Table 2.
Model | Training AUCa | Testing AUC | Accuracy | Sensitivity | Specificity | PPVb | NPVc | F1-score |
LGBMd | 0.98 | 0.80 | 0.88 | 0.33 | 0.96 | 0.51 | 0.91 | 0.40 |
GBe | 0.98 | 0.78 | 0.88 | 0.35 | 0.95 | 0.49 | 0.91 | 0.41 |
XGBf | 0.98 | 0.80 | 0.88 | 0.39 | 0.94 | 0.49 | 0.92 | 0.44 |
RFg | 0.99 | 0.77 | 0.87 | 0.24 | 0.95 | 0.42 | 0.90 | 0.30 |
AdaBoost | 0.97 | 0.78 | 0.87 | 0.25 | 0.96 | 0.46 | 0.90 | 0.32 |
ANNh | 0.99 | 0.72 | 0.84 | 0.22 | 0.93 | 0.30 | 0.90 | 0.25 |
aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dLGMB: light gradient boosting machine.
eGB: gradient boosting.
fXGB: extreme gradient boosting.
gRF: random forest.
hANN: artificial neural network.