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Abstract

Background

The red macroalga Gracilaria parvispora is an introduced species in the Mexican Pacific.

To date, there are no published studies on its sessile epibionts, including the hydrozoans

and  bryozoans, which  are  the  dominant epibionts  on  macrophytes  and  of significant

biological and economic interest.

New information

This study provides insight into the faunal diversity of hydroids growing on G. parvispora.

A total of 185 thalli from both herbarium specimens and field samples collected from five
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sites in La Paz Bay were revised. Each thallus size and the presence of hydroid epibionts

in each thallus region were registered. Eight different hydrozoan taxa were growing on

the red macroalgae, including the first recorded observation of Obelia oxydentata in the

Gulf  of  California.  The  sizes  of  the  collected  thalli  were  mostly  under  7.0  cm,  the

maximum number of taxa  per thallus was three  and  the  thallus region  containing  the

highest number of epibionts was in  the  middle. Significant differences were  observed

amongst the lengths of thalli  with and without epibionts. The thalli  with epibionts were

larger than the thalli  without epibionts. Similarly, significant differences were observed

amongst the months. The pair-wise test revealed that each month exhibited distinctive

epibiont taxa when compared to the others. This study highlights the lack of information

on  these  associations. Further  research  is  needed  to  understand  whether  introduced

macroalgae can bring non-native epibiont species to an area.
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Introduction

Epibiosis is defined as an association between two or more living organisms, whereby

one associate, the basibiont, provides a suitable surface for the settlement of the other(s),

the epibionts (Wahl 1989, Wahl 2010). In marine ecosystems, macroalgae as basibionts

provide a complex substrate by creating microhabitats where epibionts can attach, grow

and reproduce (Schmidt and Scheibling 2006). Colonial invertebrates, commonly sessile

epibionts of macroalgae, mostly belong to the phyla Cnidaria and Bryozoa, which present

a  planktonic  larval  phase  that  can  adhere  to  a  basibiont  and  form  temporary  or

permanent colonies (Ryland 1962, Nishihira 1967, Stricker 1989, Connell 2000, Ryland

2005,  Hiebert  et  al.  2020).  The  encrusting  or  erect  colonies  remain  physically  and

physiologically connected through identical  modular units, termed zooids in bryozoans

and  polyps in  cnidarians (Mackie  1997, Hiebert et al. 2020). The  epibiont cnidarians

highlight the benthic polyps of class Hydrozoa, which are referred to  as hydroids and

these may have life cycles with a medusa phase, predominantly planktonic (Collins 2002,

Oliveira  et  al.  2006, Cartwright and  Nawrocki  2010),  while  the  bryozoans  have  only

benthic zooids (Bock 1982).

Several studies have observed hydrozoans and bryozoans growing on macroalgae (cf.

Manríquez and Cancino 1996, Oliveira and Marques 2011, Cunha et al. 2017b, Carral-

Murrieta  et  al.  2023)  and  have  also  highlighted  the  preference  of  some  of  these

invertebrates for specific species and  macroalgal morphologies (Gallardo  et al. 2021, 

Carral-Murrieta  et  al.  2024).  However,  the  ecological  role  and  impact  of  introduced

macroalgae as basibionts in  coastal  marine ecosystems are poorly understood. It has

been found that introduced macroalgae-dominated systems have shown varying effects

on local biodiversity and that epibiosis can be a mechanism to facilitate the invasion of

epibionts as well (Arnold et al. 2015, Lazzeri and Auker 2022). Therefore, it is important
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to  identify and inventorise the epibionts species growing on introduced macroalgae to

monitor  and  manage  the  impact  on  local  biodiversity.  Additionally,  macroalgae  and

colonial invertebrates are of biological, scientific and social interest due to their positive

or negative  economic impact on  the  pharmaceutical, food, biotechnology, fishing  and

aquaculture  industries (cf. Grohmann (2008), Muñoz-Ochoa  et al. (2010), Wood et al.

(2012),  Mouritsen (2013),  Pereira  (2018),  Pinteus  et  al.  (2018),  Kintner  and  Brierley

(2018), Ciavatta et al. (2020), Banagouro et al. (2022)).

Approximately 233 colonial invertebrate species have been recorded growing on marine

macroalgae,  of  which  200  species  are  hydroids  (Lippert  et  al.  2001,  Oliveira  and

Marques 2007, Arnold  et al. 2015, Gallardo  et al. 2021, Carral-Murrieta  et al. 2023).

Some of these basibiont macroalgae are considered non-native or invasive macroalgae

(Schaffelke et al. 2006, Davidson  et al. 2015). However, the  occurrence  of hydrozoan

epibionts  has  only  been  reported  in  nine  species  of  introduced  macroalgae.  These

comprise one green alga Ulva linza Linnaeus, seven brown alga Durvillaea antarctica

(Chamisso)  Hariot,  Fucus distichus subsp.  evanescens (C.Agardh)  H.T.Powell,

Himanthalia elongata (Linnaeus)  S.F.Gray, Macrocystis pyrifera (Linnaeus)  C.Agardh,

Sargassum horneri (Turner) C.Agardh, Sargassum muticum (Yendo) Fensholt, Undaria 

pinnatifida (Harvey) Suringar and one red macroalgae Acanthophora spicifera (M.Vahl)

Børgesen (Sarma 1974, Withers et al. 1975, Norton and Benson 1983, Kitching 1987, 

Migotto 1996, Sano et al. 2003, Wikström and Kautsky 2004, Oliveira and Marques 2007, 

Oliveira and Marques 2011, Kuhlenkamp and Kind 2013, Arnold et al. 2015, Gutow et al.

2015, Kim et al. 2019, Avila et al. 2020, Carral-Murrieta et al. 2023, Mendoza-Becerril et

al.  2023,  Carral-Murrieta  et  al.  2024).  Still,  only  some  of  these  studies  address

interdependent distribution patterns, dispersal and interaction with local, non-indigenous

or invasive  species (e.g. Kuhlenkamp and  Kind  (2013), Kim et al. (2019), Avila  et al.

(2020)).

In Mexico, records of non-native or invasive macroalgae range from seven (Okolodkov et

al. 2007) to 15 species (Aguilar-Rosas et al. 2014), all of them reported along the Pacific

coast and only A. spicifera has been reported as a non-native alga for Pacific and Atlantic

coasts (Mendoza-Becerril et al. 2023). For three species (A. spicifera, Sargassum horneri

and S. muticum), their sessile epibionts are known (Mendoza-Becerril et al. 2023, Carral-

Murrieta et al. 2024), but not in the others, such as the rhodophyte Gracilaria parvispora

I.A.Abbott (Gracilariaceae), which has been mentioned as an invasive species in the Baja

California Peninsula, based on morphological, anatomical and molecular data (García-

Rodríguez et al. 2013). Currently, it is also recorded in the States of Oaxaca, Chiapas,

Guerrero, Colima and Sinaloa (Dreckmann 1999, García-Rodríguez et al. 2013, Orduña-

Rojas et al. 2013, Dreckmann and Sentíes 2014, Krueger-Hadfield et al. 2016, Acosta-

Calderón and Chávez-Sánchez 2019, Méndez-Trejo et al. 2021).

Gracilaria parvispora, also known as limu ogo or long ogo, was described from Kaneohe

Bay, Oahu, Hawaiian Islands, USA (Abbott 1985, Lembi and Waaland 1988) and, since

then, it has been recorded in Korea, Japan and China (Kim et al. 2008, Guiry and Guiry

2024). However, the origin of G. parvispora in Hawaii is unclear (Abbott 1999, Nelson et

al. 2009) and  its epibionts are  also  unknown. It is one  of the  three  most sought-after
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seaweeds for food in the Hawaiian Islands and a potential source of agar (Abbott 1999, 

Krueger-Hadfield et al. 2016).

In this context, the present study aimed to analyse the hydrozoans associated with an

introduced  macroalgae, G. parvispora and  determine  potential  assemblages of these

epibionts  according  to  the  macroalga's  morphological  characteristics,  based  on  an

analysis of herbarium and collected thalli  in a subtropical bay of the Gulf of California,

Baja California Sur (BCS).

Materials and methods

Herbarium specimens

Gracilaria parvispora dried specimens were obtained from the Phycological Herbarium of

the Autonomous University of Baja California Sur (FBCS) and were collected in La Paz

Bay: El Mogote, La Concha and El Caimancito, which are beaches frequented by tourists

(Table 1, Fig. 1, Suppl. material 1).

Field samples

Based on previous reports of G. parvispora in La Paz Bay, BCS, five sites were visited,

including disturbed and undisturbed environments. The port of San Juan de la Costa, the

Roca Fosfórica Mexicana phosphorite mine at San Juan de la Costa (ROFOMEX SJC),

La  Concha, the  port of the  Autonomous University  of Baja  California  Sur  Pichilingue

(UABCS Pichilingue) and Punta Diablo (Table 1, Figure 1, Suppl. material  1). In Punta

Diablo, natural  substrates were  present without direct contact with  nautical  traffic. The

other four sites had various artificial  substrates and were exposed to nautical  traffic or

anthropogenic  activities.  ROFOMEX SJC  and  the  port  of  San  Juan  de  la  Costa  are

adjacent  to  a  phosphorite  mine  with  a  daily  production  of  6,000  tonnes  (Servicio

Geológico Mexicano 2018). Its port is located 2.8 km north of the fiscal dock in La Paz

Bay. La Concha is a tourist beach with hotel activities and a recreational diving company.

UABCS Pichilingue is located 3.2 km north of the Pichilingue’s port, where tourist and

commercial ships arrive (Fig. 1).

Sites N W Sample °C PSU Sub. m Year Month

Port of San Juan de la Costa 24.398 110.681 F 27 31 rock and sand 0.5 – 7.0 2021 Nov.

ROFOMEX SJC 24.367 110.679 F 23 ND sand 0.5 – 1.5 2021 May

El Mogote ND ND H ND ND sand ND 2013 Jul.

La Concha 24.202 110.300 H ND ND sand 0.5 – 1.5 2008 Apr.

Table 1. 

Data  of  herbarium (H)  and field  (F)  samples on  Gracilaria parvispora from La Paz Bay,  Baja

California Sur. Latitude (N), Longitude (W), Temperature (°C), Salinity (PSU), Substrate (Sub.),

Depth (m), No data (ND).
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Sites N W Sample °C PSU Sub. m Year Month

24.202 110.300 H ND ND sand 0.5 – 1.5 2009 Mar.

24.202 110.300 H ND ND sand 0.5 – 1.5 2013 Jul.

24.202 110.300 F ND ND sand 0.5 – 1.5 2021 Jun.

24.202 110.300 F 18 36 sand 0.5 – 1.5 2022 Feb.

El Caimancito 24.206 110.301 H ND ND rock and sand 0.5 – 1.5 1980 Nov.

24.206 110.301 H ND ND rock and sand 0.5 – 1.5 2002 Mar.

UABCS Pichilingue 24.270 110.325 F 28 35 sand 0.5 – 3.0 2021 Jul.

24.270 110.325 F 25 35 sand 0.5 – 3.0 2022 Feb.

Punta Diablo 24.316 110.340 F 25 33 rock and coral 0.5 – 8.0 2021 Jul.

24.316 110.340 F 25 33 rock and coral 0.5 – 8.0 2022 Apr.

24.316 110.340 F 23 35 rock and coral 0.5 – 8.0 2022 Jul.

Following periodic changes in surface temperature and the entrance and retirement of

tropical waters in La Paz Bay and Gulf of California (Santamaría‐del‐Ángel et al. 1994, 

Flores-Ramírez et al. 1996, Guevara-Guillén et al. 2015), the sites were visited in spring

(transition  period  between  cold  and  warm waters),  winter  (cold  waters)  and  summer

(warm waters) during the annual cycle 2021–2022. The complete macroalgal thalli were

randomly sampled manually by the same team and using a knife or scraping artificial or

natural substrates (n ≥ 10) by snorkelling and scuba diving in sites with depths of more

than three metres. The samples were fixed in 96% ethanol for morphological  analysis.

The depth (m) was measured in situ, at the snorkelling sites, the depth was measured

Figure 1.  

Herbarium material (white hexagon) and sampling sites (black points). 1) Port of San Juan de

la Costa,  2)  ROFOMEX SJC, 3)  El Mogote,  4)  La Concha,  5)  El Caimancito,  6)  UABCS

Pichilingue, 7) Punta Diablo.
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with a sounding weight and calibrated line marked from 0 to 5 m in 20 cm increments,

while  at the  dive  sites, it  was measured  with  a  dive  computer. Thalli  were  identified

according to morphology (Fig. 2) following Abbott (1985), Dreckmann (1999) and García-

Rodríguez et al. (2013) descriptions. In the laboratory, the length (cm) and presence of

cystocarps of herbaria and collected thalli of G. parvispora were registered.

Each thallus was divided into  three  equal  regions (basal, middle  and apical) and the

presence  or  absence  of  hydrozoans  on  the  thallus  was  recorded.  The  basal  region

consisted  of the  first third  closest to  the  disc and  part of the  stem, the  middle  region

included the central part of the alga and the last third of the thallus from the middle part to

the tips of the alga was catalogued as the apical region (Fig. 2).

Epibionts were  identified  with  the  support of taxonomic descriptions and  compilations

available  in  literature  (e.g.  Millard  (1975),  Mendoza-Becerril  et  al.  (2020))  and  the

nomenclature  used  was based  on  a  study by Maronna  et al. (2016) for Leptothecata

hydroids and the World Register of Marine Species (WoRMS Editorial  Board 2024) for

other  hydroids.  After  the  analysis,  the  specimens  (algae  and  invertebrates)  were

deposited in the Macroalgae Laboratory from Centro de Investigaciones Biológicas del

Noroeste, S.C.

Figure 2.  

Gracilaria parvispora.  a Field  sample  of  La  Concha,  scale  equals  2.0  cm;  b Herbarium

specimen under code FBCS2490, El Caimancito, scale equals 2.0 cm; c Scheme with regions

for recording epibionts.
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For  each  taxon, we  provided  the  material  section  (locality,  depth, data, habitat,  data

generalisations),  diagnosis  and  notes  [figure,  type  locality,  references  for  a  detailed

description of the species, taxonomic status with a unique and persistent identifier that

assures the  taxonomic quality control  denominated  “AphiaID” (Vandepitte  et al. 2015)

and  remarks (only for taxa  with  additional  information)]. In  the  material  examined, we

included  the  sampling  site  and  date, temperature  (°C), salinity  (PSU), depth  (m) and

presence of epibionts in the specific macroalgal regions. Descriptions, taxonomic status

and dichotomous key are included only for specimens identified to species level.

The significant differences in size between thalli with and without epibionts were tested

by one-way permutational multivariate ANOVA (PERMANOVA) using untransformed data

and  Euclidean  distances. Additionally, PERMANOVA was used  to  determine  whether

epibiont assemblages differed  significantly  amongst: 1)  month, 2)  cystocarp  and  non-

cystocarp thalli and 3) basal, middle and apical thallus regions. The presence-absence

data matrix was analysed using the Jaccard similarity measure with 9999 permutations

and significance was set at p < 0.05. When a significant effect was found, post hoc paired

comparisons  between  factor  levels  were  performed  (Anderson  2001,  McArdle  and

Anderson 2001). Percentage similarity analysis (SIMPER) was also used to determine

the  contribution  of  species  to  within-group  similarity  and  between-group  dissimilarity

(Clarke et al. 2014). Statistical  analysis  was  performed  in  PRIMER  v.6  using  the

PERMANOVA+ add-on software (Clarke and Gorley 2006, Anderson et al. 2008).

Data resources 

Gracilaria parvispora and hydrozoan epibionts

Thalli  of G. parvispora were mainly found in sandy substrates and can be on pebbles,

rocky and bivalve shells (Fig. 3a). The thallus is cylindrical, except in the branches, which

are flattened to cylindrical, usually with three orders of branches, from 0.5 to 4.0 mm in

diameter and present irregular dichotomous branches, sympodial without a defined main

axis. Thallus has a flaccid consistency and its colouration can vary: yellow, green, red or

brown. There are large medullary cells from 90 to 280 mm in diameter, with two cortical

cells  surrounding  the  medullary  cells. Cystocarps  are  present from 2.0  to  5.0  mm in

diameter (Fig. 3b), as well as chain carpospores of ovoid to the slightly spherical shape

from 15 to 35 μm in diameter (Fig. 3b).

The  total  number  of  thalli  analysed  was  185,  of  which  10  were  from  herbarium

specimens. The length ranged from 1.4 to 36 cm, with 88% of the samples under 7.0 cm.

Eight percent presented cystocarps (15 thalli) and 22% presented hydrozoan epibionts

(41 thalli), which were found in thalli sizes from 1.6 to 17.0 cm and a maximum of three

taxa per thallus were recorded. Sixty-three percent of the thalli  with epibionts had two

species of epibiont hydroids (Fig. 4).

Six species and two genera of the Hydrozoa epibionts were identified and were observed

only in the collected thalli. In addition, no bryozoans were found in the collected thalli, but
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some belonging to the Gymnolaemata class, order Cheilostomatida, were observed on

four  herbarium  thalli  (Fig.  5).  It  should  be  noted  that  the  bryozoans  observed  were

morphologically damaged and it was not possible  to  identify them at a  lower level  of

order. As this was the first record of epibionts in this macroalga, the epibiont hydroids

were integrated into a dichotomous key and taxonomically described.

Figure 3.  

Gracilaria parvispora. a macroalgae on rock with yellow colouration, La Concha, scale equals

5.0 cm; b cystocarps (cy), scale equals 5.0 mm and carpospores (ca), scale equals 0.1 mm.

 

Figure 4.  

Percentage and size  (cm)  of  Gracilaria parvispora thalli  with  the  number  of  epibiont  taxa

found.
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Taxonomy and morphological descriptions of Hydrozoa epibionts

Subclass Hydroidolina Collins, 2000

Superorder “Anthoathecata” Cornelius, 1992

Order "Filifera" Kühn, 1913

Family Oceaniidae Eschscholtz, 1829

Genus Corydendrium Van Beneden, 1844

Corydendrium sp. 

Material   

a. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1.0; year: 

2022; month: 02; day: 11; habitat: middle and apical macroalgae regions; 

dataGeneralizations: 18°C; 36 PSU 

Diagnosis: Colony erect, hydrocaulus  polysiphonic, irregularly  branched; branches

partly  adnate  to  hydrocaulus.  Exosqueleton  thick  with  detritus,  becoming  thin  at

hydranth  base  and  terminating  below  filiform  tentacles;  tentacles  scattered  over

hydranth. Without gonophores.

Figure 5.  

Gracilaria parvispora with  colonial epibionts.  a Bryozoa epibionts,  scale  equals 1.0  mm; b

Hydrozoa epibionts, scale equals 5.0 mm. Abbreviations: br, Bryozoa epibiont; cy, cystocarps;

hy, Hydrozoan epibionts.
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Notes: Fig. 6a

Detailed description in Calder (1988).

Figure 6.  

Hydrozoan  epibionts.  a Corydendrium sp.:  part  of  hydrocaulus with  two  hydranths,  scale

equals 0.5 mm; b Ventromma halecioides: part of a hydrocaulus with the proximal end of a

hydrocladium, hydrothecae, nematothecae, scale equals 0.3 mm; c Plumularia floridana: part

of a hydrocaulus with the proximal end of a hydrocladium, hydrothecae and nematothecae,

scale equals 0.1 mm; d Clytia linearis: part of hydrocaulus with hydrothecae, scale equals 0.8

mm; e Obelia cf. dichotoma: part of hydrocaulus with hydrothecae, scale equals 0.2 mm; f 

Obelia oxydentata:  part  of  hydrocaulus with  hydrothecae,  scale  equals 0.3  mm;  g Obelia 

tenuis: part of hydrocaulus with a hydrotheca, scale equals 0.1 mm.
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Superorder Leptothecata Cornelius, 1992

Order Macrocolonia Leclère, Schuchert, Cruaud, Couloux and Manuel 2009

Superorder Plumupheniida Maronna, Miranda, Peña Cantero, Barbeitos and
Marques 2016

Infraorder Plumulariida Bouillon, 1984

Family Kirchenpaueriidae Stechow, 1921

Genus Ventromma Stechow, 1923

Ventromma halecioides (Alder, 1859) 

Materials   

a. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1.0; year: 

2021; month: 6; day: 19; habitat: all macroalgae regions; dataGeneralizations: 18°C; 36

PSU 

b. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1.0; year: 

2022; month: 2; day: 11; habitat: all macroalgae regions; dataGeneralizations: 18°C; 36

PSU 

Diagnosis: Colony  erect,  with  creeping  hydrorhiza.  Hydrocaulus  branched,

monosiphonic,  divided  at  regular  intervals  into  internodes,  each  with  one  distal

nematotheca  and  one  hydrocladial  apophysis.  Exoskeleton  with  a  visible  layer

corresponding to perisarc. Hydrocladia alternate, unbranched, with up to four thecate

internodes.  Thecate  internodes  with  a  distal  hydrotheca,  a  median  inferior

nematotheca  and  a  median  superior  nematothecae. Hydrotheca  cup-shaped  with

margin entire. Without gonothecae.

Notes: Fig. 6b

Type locality. Cullercoats and Roker, England (Alder 1859).

Detailed description in Calder (1997), Peña-Cantero and García-Carrascosa (2002), 

Mendoza-Becerril et al. (2020).

Taxonomic status. Unaccepted (see Fig. 6b remarks). AphiaID 117678.

Remarks.  Recent molecular  studies  support the  validity  of species  with  sufficient

genetic  divergence  from Kirchenpaueria, forming  a  sister  clade  to  the  rest of the

family Kirchenpaueriidae (Peña-Cantero et al. 2010, Maronna et al. 2016, Moura et

al. 2018). Therefore, we follow this genetic evidence and the presence of bithalamic
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nematothecae  (c.f.  Calder  1997),  we  consider  our  specimens  to  belong  to  V. 

halecioides.

Family Plumulariidae McCrady, 1859

Genus Plumularia Lamarck, 1816

Plumularia floridana Nutting, 1900 

Material   

a. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1.0; year: 

2022; month: 2; day: 11; habitat: middle macroalgae regions; dataGeneralizations: 18°C;

36 PSU 

Diagnosis: Colonies  erect  arising  from  creeping  hydrorhiza.  Hydrocaulus

monosiphonic, branched; medium and distal part of the hydrocaulus distinctly divided

into regular internodes by transverse nodes; internodes straight, but slightly curved

distally; each  internode  with  a  distal  apophysis and  with  three  nematothecae, two

axillary and one median opposite to apophysis. Hydrocladia alternate, unbranched,

with  alternate  athecate  and  thecate  internodes. Nematothecae  conical,  bithalamic

and  movable.  Hydrotheca  cup-shaped;  margin  entire, without  intrathecal  septum.

Without gonothecae.

Notes: Fig. 6c

Type locality. USA, two miles west of Cape Romano, Florida (Nutting 1900).

Detailed description in Calder (1983), Calder (1997), Mendoza-Becerril et al. (2020).

Taxonomic status. Accepted. AphiaID 117821.

Order Statocysta Leclère, Schuchert, Cruaud, Couloux and Manuel 2009

Suborder Proboscoida Broch, 1910

Infraorder  Obeliida  Maronna,  Miranda,  Peña  Cantero,  Barbeitos  and
Marques, 2016

Family Clytiidae Cockerell, 1911

Genus Clytia Lamouroux, 1812
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Clytia linearis (Thornely, 1900) 

Materials   

a. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1.0; year: 

2021; month: 6; day: 19; habitat: middle macroalgae regions; dataGeneralizations: 18°C;

36 PSU 

b. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1.0; year: 

2022; month: 2; day: 11; habitat: middle macroalgae regions; dataGeneralizations: 18°C;

36 PSU 

Diagnosis: Colonies  erect,  sympodial,  occasionally  branching.  Erect  stems

monosiphonic, arising from a creeping hydrorhiza. Exoskeleton thin. Internodes with

annulations  at  the  base  and  upward  curved  apophysis,  adjacent  to  hydrothecal

pedicel;  pedicel  with  distal  hydrotheca  and  annulations  along  its  whole  length.

Hydrotheca  cylindrical, with  a  diaphragm thin, transverse, hydrothecal  margin  with

triangular  cusps  and  pleats  originating  at  apex  of  each  cusp  and  continuing

downwards to upper part of hydrothecal wall. Without gonothecae.

Notes: Fig. 6d

Type locality. Papua New Guinea: Blanche Bay, New Britain (Thornely 1900).

Detailed description in Calder (1991b), Mendoza-Becerril et al. (2020).

Taxonomic status. Accepted. AphiaID 117370.

Clytia sp. 

Material   

a. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1.0; year: 

2022; month: 2; day: 11; habitat: middle macroalgae regions; dataGeneralizations: 18°C;

36 PSU 

Diagnosis: Stolonal  colony.  Pedicel  annulated  basally  and  distally.  Hydrothecae

campanulate  with  distinct  cusps;  true  diaphragm  present;  without  spherule.

Gonothecae absent.

Notes: Detailed description in Calder (1991b).

Family Obeliidae Haeckel, 1879 Genus Obelia Péron and Lesueur, 1810

Genus Obelia Péron & Lesueur, 1810
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Obelia cf. dichotoma (Linnaeus, 1758) 

Materials   

a. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1; year: 

2021; month: 6; day: 19; habitat: apical macroalgae regions; dataGeneralizations: 18°C;

36 PSU 

b. locality: UABCS Pichilingue; minimumDepthInMeters: 0.0; maximumDepthInMeters: 1; 

year: 2021; month: 7; day: 15; habitat: basal macroalgae regions; dataGeneralizations: 

28°C; 36 PSU 

c. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1; year: 

2022; month: 2; day: 11; habitat: all macroalgae regions; dataGeneralizations: 18°C; 36

PSU 

Diagnosis: Colonies  erect,  sympodial,  in  some  cases  with  first-order  branches.

Exoskeleton  thin. Stem monosiphonic, divided  into  internodes at regular  intervals.

Internodes with annulations at the base and one distal apophysis alternately given off

the hydrothecal pedicel. Hydrotheca short and conical, with diaphragm oblique and

margin  entire.  Hydrothecal  pedicel  with  annulations  along  its  whole  length.  With

conical gonothecae with a short distal neck, arising from the base of the hydrothecal

pedicel or the axis of the main stem and branches.

Notes: Fig. 6e

Type locality. Southwest England (Cornelius 1975).

Detailed description in Mendoza-Becerril et al. (2020).

Taxonomic status. Accepted. AphiaID 117386.

Remarks. It is now widely accepted and supported that the traditional concept of O. cf.

dichotoma (cf. Cornelius (1995)) comprises multiple  cryptic lineages (Calder 2013, 

Calder et al. 2014, Cunha et al. 2017a, Calder et al. 2019, Cunha et al. 2020) and in

the eastern Pacific, affinities still need to be determined between local populations (

Calder et al. 2019), mainly because their lineages are not distinguished from each

other by morphometric analyses (Cunha et al. 2020). Therefore, molecular studies

will be necessary to delimit the eastern Pacific lineages.

Obelia oxydentata Stechow, 1914 

Material   

a. locality: UABCS Pichilingue; minimumDepthInMeters: 0.0; maximumDepthInMeters: 1.0; 

year: 2021; month: 7; day: 15; habitat: middle and apical macroalgae regions; 

dataGeneralizations: 28°C; 36 PSU 

Diagnosis: Colonies monosiphonic, erect from 1-4 mm. Exoskeleton thin. Hydrothecal

pedicel  unbranched  with  a  single  hydrotheca  at  the  distal  end.  Pedicel  with  4-6

annulations  (0.1-0.05  mm length);  branches  arising  from curved  and  short lateral
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apophysis. Hydrothecae (0.2 mm wide) straight to the slightly oblique diaphragm and

bi-mucronate marginal cusps (16-20 in total). Cusps are slightly rounded, with deep,

rounded spaces between each other, alternately differing slightly in  depth. Without

gonophores.

Notes: Fig. 6f, Fig. 7

Type locality. United States: Virgin Islands, St. Thomas, Charlotte Amalie (Stechow

1914).

Detailed description in Stechow (1914).

Taxonomic status. Accepted. AphiaID 766210.

Remarks. Colony morphology and  size  support evidence  that this  species differs

from Obelia bidentata Clark, 1875. Previous studies have discussed the reason for

the recognition of the species, supporting the correct identification of the species (

Calder 2013, Calder 2019, Calder et al. 2019). This species is 1–60 mm tall, with

predominant sizes from 1 to 10 mm (Calder et al. 2019, Calder 2020, Calder et al.

2021). The  species  has  been  recorded  in  other  localities  of the  Pacific:  Coconut

Island Reef, Hawaii; Salinas Yacht Club, Ecuador (Calder 2020, Calder et al. 2021);

and Oaxaca, Mexico (Ramos-Morales et al. 2024). However, in this last record, the

number  of cusps (7-10  vs. 15-20)  differs  from the  original  description  and  further

descriptions (cf. Stechow (1914), Calder et al. (2019), Calder (2020), Calder et al.

Figure 7.  

Obelia oxydentata. a colony, scale equals 0.5 mm; b part of hydrocaulus with hydrothecae;

scale equals 0.1 mm.
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(2021), Ramos-Morales et al. (2024), this study) and, in fig. 3g of Ramos-Morales et

al. (2024), the cuspids are unclear.

Obelia tenuis Fraser, 1938 

Material   

a. locality: La Concha; minimumDepthInMeters: 0.5; maximumDepthInMeters: 1.0; year: 

2022; month: 2; day: 11; habitat: middle macroalgae regions; dataGeneralizations: 18°C;

36 PSU 

Diagnosis: Colonies  erect,  sympodial  and  branching. Stem monosiphonic,  divided

into  nodes  and  internodes.  Internodes  with  annulations  at  the  base  and  distal

apophysis  alternately  given  off  the  hydrothecal  pedicel  or  branches.  Hydrothecal

pedicels are short, with annulations throughout. Hydrothecae with a margin slightly

waived  or  with  fine  longitudinal  folds.  Hydrothecal  diaphragm  straight  to  slightly

oblique. Without gonothecae.

Notes: Fig. 6g

Type locality. Ecuador: Santa Elena Bay (Calder et al. 2009).

Detailed description in Mendoza-Becerril et al. (2020).

Taxonomic status. Accepted. AphiaID 832333.

Remarks. Recent morphological studies support the validity of species with sufficient

support.  Therefore,  we  follow  the  morphological  evidence  indicated  in  Mendoza-

Becerril et al. (2020).

Identification keys

Dichotomous key of Hydrozoa epibionts of Gracilaria parvispora

1
Hydroids without hydrotheca or with a firm pseudohydrotheca and detritus

enveloping the hydroid.
2 

– Hydroids with hydrothecae. 4 

2 Hydroids with at least a few capitate tentacles. 3 

– Hydroids with filiform tentacles only. Filifera 

3
Tentacles scattered around the hydrant, not arranged in distinct whorls.

Gonophores in the form of fixed sporosacs.
Corydendrium 
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– Hydrants with tentacles arranged in circle(s) at distal end. Other Filifera 

4 Hydrotheca adnate to hydrocaulus, nematothecae are present. 5 

– Hydrotheca not adnate to hydrocaulus, nematothecae are absent. 7 

5 Hydrotheca without lateral nematothecae.
Ventromma 

halecioides 

– Hydrotheca with lateral nematothecae. 6 

6

Hydrocladia with more than one hydrotheca; hydrotheca adnate to

internode; abcaulinar wall of hydrotheca straight, abcaulinar wall of

hydrotheca straight.

Plumularia 

floridana 

–

With one hydrotheca per hydrocladia, hydrotheca partially adnate to

internode; abcauline wall of hydrotheca slightly curved abcaulinar wall of the

hydrotheca slightly curved.

Monotheca 

7
Stolonal colony, with subhydrotecal spherule; hydrotheca with or without

diaphragm.

others

Proboscoida 

–
Erect or stolonal colony, without a subhydrotecal spherule; hydrotheca with

diaphragm.
8 

8 Hydrotheca with cusps, cylindrical, with a diaphragm thin and transverse. 9 

– Hydrotheca margin without cusps. 10 

9

Hydrothecal margin with about 11 to 16 cusps, deeply cut teeth separated

by U-shaped incisions; margin scalloped in cross-section, with V-shaped

pleats extending inwards towards hydrothecal cavity; each pleat originating

at the apex of each tooth and continuing downwards to the upper part of

hydrothecal wall.

Clytia linearis 

–

Hydrothecal margin with about 15 - 20 long cusps, slightly rounded, with

deep, rounded spaces between them, which alternately show a slight

difference in depth so that an indistinct paired arrangement

occurs.Hydrothecal margin with about 15 - 20 long cusps, slightly rounded,

with deep, rounded spaces between them, which alternately show a slight

difference in depth so that an indistinct paired arrangement occurs.

Obelia 

oxydentata 

10
Hydrothecal diaphragm oblique. Hydrothecal pedicel with annulations along

its whole length.

Obelia cf. 

dichotoma 

– Hydrothecae with straight margin. Obelia tenuis 
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Analysis 

Most of the epibiont taxa were recorded in the middle of the thalli, the same region that

only the  hydrozoans Clytia sp., C. linearis, O. tenuis and  P. floridana were  observed.

Significant differences  were  observed  amongst the  lengths  of  thalli  with  and  without

epibionts (Pseudo-F = 3.04, p(perm) < 0.01, gl = 1, 118). The thalli  with epibionts were

larger than the thalli without epibionts (7.07 ± 2.89 cm and 4.89 ± 2.61 cm, respectively).

Likewise, significant differences were observed amongst the months (Pseudo-F = 9.60,

p(perm)  <  0.01,  gl  =  2,  117),  the  pair-wise  test  revealing  that  each  month  exhibited

distinctive epibiont taxa when compared to the others (p(perm) < 0.01). However, there

was no  significant difference  between  thalli  with  and  without cystocarps (Pseudo-F =

2.35, p(perm) = 0.05, gl = 1, 118) and region (Pseudo-F = 0.39, p(perm) = 0.871, gl = 2,

143). SIMPER analysis revealed that the species that contributed the most to similarity

within groups and dissimilarity between groups were O. dichotoma, V. halecioides and C.

linearis (Table 2, Fig. 8).

Within group Average similarity Contribution % Cumulative contribution %

February 

Obelia cf. dichotoma 16.2 79.77 79.77

Ventromma halecioides 3.69 18.16 97.33 

May 

Obelia cf. dichotoma 55.45 85.64 85.64

Figure 8.  

Hydrozoan  epibiont  taxa  by thalli  region  of  Gracilaria parvispora from  La  Paz Bay, Baja

California Sur, Mexico.

 

Table 2. 

SIMPER (similarity percentage)  analysis results demonstrated that taxa accounted for  the most

similarity within each month and the most dissimilarity between months.
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Within group Average similarity Contribution % Cumulative contribution %

August 

Clytia linearis 8.89 39.72 39.72 

Obelia cf. dichotoma 6.63 29.62 69.34 

Ventromma halecioides 6.13 27.38 96.72 

Between groups 

February and May 

Obelia cf. dichotoma 32.86 50.85 50.85

Ventromma halecioides 19.34 29.93 80.78

February and August 

Obelia cf. dichotoma 26.85 32.46 32.46

Ventromma halecioides 20.45 24.73 57.19

Clytia linearis 18.81 22.75 79.94

May and August 

Obelia cf. dichotoma 29.85 41.82 41.82

Ventromma halecioides 17.81 24.96 66.78

Clytia linearis 13.54 18.97 85.75

Discussion 

A  total  of  eight  hydrozoan  epibionts  species  were  recorded  for  the  first  time  in  G. 

parvispora thalli. One of the most notable differences in the presence of epibionts was the

quantity found in field and herbarium thalli. The latter yielded fewer epibionts, possibly

due to the preparation of the thalli  before being fixed, as these were rinsed free of any

sand or debris, without emphasis on the conservation of the epibiont fauna. Therefore,

epibionts with erect growth and calcareous or chitinous exoskeletons are only sometimes

preserved when dried since they become brittle and are often lost in herbarium samples

(M.A.M.-B. and K.L.-C. pers. obs.); for example, calcareous bryozoans were observed in

the herbarium thalli. In the collected thalli, no other encrusting epibionts were observed,

such  as  bryozoans  or  sponges,  even  though  literature  shows  evidence  that  these

epibionts co-exist (cf. Maggioni  et al. (2020))  and  are  considered  dominant epibionts

(Altuna 1994, Gappa  and  Sabattini  2007)  due  to  their  ability  to  survive  the  spatial

competition. This is a  primordial  characteristic in  colonial  organisms since  they adapt

under selective pressure to environmental changes (Jackson 1977, Gili et al. 2000).

All  species of hydrozoan epibionts had already been recorded in La Paz Bay and the

Mexican Pacific (cf. Estrada-González et al. (2023a)), except Obelia oxydentata, whose

records were restricted to the Galápagos Islands on bryozoan Amathia verticillata (delle

Chiaje, 1822) (Calder et al. 2019), Ecuador mainland  on  Pennaria disticha Goldfuss,

1820 and another hydroid stem (Calder et al. 2021) and the southern Mexican Pacific on

PVC  plates  (Ramos-Morales  et  al.  2024).  Therefore,  this  study's  record  is  the  first
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observation in La Paz Bay and the Gulf of California. Of the taxa recorded, only O. cf.

dichotoma is  considered  invasive  and  O. oxydentata introduced  in  Mexican  waters  (

CONABIO 2015, Ramos-Morales et al. 2024). Genetic analyses are suggested to resolve

cryptic  lineages and help  explain  many of the  geographic and  ecological  patterns of

hydroids recorded. The effects of this epibiosis are largely unknown and, therefore, we

believe that it is important to monitor these introduced species and determine its level of

invasiveness on marine ecosystems.

The epibiont hydroids of G. parvispora represent 22% of the current hydroids diversity of

La Paz Bay (cf. Mendoza-Becerril et al. (2020), Mendoza-Becerril et al. (2022), Estrada-

González et al. (2023a), Estrada-González et al. (2023b)). The hydroids species in La

Paz Bay have been recorded in natural and artificial substrates, with macroalgae being

their main settlement substrate (89%). Four of them were generalist: C. linearis recorded

on 14 substrates (artificial  substrate, Ascidian, Bryozoa, coral, Crustacea, detritus/sand,

Hydrozoa, macroalgae, Mollusca, Polychaeta, Porifera, rock, unknown substrate, wood),

O. cf. dichotoma recorded on 11 substrates (artificial substrate, Ascidian, Bryozoa, coral,

Crustacea, Hydrozoa, macroalgae, Polychaeta, Porifera, rock, unknown  substrate), V. 

halecioides recorded  on  10  substrates  (Bryozoa,  calcareous  organisms  unidentified,

coral, Crustacea, Hydrozoa, macroalgae, Polychaeta, Porifera, rock, unknown substrate)

and  P. floridana on  nine  substrates (artificial  substrate, Ascidian, Bryozoa, calcareous

organisms  unidentified,  Crustacea,  macroalgae,  Porifera,  rock,  unknown  substrate)

(Mendoza-Becerril et al. 2020, Mendoza-Becerril  et  al.  2022,  Estrada-González  et  al.

2023a, Estrada-González et al. 2023b and this study). The most frequent species, O. cf.

dichotoma and  V. halecioides,  correspond  to  erect  branched  colonies  and  substrate

generalists (Calder 1991a). Additionally, these species are commonly distributed in La

Paz Bay and as epibionts of macroalgae worldwide; for example, O. cf. dichotoma is an

abundant species on Sargassum spp., while V. halecioides is dominant on Cystoseira

spp.  (Faucci  and  Boero  2000,  Estrada-González  et  al.  2023a,  Carral-Murrieta  et  al. 

2024).

Globally, 31 species of epibiont hydroids are reported growing on non-native or invasive

macroalgae (Sarma 1974, Withers et al. 1975, Norton and Benson 1983, Kitching 1987, 

Migotto 1996, Sano et al. 2003, Wikström and Kautsky 2004, Oliveira and Marques 2007, 

Oliveira and Marques 2011, Kuhlenkamp and Kind 2013, Gutow et al. 2015, Arnold et al.

2015, Kim et al. 2019, Avila et al. 2020, Carral-Murrieta et al. 2023, Mendoza-Becerril et

al. 2023, Carral-Murrieta et al. 2024). The macroalga S. muticum has the highest species

richness (23  spp.; Withers  et al. (1975), Norton  and  Benson  (1983), Wernberg  et al.

(2004), Gutow et al. (2015), Carral-Murrieta  et al. (2024)), followed by A. spicifera (14

spp.; Migotto (1996), Oliveira and Marques (2007), Oliveira and Marques (2011)) and G. 

parvispora (8 spp.; this study).

The hydrozoans were mainly found in the middle region of the G. parvispora thallus, in

contrast to the benthic Sargassum species and Cystoseira amentacea (C.Agardh) Bory,

where the basal region hosted the highest number of hydrozoan species (Fraschetti et al.

2006, Carral-Murrieta  et al. 2024). This contrast may be  related  to  the  preference  for

sandy substrates of G. parvispora as opposed  to  benthic  Sargassum species and  C. 
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amentacea for rocky reefs, as well as the competition for the surrounding fauna and the

growth of other algae. Moreover, colonial invertebrate larvae avoid settling in regions of

the alga with members of competitively dominant species; therefore, the epibionts tend to

settle  on  the  youngest  parts  (Stebbing  1971,  Grosberg  1981).  For  this  reason,  the

epibiont fauna is usually smaller in the apical area because of the high growth rate and

renewal of filaments in this zone in the algae of the genus Gracilaria (Molina-Vargas and

Álvarez-León 2014). Furthermore, the richness and abundance of hydroids also depend

on the macroalgal  morphology. For instance, highly branched macroalgae have many

micro-habitats that facilitate hydroid settlement and persistence in macroalgae such as

Cystoseira barbata (Stackhouse) C.Agardh, C. amentacea and Sargassum spp. (Faucci

and Boero 2000, Carral-Murrieta et al. 2024), while G. parvispora has a single dominant

axis, usually with three branching orders.

Conclusions

This study demonstrated that the macroalga G. parvispora is a basibiont hosting colonial

sessile epibionts, with the most frequent group being hydrozoans. This is the first time

that the associated fauna of this macroalga has been studied and it provides essential

information on the taxonomy and diversity of their epibionts. However, since macrophytes

are potential  vectors for species introductions in  other regions (Kuhlenkamp and Kind

2013),  further  studies  on  non-native  or  invasive  macroalgae  and  their  epibionts  are

needed to assess whether these algae are conducive for the introduction of bryozoan or

hydrozoan  species into  the  local  fauna.  It  is  also  important  to  assess  whether  the

presence  of  colonial  epibionts  is  directly  related  to  their  geographical  distribution,

whether  they  exhibit  opportunistic  settlement on  the  substrate  (Oliveira  and  Marques

2011) or whether they prefer specific lineages of macrophytes for their development (

Munari et al. 2015). Having established the basis for locating the macroalga in La Paz

Bay and identifying its epibionts, it is possible to propose a standardised methodology for

analysing  whether  the  diversity  and  abundance  of  the  epifauna  depend  on  the

macroalgae's morphology, as Gan et al. (2019) suggested for the epifauna associated

with different macroalgae. The methodology of future studies should also consider the

incorporation of the variation of environmental parameters.
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