flag) on all variants avail-
able in the GA4K imputed genotype callset with R2 ≥0.8 (“exclude-if-
info” flag). PGS scores were converted to Z-scores for each PGS in each
ancestry group separately. Samples with an extreme outlier PGS
Z-score (abs(PGS Z-score)≥6) in one or more PGS, or clear outliers in
PCA clustering, were removed from further analysis. Each ancestry
cohort was then filtered to include probands only. The remaining
sampleswere retained for analyses usingmother, father, and/or sibling
PGS data, where indicated.

Identifying significant HPO-PGS associations. PGSs were associated
with rare disease case sub-cohorts using HPO IDs for any ID with a
minimumproband count 5 among the 2641 proband study cohort (N =
626 sub-cohorts). For each HPO sub-cohort and PGS (N HPO=626; N
PRS = 1102; N = 689,852 pairwise comparisons) a logistic regression
model was used with HPO case/control status as the response variable
and PGS Z-score, first five principal components of ancestry (see
“GA4K inferred ancestry”), and sex aspredictor variables.Modelfit was
assessedwith Nagelkerke’s R squared using theNagelkerkeR2 function
in the fmsb package (version 0.7.5) in R. An empirical P-value was
calculated for each pairwise comparison using a simulated null dis-
tribution of logistic regression abs(Z-statistics) across 10,000 permu-
tations of random case/control label reassignment (retaining relative
HPO case/control counts) within each HPO-PGS pair (approximately
6.9B total model calculations). Predictor variables remained as
described above. Empirical P-values were generated in R using the
empPvals function available in the qvalue package (version 2.30.0)28.
The empirical P-value is defined here as the fraction of null logistic
regression abs(Z-statistics) that match or exceed the observed abs(Z-
statistic) (plus an integer constant) for a given HPO-PGS pair. In this
way, theminimumpossible empirical P-value for a given HPO-PGS pair
in the present analysis is 1 × 10−04 (i.e., the observed statistic is not
matched or exceeded by any of the 10,000 null statistics from per-
mutations). The expectation of this procedure is that the distribution
of null empirical P-values follows a uniform distribution29; however,
when combining empirical P-values across all HPO-PGS pairs it was
observed that this distributionwas not uniform (Kolmogorov-Smirnov
test) and that the estimate of null statistics was affected by the relative
sample size of each HPO sub-cohort. Therefore, the false discovery
rate (FDR) was calculated within each HPO case sub-cohort separately
to conform with the expected uniform distribution of empirical P-
values.

Linking PGS variants to genes and effect size ranking. PGS variants
within or proximal (± 10Kb) to anyprotein coding genewere identified
using bedtools (version 2.29.1)30 (“window” flag; value: 10,000). Gene
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coordinates and annotations were downloaded from GENCODE (file:
gencode.v26.GRCh38.genes.gtf) (seeDataAvailability). For eachPGS,
genes were ranked by effect size by selecting the linked variant (i.e.
within the gene body or ± 10 Kb) with the maximum absolute PGS
effect weight.

GA4K clinical sequencing and phenotypic data. Clinical whole-
exome (WES) or whole-genome (WGS) variant calls, standardized
phenotype codes (Human Phenotype Ontology (HPO)31), and diag-
nostic status were obtained from the GA4K study repository. HPO
terms were summarized for visualization where indicated using
ontology parent terms specified in HPO (see Data Availability),
extracted using the get_ancestors function available in the ontolo-
gyIndex package (version 2.11)32 in R.

For the analysis of probands with clinical diagnostic status of
variant of unknown significance (VUS), probands were selected if their
PGS-associated HPO(s) matched any of the disease phenotypes for
candidate syndromes returned by clinical annotation performed by
clinical geneticists. This annotation pipeline prioritizes disease var-
iants and summarizes matching phenotypes by aggregating across
multiple knowledge bases such as OMIM, ACMG, and ClinVar. VUS
cases were restricted to single inherited variants (i.e. VUS is present in
one parent), autosomal only, annotated as autosomal dominant with
partial penetrance, and where associated PGSs were available for the
full trio. Compound heterozygous VUS events were removed. Parent
VUS zygosity was obtained from clinical WES/WGS available in the
GA4K study repository. Carrier parents were confirmed to be unaf-
fected for the matching VUS phenotype(s) by clinical geneticist chart
review.

Height andweight observations, includingmeasure date/time and
patient ancestry, were obtained from the electronic medical record at
the GA4K study site at Children’s Mercy Hospital. Observations were
filtered for “White” ancestry label. The R package cdcanthro (version
0.1.1) was used to calculate age and sex adjusted Z-scores for height
and weight using CDC guidelines. Further, BMI Z-scores were calcu-
lated using the formula Weight/(Height/100)2. The average (median)
Z-score for each measurement was computed for samples with more
than one observation time point.

Replication in an external rare disease cohort
External replication analysis used case data from the Deciphering
Developmental Disorders (DDD) study (see Data Availability), com-
prising 571 female and 893 male samples. Genotyping array variant
calls (dataset EGAD00010002568) (hg38 genome build) were used as
input for imputation using the TOPMed imputation server with r3
(1.0.0) reference panel24. Variants were filtered to those with imputa-
tion quality R2 ≥0.8 and which were also available in the filtered GA4K
imputed callset (N variants = 23,952,791). Probands were subset to
those with GBR ancestry using resource file EGAF00008185290 in
dataset EGAD00010002568. Probands were further subset for those
with ≥ 1 entry in phenotyping (HPO) data file EGAF00002191760. We
used FAM file EGAF00008195272 in dataset EGAD00010002568 to
check for sibling probands, retaining one proband at random as
applicable. PGSwere calculated as described above (see “Filtering PGS
and calculating individual scores”). Clinical variant annotations were
obtained from dataset EGAD00001010137, retaining variants with a
clinical annotation (column name: “pathogenicity_clinical”) of “patho-
genic”, “likely_pathogenic”, or “uncertain”.

Assessing rare variant burden in large-effect PGS genes. To assess
the landscape of rare variants in putative core/key PGS genes (eQTS
genes) for obesity, rare variant impact annotations were obtained
using Variant Effect Predictor (VEP) (version 98_38)33 and allele fre-
quencies from gnomAD (version 3)34. Rare variants were defined as
those with gnomAD MAF < 1% (and including variants absent in

gnomAD) and were further categorized using ACMG variant severity
guidelines35. Variants annotated in category 2 or 3 were retained. Rare
variants in category 2 are defined as: nonsense; disruption of stop; loss
of initiation; splice junction; donor/acceptor (AG/GT); frameshift;
whole transcript deletion. Category 3 variants are defined as:missense;
in-frame in/del including whole exon; intronic or synonymous variant
possibly affecting splicing (in polypyrimidine tract, five_prime_exonic,
five_prime_flank, three_prime_exonic, five_prime_intronic, three_pri-
me_flank); any variant in a mitochondrial gene.

eQTS genes (FDR < 5%)were obtained fromeQTLGen Consortium
(seeDataAvailability), and subset using the trait column for the terms
“obesity” or “extreme_bmi” for the obesity HPO analysis, and “height”
for the short statureHPOanalysis. To create a set of non-relevant traits,
the trait column was subset for the terms “asthma”, “celiac disease”,
“juvenile idiopathic arthritis”, “primary biliary cirrhosis”, “educational
attainment”, or “coronary artery disease”. In this analysis, the obesity
HPO case cohort was defined as those with a HPO term for “obesity”
(HP:0001513), “increased body weight” (HP:0004324), “overweight”
(HP:0025502), “truncal obesity” (HP:0001956), “childhood-onset
truncal obesity” (HP:0008915), “abdominal obesity” (HP:0012743), or
class I-III obesity (HP:0025499, HP:0025500, HP:0025501) as well as a
BMI growth chart Z-score > 2. Controls were defined as any proband
without any of these HPO terms, as well as an absolute BMI growth
chart Z-score of <1. Cases in the short stature analysis were defined as
those having a HPO term for “short stature” (HP:0004322). Controls
were defined as any proband without “short stature” or “tall stature”
HPOs, as well as an absolute height growth chart Z-score <1.

All statistical analyses were performed in R (version 4.2.1). Figures
were generated using ggplot2 (version 3.4.0)36,37.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
GA4K data is available via dbGAP using accession number
phs002206.v5.p1 and AnVIL [https://anvilproject.org/data/studies/
phs002206]. Raw and processed GA4K data are available under
restricted access due to IRB regulations and informed consent limiting
access to users studying genetic diseases. Data access is provided by
dbGAP for certified investigators with local IRB approval in place.
Access approvals are for a period of one year, which canbe renewed as
necessary. Polygenic scores are available from PGS Catalog at https://
www.pgscatalog.org/. Gene annotations are available from GENCODE
(version 26) at https://www.gencodegenes.org/human/release_26.
html. eQTS genes are available from eQTLGen Consortium at https://
www.eqtlgen.org/eqts.html. Human Phenotype Ontology (HPO) in
OBO format is available at https://hpo.jax.org/app/data/ontology. HPO
phenotype-to-gene annotations are available at https://hpo.jax.org/
app/data/annotations. Deciphering Developmental Disorders (DDD)
data is available from the European Genome-Phenome Archive at the
European Bioinformatics Institute using study accession number
EGAS00001000775. Source data are provided with this paper.

Code availability
Custom scripts generated for this study can be obtained at https://
github.com/csmail/ga4k_pgs.
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