Skip to main content
. 2024 Sep 4;26:e56022. doi: 10.2196/56022

Table 2.

Overview of machine learning models’ performance.

Model Training AUCa Testing AUC Accuracy Sensitivity Specificity PPVb NPVc F1-score
LGBMd 0.98 0.80 0.88 0.33 0.96 0.51 0.91 0.40
GBe 0.98 0.78 0.88 0.35 0.95 0.49 0.91 0.41
XGBf 0.98 0.80 0.88 0.39 0.94 0.49 0.92 0.44
RFg 0.99 0.77 0.87 0.24 0.95 0.42 0.90 0.30
AdaBoost 0.97 0.78 0.87 0.25 0.96 0.46 0.90 0.32
ANNh 0.99 0.72 0.84 0.22 0.93 0.30 0.90 0.25

aAUC: area under the curve.

bPPV: positive predictive value.

cNPV: negative predictive value.

dLGMB: light gradient boosting machine.

eGB: gradient boosting.

fXGB: extreme gradient boosting.

gRF: random forest.

hANN: artificial neural network.