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The real‑time shadow detection 
of the PV module by computer 
vision based on histogram 
matching and gamma 
transformation method
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Weixian Song 1* & Lishu Wang 1*

Solar energy plays an important role in renewable energy generation, with the advantages of 
low pollution, easy installation, and relatively easy access. However, photovoltaic (PV) modules 
are susceptible to cause localized shading from external factors such as leaves in the canopy, 
surrounding buildings, etc., which would affect power generation efficiency and even pose safety 
risks. Existing methods cannot perform well in real‑time conditions. This paper proposes a real‑time 
shading monitoring method for the PV module based on computer vision. The gamma transform 
and histogram matching were adopted to enhance key features and adjust the global gamut 
strength distribution in the image of the PV module; then the gray‑level slicing method finished the 
segmentation to detect the shadow from the video. All processing can be realized in the real‑time 
monitor camera and the detection results can be displayed on the HMI in PC with high efficiency and 
low cost. According to tests in the practical complex environment, the method can have enough 
detection performance and high real‑time performance with an accuracy of 0.98, and the F0.5 and F2 
values are 0.87 and 0.85, respectively. The metrics of the proposed method are higher than those of 
the existing Canny detection method, the Random Forest detection method, and the CNN detection 
method. In addition, the average time required by the proposed method to process a frame is 0.721 s. 
In addition, the average time required by the method to process an image frame is 0.721 s, which has 
good real‑time performance.
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Solar energy plays an important role in renewable energy generation, with the advantages of low pollution, 
easy installation, and relatively easy access. The average annual solar radiation reaching the earth’s surface is 
4 × 1015 MW, equivalent to 3.6 × 105 billion standard coal  equivalents1. Photovoltaic (PV) module efficiency is 
affected by factors such as solar irradiance, module surface temperature, and the presence of  shading2. As the 
sun’s position changes, PV systems are subject to localized shading from vegetation and surrounding buildings, 
which can result in uneven light distribution. In addition, the above event causes problems such as hot spots in 
PV panels, and multiple peaks in P–V characteristics, et al.3,4.

To avoid the negative effects of shading on power generation, large PV arrays with many modules must be 
manually inspected periodically or monitored by PV power generation system parameters such as voltage and 
current, and more.

Regarding electrical characteristics, Hariharan et al. proposed to classify the operating state of PV arrays 
into normal operation, partial shading, and fault state by calculating the output current, voltage, irradiance, 
and PV array energy  loss5. Davies et al. proposed a PV array shading detection method based on fill factor (FF) 
and voltage inflection point. The method detects shading by calculating the FF of the PV array and combining 
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the voltage inflection point, which appears on the I-V characteristic curve under local shading conditions. The 
voltage inflection point calculates the shading  area6.

Traditional methods for detecting local shading in PV arrays, which are based on mathematical models and 
PV system parameters, are affected by factors such as the connection method of PV modules and the lifetime of 
PV modules. They cannot accurately detect the shading position and area of PV modules. These two methods 
are less efficient and cannot be monitored in real-time. It can seriously affect the power generation efficiency and 
pose a safety hazard. Therefore, it is necessary to improve the shadow detection method of PV array and realize 
intelligent operation and maintenance.

Machine vision is an essential method in shadow detection in a PV array by a high-resolution camera in a 
fixed location or unmanned aerial vehicle (UAV) in the  air7. It can realize real-time monitoring the whole day at 
a lower cost, and there will be no additional manual operation before necessary maintenance.

In the field of digital image recognition of PV module shadow, Ye et al. proposed a PV module shadow 
recognition algorithm based on stack line smoothing and local threshold segmentation. They also proposed a 
simplified simulation method for the output characteristics of PV arrays considering local shading  conditions8. 
Wang et al. proposed the use of Canny edge detection and other techniques to detect shadow areas, which is more 
accurate than image morphology processing methods. This method mainly uses image processing techniques and 
does not require information such as the electrical characteristics of PV arrays, which are difficult to  measure9. 
Liu et al. proposed a PV module shadow region detection method based on digital image processing. The method 
uses a Hough transform to detect the component boundary lines and an improved threshold segmentation 
method to extract the shadow  region10.

Image enhancement algorithms include frequency-domain and spatial-domain methods. The frequency-
domain method treats the image as a two-dimensional signal, and enhances the signal by Fourier transform, 
which is commonly used, such as low-pass filtering and Gaussian filtering. In terms of gamma transformation, 
Huang et al. proposed adaptive gamma correction using weighted distributions, which can automatically improve 
image contrast by using a smoothing curve. Furthermore, they employed temporal information to reduce the 
computational time for several image frames of a video  sequence11. Sahnoun et al. compared MRI contrast 
enhancement techniques based on conventional gamma correction (TGC) and adaptive gamma correction 
(AGC). It is concluded that TGC is superior to AGC in terms of image quality, brightness and structure 
preservation, however, image details are more conserved by AGC method by performing better value of  entropy12. 
Ganguly et al. fused mathematical morphology with adaptive gamma correction to improve image visibility, and it 
is experimentally verified that the proposed method is able to eliminate the halo artifacts in the restored  image13. 
In terms of histogram applications, Fazli et al. proposed an adaptive histogram equalization (HE) method that 
uses HE in multiple local window size regions, and it emphasizes local contrast, rather than overall  contrast14. 
wang et al. proposed a method to accurately estimate γ parameters by analyzing the histogram gap distribution 
features and zero-value features of gamma-corrected images, and the experimental results show that the proposed 
method not only outperforms the existing methods in terms of parameter estimation accuracy, but also has good 
robustness to JPEG images with different quality factors before  transformation15.

The methods of correction of illumination unevenness of the image are mainly divided into two categories: 
correction methods with reference and correction methods without reference. The former requires corrections 
with reference to a sample image, e.g. histogram matching, while the latter can correct the image directly, e.g. 
gamma transformation, algorithms based on Retinex theory, and morphological filtering. To better correct 
the geometric distortion, highlight the important details in the image, and further improve the accuracy of 
shadow detection, this paper synthesizes the reference correction and nonreference correction methods, and 
proposes a real-time shadow monitoring method for the PV module based on histogram matching and gamma 
transformation.

This paper proposes a real-time shadow monitoring method for the PV module based on histogram matching. 
First, the light is adjusted by gamma transformation and histogram matching to enhance the contrast, and then 
real-time shadow monitoring is achieved by grayscale layering and other methods. Through field experiments, 
the proposal method can successfully identify PV module shadows in real-time videos under different lighting 
conditions. The average accuracy rate is 0.98, and the lowest accuracy rate is 0.80. The currently commonly used 
recognition method based on Canny edge detection has an average accuracy of 0.95 and a minimum accuracy of 
0.70. It can be seen that our method has better robustness, higher accuracy, and enough real-time performance.

This method has a significant reference value for shadow monitoring of large PV arrays. It provides new 
technical means for intelligent and accurate operation and maintenance of PV systems. We believe this work 
can potentially monitor the shadow of PV arrays in real-time, and we look forward to further research to extend 
it to more application scenarios.

The rest of this paper has the following structure.
Section "Material and method" describes the methods proposed in this manuscript. Among it, Section "Shaded 

PV module image features" analyzes the image characteristics of normal and partially shaded PV modules. 
Section "Real-time shadow monitoring method for PV module" describes the three main algorithms used in 
this method. Section "Experiment design" presents the experiments conducted to verify the feasibility of the 
method proposed in this paper. Section "Evaluation metrics" presents the evaluation metrics of the feasibility of 
the technique. Section "Results" presents the experimental results of this paper’s method. Section "Conclusions" 
concludes and highlights potential avenues for future research and development.
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Material and method
Shaded PV module image features
Typically, PV cells are composed of a high-transmittance glass cover, a dark crystalline silicon cell, a conductive 
silver paste, and an insulating back sheet as shown in Fig. 1a 16. The glass cover provides robust protection and 
light transmission for PV cells. The silver paste is used for busbars and contacts as an electrically conductive 
material to generate electricity in the silicon layer using solar radiation. As shown in Fig. 1b part, depending 
on the type of silicon wafer and anti-reflective coating used, PV modules usually appear dark such as blue or 
black color. The module frame is generally constructed from a silver-white alloy material, which tends to appear 
brighter in images. Under conditions of shading partially, the color of the shaded cell region is darker than that 
of the illuminated cell region. Furthermore, as the irradiance in the shaded region decreases, the color of the 
shaded cell region becomes progressively darker.

Grayscale histograms are commonly used to segment foreground and background in digital images and 
to segment the shadows of PV panels; the histogram can be used to select the threshold more accurately and 
facilitate segmentation. A grayscale histogram is a function of gray level and describes how often each gray level 
occurs in an  image17–19. Thus, the peak of the histogram indicates that the gray level is the highest in the image.

As shown in Fig. 2, the image has significant differences between the normal and shaded parts. The x-axis 
is the gray level, and the y-axis is the number of pixels that appear in the gray level. The shaded part of PV cells 
appears darker in color, which results in lower gray levels of the shaded area. So, there is a significant wave in 
the gray scale from 0 to 50, which is the shadow  area20. As shown in Fig. 2a, the gray level of the silicon cell that 
is not obscured by shadows ranges from 50 to 100. Gray levels around 250 represent the color of the white frame 
and silver paste.

As a basic tool, a grayscale histogram can show the color difference between the shadow and the rest, which 
can be used as a basis for shadow recognition. However, there are still the following difficulties in shadow 
detection.

Fig. 1.  PV module introduction.

(a) (b)

Fig. 2.  Grayscale histograms of unshaded and shaded PV modules.
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Changes in light
Weak lighting conditions result in more color disparity but lower brightness in the shadow area, making it 
susceptible to noise interference. In intense light, the minimal color difference between the shaded and normal 
parts of the module surface makes them difficult to distinguish.

Shadows on PV back sheet gaps
Shadows on the PV back sheet gaps should be ignored, as the degree of shadowing does not affect the power 
generation efficiency of the PV module. As shown in Fig. 3, A denotes the shadows that affect the power 
generation efficiency, i.e., the shadows that need to be identified. B denotes the shadows on the PV back sheet 
gaps, which must be ignored in the shadow identification process.

Noise interference in images
Cameras inevitably generate noise, such as Gaussian noise, pretzel noise, etc., when capturing images. These 
noises affect image quality and are not conducive to shadow detection.

The irrelevant background interference
Since fixed cameras monitoring PV arrays need to cover many PV modules, the video images will inevitably 
contain information about the environment around the modules.

This paper proposes a method for real-time monitoring of shadows on the surface of a PV module. As shown 
in Fig. 4, gamma transformation is used to adjust the light, histogram matching is used to enhance the image 
contrast, and grayscale slicing is used to detect the shadows based on the color features of the PV module and 
shadows.

Real‑time shadow monitoring method for PV module
In this paper, we propose a real-time shadow detection method for the PV, which realizes the shadow detec-
tion in the video by gamma transformation and histogram matching, et al. It has high accuracy and real-time 
performance.

About the difficulties in detecting the shadows of PV modules mentioned in the previous section, the proposal 
methods adopt the following measures. adjust the global gamut strength distribution.

To address the problem of illumination variation, this study implements gamma transformation and 
histogram matching to enhance the image and calibrate the overall gamut strength  distribution16–19. The detection 
of shadows in the gaps of the back sheets can vary depending on the specific gray levels used because the back 
sheets are white and have a higher gray level than the shaded cells when they are shaded. This paper implements 
median filtering and Gaussian filtering to suppress image noise for improved detection  accuracy21,22. To eliminate 
the background interference in the captured image, in this paper, we perform the preprocessing work before 
performing the shadow detection in the video. Based on the image coordinates, the PV components are classified 
as valid and retained, and the rest are invalid and displayed in white. Figure 5 shows the original image and the 
preprocessed output.

The real-time shadow monitoring method for PV module consists of preprocessing, the global gamut strength 
distribution, contrast enhancement, color space conversion, shadow segmentation, and output results. The meth-
odology flowchart is shown in Fig. 6. And the specific steps are as follows.

Fig. 3.  Shadows on PV Back Sheet Gaps.

Fig. 4.  Flowchart of this shadow detection method.
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 (1) The input video is preprocessed to capture and retain the PV module region based on the coordinates, 
and the remaining background portion is processed in white to prevent the environment from interfering 
with the shadow detection. Get the processed RGB image f (x, y).

 (2) Perform median filtering on f (x, y) while preserving the edge details of the image to remove noise and 
obtain g (x, y) 23.

 (3) Convert g (x, y) to HSV color space and extract the hue (H), saturation (S), and luminance (V) values. 
This process aims to maintain color consistency between the luminance-corrected image and the original 
image.

 (4) Perform a gamma transformation on the extracted V component to correct the light and obtain the 
brightness component V’24.

 (5) The S and H components extracted in step (3) are combined with V’ to form a color image. In this paper, 
the HSV is converted to the RGB color space, and then grayscale is applied to obtain I (x, y) to retain 
more color information.

 (6) Perform histogram matching of I (x, y) to obtain q (x, y) by matching the image’s histogram to be detected 
with the template’s histogram to improve the image  contrast25.

 (7) The image is filtered with a Gaussian low pass filter to eliminate high-frequency noise to obtain h (x, y)26.
 (8) Perform gray-level slicing on h (x, y), representing the gray value of the foreground area as white and the 

background area as black to produce a binary image k (x, y).
 (9) After performing gray-level slicing, a morphological closure operation is carried out on k (x, y) to derive 

m (x, y). Due to narrow discontinuities and thin gullies in the image, it becomes feasible to smooth out 
the contours and remove small voids.

 (10) Calculate the effect of shading and PV module orientation on power generation efficiency. Firstly, calculate 
the number of pixels in the f (x, y) function that cover all cell areas, i.e., the effective power generation 
area. Then, determine the black pixel percentage and location by calculating the number of black pixels 
in the m (x, y) function and using this value.

This paper’s key to the method is the gamma transformation in the light correction module, the histogram 
matching in the contrast enhancement module, and the grayscale slicing in the shadow segmentation module. 
These three algorithms will be analyzed in detail below.

Gamma transformation
Gamma transformation enhances image sharpness, and aids shadow separation by nonlinearly transforming 
image brightness to improve light and detail.

Fig. 5.  Image preprocessing.

Fig. 6.  Flowchart of the shadow detection method proposal.
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The formula for the gamma transformation is defined by Eq. (1), where s is the output gray level after the 
correction, r is the input gray level corresponding to the initial image brightness, while c and γ are positive 
 values27.

Figure 7 shows the relationship between s and s for various γ values when c = 1. The x-axis represents the input 
gray level, whereas the y-axis represents the output gray level. The parameter γ is a parameter that controls the 
direction and strength of the transformation, and determines the type of mapping between the input image and 
the output image, i.e., whether low or high grayscale regions are enhanced. When γ = 1, a linear transformation 
takes place. When γ < 1, the low gray values are mapped to a broader range of output values, increasing the 
contrast between dark features and low gray areas in the image.

When γ > 1, the narrower range of high grayscale values is mapped to a broader range of output values. This 
process restores details in bright areas and enhances contrast in high-grayscale  areas28.

Equation (2) calculates the number of distinct gray levels, denoted as L in Fig. 7, typically equating to a 
power of 2.

The gamma transformation causes a portion of the pixel-level dynamic range of the image to be compressed 
and another portion to be stretched, and the functions have different concavities when γ > 1 or r < 1. Therefore, 
the transformed histogram will have new zeros and peaks, the gamma transformation will change not only the 
luminance, but also the ratio of red, green, and  blue29.

The gamma transformation, as a nonlinear transform, can both resolve overexposed or too dark images and 
adjust the overall detail of the image. If the shadow part of the PV module itself is darker in colr, the gamma 
transformation will improve the contrast and then improve the detection of shadow with details. Considering 
real-time detection with balanced of not only computation but also speed of operation, methods such as adap-
tive gamma transform are not chosen, but a reasonable γ-value is determined based on half of the dataset, i.e. 
2400 min of video.

In this research, γ was configured with values of 0.5 to enhance the contrast of dark images to improve the 
visibility of details in shadow regions. The steps are (1) convert color space from RGB to HSV;(2) keep the hue 
H and saturation S components unchanged (3) perform gamma transformation on the luminance component V 
with γ = 0.5 to obtain the transformed luminance component V2. Combine it with the H and S components and 
convert it to RGB format. Figure 8 shows the effect of gamma transformation, where the shaded area is shown 
in the red box and the gamma transformed image is shown on the right.

Figure 9a shows the image obtained after gamma transformation through steps (5) to (8) in the sequence 
of this method. In contrast, Fig. 9b shows the shadow segmentation outcome without applying gamma 
transformation. The gamma transformation processed image significantly improves the precision of details 
within the shadow region, resulting in a more accurate shadow recognition.

Histogram matching
Histogram Matching improves image contrast by transforming the original grayscale histogram into the desired 
shape using a grayscale mapping function that changes the grayscale distribution of the image into a specific 
histogram interval. As shown in Eq. (3), the grayscale value of each point of the original image (input image) is 

(1)s = crγ

(2)L = 2k

Fig. 7.  Gamma transformation curve.
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mapped from r to s. Equation (4) maps the grayscale value of each end of the output image from z to v, where 
both r and z are greater than or equal to 0 and less than or equal to  130.

where s is the mapping of grayscale levels in the input image; r is the grayscale level in the input image; pr(r) is the 
continuous probability density function of the original image; v is the mapping of grayscale levels in the output 
image; z is the grayscale level in the output image, and pz(z) is the specified probability density function that the 
output image is expected to have in this  paper31

s and v have the same distribution, i.e., T(r) = G(z), since both Eq. (3) and (4) are homogenizing transforma-
tions. From Eq. (5), it can be introduced that z satisfies Eq. (6), i.e., s is a mapping of z, and z is precisely the value 
expected in this paper when Eq. (6) is executed one by one on all pixels to obtain the corresponding elements 
in the output  image28,32,33.

Histogram matching, as a referenced image correction method, can map the histogram of the image rec-
ognized to a well-contrasted histogram of a template image, even if its gray levels have a specified probability 
density. The histograms of the shadows and the background will be significantly different after the transforma-
tion, which enhances the contrast between the raw image and transformed for easier distinguishment from the 
background in the histogram.

Figure 10 shows the performance and procedure of histogram matching on shadow detection. The left column 
of Fig. 10 shows the histograms of the target image, the image to be recognized, and the grayscale image after 
histogram matching, respectively, and it can be seen that the processed histogram has two obvious peaks, which 
makes it easier to segment the shadows. Figure 10 The middle columns are the template image, the image to be 
detected, and the grayscale image, respectively. The right column shows the recognition effect of the image with 
and without histogram matching, and it can be seen that the recognition method of adding histogram matching 
is more accurate for PV module shadow segmentation.

(3)s = T(r) =

∫ r

0

pr(r)dr

(4)v = G(r) =

∫ z

0

pz(z)dz

(5)z = G−1(v)

(6)z = G−1
[T(r)] = G−1(s)

Fig. 8.  Gamma transformation effect diagram.

Fig. 9.  Comparison of shadow detection results.
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Gray‑level slicing
Gray-level slicing is a segmented linear transformation function that enhances features by emphasizing the 
brightness of specific gray levels in an image to extract the target image.

There are two methods of implementation. The first involves obtaining a binarized image with gray values 
within the range of interest being depicted as one value. In contrast, values outside of the field are displayed in 
another color. As illustrated in Fig. 11a, the grayscale values within the range of [A, B] are elevated and mapped 
as T(r), and the remaining grayscale values are reduced to lower levels. The second method makes the grayscale 

Fig. 10.  Visualizing the process and effects of histogram matching on shadow detection.

Fig. 11.  Gray-level slicing.
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of the region of interest brighter or darker while leaving the grayscale of the other areas unchanged. As shown 
in Fig. 11b, the grayscale in the [A, B] region is emphasized, while all other grayscales remain  unchanged34.

In this paper, we perform gray-level slicing as described in Eq. (7), and based on the gray-level histogram 
and color characteristics of the shaded PV module, a gray-level threshold of 15, denoted as  Gxy, where G is the 
changed grayscale value. This selection is based on the fact that the shaded area of the PV module has a darker 
color and lower than  Gxy are depicted as black values, while areas with a higher value are depicted as white35–37. 

The localized shading component image to be identified is presented on the left in Fig. 12, with the shaded 
portion of the component surface in the red box. The figure on the right displays the recognition effect obtained 
from gray-level slicing processing used for shadow segmentation. This effect represents the final outcome of the 
method. The foreground, i.e., shaded areas, is mapped to black, and the background, i.e., nonshaded areas, is 
mapped to  white38,39.

Experiment design
A fixed real-time monitor for a PV array would cover not only PV modules, but also information about the 
environment around the modules in the video. To simulate the actual working environment better, the validation 
experiment in this paper designed as a fixed-position camera, with the environment around the PV module. 
In addition, this paper verifies the feasibility of the method for real-time monitoring of the shadow of a single 
PV module.

The image capture device shown in Fig. 13 consists of a mechanical bracket, a camera, and an adjusting 
device. The upper left corner of Fig. 13 shows the camera image. The alloy cantilever bracket is adjusted by 
spring tension and supports 180-degree folding and 360-degree rotation; the camera is fixed to frame with a 
frame rate of 30FPS; and the adjustment device adopts a multi-stage rotation mechanism that realizes 360-degree 
adjustments of the camera in the horizontal and vertical directions. The PV module comprises 36 solar cells of 
220*770 mm, arranged in 4 columns and 9 rows, pasted on the white back sheet, and covered with tempered 
glass. In this paper, the camera is installed at a fixed angle to capture module images to simulate PV module 
working conditions as closely as possible.

(7)G =

{
0, G(i, j) ≤ Gxy

255, G(i, j) > Gxy

Fig. 12.  Gray-level slicing recognition results.

Fig. 13.  Experimental setup.
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The validation experiment was set in the small size PV modules, which would perform similarly in larger ones 
for their similar image features in color, shape and etc. with only differences of size. The color of the PV module 
surface affects the threshold selection of the gray level slicing module in this method. The color of the module 
surface depends on the color of the crystalline silicon cell wafers that make up the module, dark blue is one of 
the most commonly used colors for crystalline silicon cells. Therefore, only the dark blue small PV module is 
used as the data collection object in this paper.

To study the performance of the shadow detection method of the PV module by Computer Vision under 
different lighting conditions. This article is held on the campus of Northeast Agricultural University in Harbin, 
China (45°44′26″N, 126°43′03″E) from 1 to 31 August 2023 at 08:00–09:00, 12:00–13:00, 15:00–16:00, recording 
PV module video. The variation of direct solar radiation over time during the period is shown in Fig. 14.

The data collection is shown in detail in Table 1. A total of 90 videos of 60 min each were collected, giving 
a total of 5400 min of video data. In this paper, the videos are classified into two main categories based on the 
amount of radiation: radiation greater than 300 W/m2 is as sunny category, and radiation less than 300 W/m2 is 
considered cloudy  category1. The video length is 4815 min for sunny days, 164 min for cloudy days and 421 min 
for rainy days and non-compliant videos. During this period, single and multiple cells were partially occluded, 
and the total occlusion time accounted for 86% of the whole recorded video, and the length of time when shad-
ing percentage exceeds 50% is 2003 min.

In total, 4815 min of valid videos were collected at a resolution of 1280 × 720 pixels, capturing different lighting 
conditions and occlusion levels. Finally, 2400 min of video from the sample set were meticulously analyzed to 
determine various parameters, such as γ = 0.5 in gamma transformation, template image in histogram matching, 
Gxy = 15 in gray scale hierarchy and loss function in random forest model, and input image in CNN model. The 
remaining 2415 videos form a test set to evaluate the performance of this method.

Evaluation metrics
The shadow detection of a PV module can be regarded as a binary classification problem, i.e., shadows are fore-
ground, and nonshadow are backgrounds. This paper uses the following indicators to evaluate the performance 
of the methodology.

Masking is a data processing technique that controls the visibility of certain bits of data. By superimposing 
actual and predicted images. TP in the mask means true positive, FN means false negative, TN means true nega-
tive, and FP means false positive. The mask clearly shows the results of the shadow detection and indicates the 
method’s accuracy.

Accuracy (ACC) metric can reflect the detection effectiveness of the methods generally and directly. This 
paper takes ACC as the main evaluation and its calculation as follows Eq. (8)40:

where ŷ  is the predicted value corresponding to the true value  ytrue and  nsample is the number of samples in the 
dataset. However, while ACC can measure the method’s overall performance, it is too macroscopic in its evalu-
ation power, so we apply F-beta to get a perspective.

(8)ACC =
1
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Fig. 14.  Direct solar radiation in August 2023.

Table 1.  Data set collection conditions.

Shadow generation conditions

Sunny
(direct solar radiation > 300 W/m2)

Cloudy
(direct solar radiation < 300 W/m2)

Shadow percentage < 50% Shadow percentage > 50% Shadow percentage < 50% Shadow percentage > 50%

Number of videos
recorded (unit: min) 2461 1678 115 28
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The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and 
its worst value at 0. The beta parameter represents the ratio of recall importance to precision importance. beta > 1 
gives more weight to recall, while beta < 1 favors precision. For example, beta = 2 makes recall twice as important 
as precision, while beta = 0.5 does the opposite. Asymptotically, beta—>  + inf considers only recall, and beta—> 0 
only precision. The calculation of F-beta is as follows Eq. (9):

where precision is the ratio tp/(tp + fp) and the recall is the ratio tp/(tp + fn).
The precision is intuitively the ability of the method not to label as positive a sample that is negative and the 

recall is intuitively the ability of the classifier to find all the positive samples. The precision and recall calculation 
are as follows Eqs. (10) and (11):

In this paper, TN denotes a pixel that is itself nonshaded and successfully predicted to be nonshaded; TP 
denotes a pixel that is itself shaded and successfully predicted to be shaded; FN is a pixel that is itself shaded but 
not perceived as nonshaded; and FP denotes a pixel that is itself nonshaded but mistakenly perceived as shaded. 
The more TP, the more accurate the model is in identifying shadows; the more TN, the more accurate the model 
is in identifying nonshaded; the smaller the FN, the more complete the model’s recognition of shadows; the 
smaller the FP, the higher the accuracy of the model in identifying nonshaded.

Results
In this paper, three groups of ablation experiments and three comparison groups are selected, to better evalu-
ate the shadow detection performance of the model, where 1) to 3) are ablation experiments and 4) to 7) are 
comparison groups.

1. Change the gamma transform parameter γ from less than 1 to 1.3 in the method of this paper and keep the 
other steps unchanged.

2. Remove the gamma transform from the method in this paper and keep the other steps the same.
3. Remove the histogram matching from the method in this paper and keep the other steps the same.
4. Canny operator based shadow detection method in  literature9: first, the grayscale image is binarized accord-

ing to the Canny threshold, then the edges are detected and segmented, and the edges connected by break-
points are filled to obtain the local shadow region.

5. In  literature41, Ji et al. proposed the use of multi-threshold segmentation method calculates 10 thresholds, 
and the smallest threshold is used as the threshold for segmenting the local shadow  region41.

6. In literature 42, Wang et al. proposed a random forest classifier with 50 decision trees, each with a maximum 
depth of 5, is used to calculate the intensity of shadows and edge features on a scale of 1–542.

7. In  literature43, Xia et al. proposed the use of convolutional neural network (CNN) to detect shadows with 
ReLU and Sigmoid activation functions, input size of three-channel images and output of masked images of 
the same size for determining the difference between shadows and other  images43:.

The hardware environment that the analysis depends on is shown in Table 2 below and the compile environ-
ment is based on Python 3.9 in Windows 10 LTSC. To ensure reproducibility in all the experimental and analysis 
results, all random seeds involved in this paper are set as 615.

The shadows detected by the model are first compared with the original image mask overlay to evaluate the 
performance of different shadow detection algorithms. As shown in Fig. 15, the detection performance of the 
eight models on local shadows is compared, where the white part represents TN, the pink part represents FN, 
and the green part represents FP, the blue part represents TP.

Comparing the detection results in Fig. 15, it can be seen that in terms of shadow detection accuracy and 
completeness, our method has the best detection performance for both shadows and nonshaded. This is followed 
by random forest and multi-threshold segmentation. The existing recognition methods based on canny edge 

(9)Fβ =
(
1+ β2

)
×

precision× recall

β2 × precision+ recall

(10)precision =
TP

TP + FP

(11)recall =
TP

TP + FN

Table 2.  Environment and tools for analysis and modeling in paper.

Compute environment Analysis tools

CPU Intel®Core™i7-5500U(2.0 GHz) Pandas 2.1.0, NumPy 1.26.3,

RAM 16 GB DDR4 2666 MHz Scikit-learn1.3.0, CV2 4.8.0,

Operating system Windows 10 LTSC Scipy 1.11.2, TensorFlow 2.13.0,

Random seed 615 Scikit-Image 0.21.0,Keras 2.13.1
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detection and the method without gamma transform are incomplete for shadow recognition. In contrast, the 
comparison methods with γ = 1.3, no histogram matching, and CNN were not accurate for non-shadow detection.

This study further investigates the performance of the proposed method in shadow detection for different 
types of photovoltaic modules under different illumination conditions. Specifically, two types of PV modules are 
considered: PV module 1, which consists of 9 rows and 4 columns of deep blue silicon cells, and PV module 2, 
which consists of 10 rows and 3 columns of dark gray silicon cells. Figure 16 shows the images taken from these 
two types of PV modules under two different lighting conditions, namely a high light condition with an irradiance 
of 800W/m2 and a low light condition with an irradiance of 300 W/m2, resulting in a total of 4 scenarios. In 
these images, the areas surrounded by red boxes indicate the shadow areas.

Figure 17 shows the superimposed effect of the shadow truth values and the model recognition results 
for the above four cases, where the white part represents TN, the pink part represents FN, and the green part 
represents FP, the blue part represents TP. The above results show that the proposed method is capable of 
accurately recognizing the shaded and non-shaded areas of two different components under different lighting 
conditions. This provides an effective tool for shadow detection and identification, and helps to improve the 
accuracy and reliability of shadow detection. Overall, this method shows good performance in shadow detection 
and recognition and has a wide range of applications.

Fig. 15.  Comparison of five models for shadow segmentation.

Fig. 16.  Comparison of five models for shadow segmentation.

Fig. 17.  Comparison of five models for shadow segmentation.
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Figure 18 is the accuracy result that shows the detection performance of the eight groups of models from the 
video splits into 1000 frame images. The average ACC of the proposal model in this paper reaches 0.98, higher 
than the method based on the Canny operator. Even with the lowest accuracy, the designed method outperforms 
all the other groups, which shows that our method excels in robustness and accuracy. Furthermore, the control 
group of CNN has the lowest average accuracy among the five model groups, with an average value of 0.82.

To further evaluate the performance of the eight models, F0.5 and F2 scores are calculated in this paper. As 
shown in Fig. 19, the F0.5 and F2 scores of the model in this paper are the highest, 0.87 and 0.85, respectively, 
indicating that the model has high recall and precision for positive examples. Random forest has the lowest F0.5 
and F2 scores, 0.31 and 0.35, respectively, and the F2 score of the CNN model is much higher than the F0.5 score, 
indicating that the model has low precision and is inaccurate in recognizing the background.

To visualize the specific running time of the eight models, under the same running conditions, each model 
processes the image 100 times in hardware device as Table 2. As shown in Fig. 20, the average processing time 
of each model for one frame is plotted. Among them, the CNN model has the shortest running time of 0.603 s, 

Fig. 18.  Evaluation of the accuracy of the eight models.

Fig. 19.  Comparison of F0.5 and F2 scores for eight models.

Fig. 20.  Comparison of running time for eight models.
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the Random Forest model has the longest running time of 1.067 s, and the model in this paper has the middle 
ranking of 0.721 s.

As shown in Fig. 21, shadow recognition performance of three sets is used to further evaluate the performance 
of this method. The left column of Fig. 21 is the effect of the method, i.e., adding histogram matching, the middle 
column is the original image to be recognized, and the right column is the control group. In the two groups 
of recognition results, black is the predicted shadow part, and white is the predicted nonshaded part. The blue 
dotted line region is the PV module, the surrounding information around the module is outside the region, and 
the red dotted line region is the detected shadow. It can be seen that the method in this paper works better than 
without histogram matching.

The practical application performance of the real-time monitoring method of PV module shadow based 
on histogram matching is shown in Fig. 20. The images of the PV module are captured by a fixed camera. The 
detection effect is displayed in real-time on the HMI of PC, with the shadowed areas shown as black and the 
nonshaded areas shown as white. The left image in Fig. 22 shows the captured image with the PV module in the 
red box. The right image in Fig. 22 shows the actual shadow area on the module in the green box and the detected 
shadow area in the blue box on the PC side.

In summary, the adaptive PV module shadow detection method by computer vision proposed in this paper 
performs well in completeness, accuracy, precision, recall rate, and practical application effect of shadow and 
nonshaded detection.

Fig. 21.  Comparison of shadow detection performance.

Fig. 22.  Real-time monitoring effect of the PV module shadow.
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Conclusions
This paper proposes a real-time PV module shadow monitoring method by computer vision based on histogram 
matching and gamma transformation. The method in this paper achieves state-of-the-art results in a real work-
ing environment.

In this paper, we first analyzed the histogram features of locally shaded PV modules, based on which coordi-
nate constraints remove the environmental disturbance around the module, the gamut strength distribution is 
corrected by gamma transform, the image contrast is enhanced by using histogram matching, the shaded portion 
is preliminarily segmented by using gray-level slicing, and the closure operation and filter combination further 
refine the shadows. The average recognition ACC of this method is verified to be 0.98 by the test set, which is 
higher than the existing Canny edge detection recognition method. The method’s F0.5 and F2 values are 0.87 
and 0.85, respectively, which are good in terms of precision and recall. In addition, the average time required 
by the method to process an image frame is 0.721 s, which has good real-time performance. Furthermore, the 
real-time monitoring effect is verified by practical tests, which provide an excellent detection performance and 
high real-time performance even in complex working environments.

The limitations of this method are twofold:
Firstly,  this study, as an application of a methodology, has empirically confirmed that the threshold 

of gray-level slicing is universal during the summer and autumn seasons at a specific geographical coordinate 
(45°44′26″N, 126°43′03″E). However, if the device is deployed during periods of significant light changes, initial 
validation is required to derive a threshold with higher adaptability.

Secondly, the method is exclusively specialized for individual identification of shadows on the surface of 
PV modules. If an object with a color similar to the shadow appears on the photovoltaic component, it may be 
misidentified as a shadow. However, in the actual working environment, the possibility of an object with a color 
similar to the shadow appearing on the surface of the PV component is extremely small. Furthermore, even if 
such a situation does occur, this object would produce the same effect as the shadow, that is, blocking the pho-
tovoltaic component and causing its power to decrease. Therefore, identifying it actually helps to improve the 
efficiency of the photovoltaic component.

Given the complexity and variability of situations that may encounter in the actual operation of PV mod-
ules, this study, as an application of a method, cannot fully verify all situations. It can be further optimized and 
improved in subsequent studies, mainly including the following aspects:

(1) In terms of threshold selection, develop adaptive algorithms or use optimization algorithms to dynamically 
adjust the threshold according to real-time lighting conditions to improve shadow detection accuracy.

(2) For the problem of false positives, the algorithm can be trained and optimized by combining the present 
method with CNN to improve its robustness in the real working environment.

The limitations of the present method allow an in-depth discussion of the above solutions. They also provide 
a starting point for future research.

We believe that our work is an important reference for realizing real-time shadow monitoring for large-scale 
PV arrays by providing solutions to some key details, and we look forward to furthering research on improving 
the model’s performance and generalizability.

Data availability
The datasets used and analysed during the current study available from the corresponding author, [Z.Q.], on 
reasonable request.
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