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People parse continuous experiences at natural breakpoints called event boundaries, which is important for understanding an
environment’s causal structure and for responding to uncertainty within it. However, it remains unclear how different forms of
uncertainty affect the parsing of continuous experiences and how such uncertainty influences the brain’s processing of ongoing
events. We exposed human participants of both sexes (N= 34) to a continuous sequence of semantically meaningless images. We
generated sequences from random walks through a graph that grouped images into temporal communities. After learning, we asked
participants to segment another sequence at natural breakpoints (event boundaries). Participants segmented the sequence at learned
transitions between communities, as well as at novel transitions, suggesting that people can segment temporally extended experi-
ences into events based on learned structure as well as prediction error. Greater segmentation at novel boundaries was associated
with enhanced parietal scalp electroencephalography (EEG) activity between 250 and 450 ms after the stimulus onset. Multivariate
classification of EEG activity showed that novel and learned boundaries evoked distinct patterns of neural activity, particularly theta
band power in posterior electrodes. Learning also led to distinct neural representations for stimuli within the temporal communities,
while neural activity at learned boundary nodes showed predictive evidence for the adjacent community. The data show that people
segment experiences at both learned and novel boundaries and suggest that learned event boundaries trigger retrieval of information
about the upcoming community that could underlie anticipation of the next event in a sequence.
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Significance Statement

People make sense of their continuous experience by segmenting it into meaningful units at event boundaries. Event bound-
aries influence cognitive function in a variety of ways; however, it remains unclear how different forms of uncertainty
affect the parsing of continuous experiences and how such uncertainty might influence the brain’s processing of ongoing
events. We found that although people segment experiences at both learned and novel boundaries, brain activity diverges
rapidly (250–450 ms poststimulus) in response to different types of event boundaries. The findings suggest the brain can flex-
ibly respond to event boundaries of distinct types, which could support dynamic modulation and updating of neural activity in
response to ongoing experience.

Introduction
Time passes continuously, and yet we experience time’s passage
as a series of episodes that are structured around distinct and
meaningful events. How does this structure arise? Research has
shown that during ongoing experience, people perceive event
boundaries that indicate transitions from one event to the next
(Zacks et al., 2007). People parse their experiences into events
in order to build and maintain mental models that enable tempo-
ral predictions about how an experience will unfold (Richmond
and Zacks, 2017). Event boundaries therefore play an important
role in how we experience the world and influence a variety of
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cognitive functions (Newtson, 1973; Zwaan, 1996; Speer and
Zacks, 2005; Radvansky and Copeland, 2006; Nakano et al.,
2009; Swallow et al., 2009; DuBrow and Davachi, 2014;
Lositsky et al., 2016; Brunec et al., 2018; Dunsmoor et al., 2018;
Heusser et al., 2018; Clewett et al., 2020; Baldwin and Kosie,
2021; Ezzyat and Davachi, 2021; Hansen et al., 2021).

Despite their wide-ranging impact and apparent impor-
tance for cognition, it remains unclear precisely how and
why event boundaries are perceived during ongoing experi-
ences. One major theory proposes that event boundaries
correspond to moments of enhanced prediction error
(Reynolds et al., 2007; Zacks et al., 2007; Rouhani et al.,
2018; Antony et al., 2021; Ben-Yakov et al., 2022), when an
internal model of the current event no longer accurately pre-
dicts one’s experience (Reynolds et al., 2007; Kurby and
Zacks, 2008; Richmond and Zacks, 2017). Although this
model explains many of the effects of boundaries on cogni-
tion, it cannot easily account for the observation that event
boundaries can occur at predictable moments of transition
between two contexts (Polyn et al., 2009; Schapiro et al.,
2013; Siefke et al., 2019; Sherman et al., 2023). Such predic-
tions could emerge, for example, through learning of the sta-
tistical regularities that govern the evolution of events and
experiences across time (Saffran et al., 1999; Sherman et al.,
2020; Baldwin and Kosie, 2021).

Differentiating between predicted and unpredicted event
boundaries could allow the brain to modulate its own response
to ongoing experience. For example, event boundaries could trig-
ger retrieval of related knowledge (Keidel et al., 2018; Cohn-
Sheehy et al., 2021; Hahamy et al., 2023), especially if they are
predicted, while unpredicted event boundaries could enhance
attention and encoding of novel information (Den Ouden
et al., 2012; Kim et al., 2017; Sinclair and Barense, 2018; Press
et al., 2020; Bein et al., 2021; Chanales et al., 2021). Event bound-
aries that are associated with these different types of uncertainty
could engage distinct neuromodulatory systems (Yu and Dayan,
2005; Poe et al., 2020) that could allow for flexible use of event
boundaries to structure neural processing of ongoing experiences
(Sara 2009; Zheng et al., 2022).

The present study was designed to determine how people use
learned and novel information to segment experiences and how
neural activity differs in response to such information.
Participants performed a sequence learning task (Schapiro
et al., 2013; Pudhiyidath et al., 2022) in which the transitions
between images in the sequence were determined by the connec-
tions in an undirected graph (Fig. 1A). After learning, partici-
pants again viewed a sequence of images determined by the
graph structure and were asked to indicate moments in the
sequence when they perceived a transition from one event to
the next (i.e., event boundaries). We manipulated uncertainty
by including two types of transitions between communities:
novel transitions not directly possible in the learned graph
and learned transitions that were possible and consistent
with the initial stimulus exposure phase. We recorded scalp
electroencephalography (EEG) while participants performed
the task, which allowed us to investigate the neural response
to event boundaries during the temporal interval of the P300,
an EEG component associated with contextual novelty. Scalp
EEG also allowed us to measure the timecourse over which
brain activity diverges in response to novel versus learned event
boundaries and to determine whether event boundaries trigger
the retrieval of information that could be used to anticipate the
upcoming event.

Materials and Methods
Participants
The 35 students from Swarthmore College (15 females; mean age,
19.1 years; range, 18–22 years) were recruited through an introductory
psychology course or through an advertisement on a college Facebook
group page. Participants provided informed consent in a manner
approved by the Swarthmore College Institutional Review Board.
Participants were reimbursed for their time either with monetary com-
pensation ($20) or with partial credit toward their course research
requirement. One participant was excluded from analysis due to techni-
cal issues with EEG data collection.

Materials
The abstract stimuli presented to the participants were produced using
the program ArtMatic Pro. Eighty-seven stimuli were created, from
which seventy-four were selected based on being distinguishably differ-
ent when rotated 90° (see Fig. 1A for example stimuli). For each partic-
ipant, 15 stimuli were selected at random from the set and randomly
assigned to each of the 15 nodes of the community structure graph
(Fig. 1A).

Participants first completed the exposure phase, in which they viewed
a sequence of 1,400 stimuli created by taking a random walk through the
graph. Stimuli were presented one by one on the computer screen for
1.25 s each. There was no interstimulus interval, and no indication was
given when the sequence moved into a new community. For the parsing
phase, participants viewed a sequence of 1,200 stimuli. This sequence was
created by alternating blocks of 15 stimuli generated by a pseudorandom
walk through the graph and blocks of 15 items generated by a
Hamiltonian path through the graph. In Hamiltonian paths, each node
of the graph was visited exactly once. Each Hamiltonian path was
selected pseudorandomly from a previously generated set of 15 different
Hamiltonian paths, with the constraint that the path had to originate
from the final node of the preceding random walk.

The purpose of including the Hamiltonian paths was twofold; first,
every Hamiltonian path included at least two between-community tran-
sitions, while the 15-stimulus random walks did not necessarily include
any between-community transitions; second, including the Hamiltonian
paths ensured that the participants’ parsing behavior could not be
explained by the local statistics of the sequence, as each node was only
seen once within a given Hamiltonian path. The pseudorandom walks
were included to minimize unlearning of the previous temporal associa-
tions. They were pseudorandom because the programwas instructed that
if the walk had not moved out of a community after nine stimuli, then
when the walk next landed on a boundary node, it had to move on to
a different community. The alteration was made to increase the total
number of community transitions within the parsing phase.

In the parsing phase, the transitions between stimuli were manipu-
lated to introduce transitions that had not been learned during the expo-
sure phase. The stimuli previously associated with the boundary nodes
(for instance, nodes a and o on the graph in Fig. 1A) were swapped
such that an inner node stimulus from the prior community would
appear when the random walk landed on the first boundary node
(a swapped with b/c/d), and an inner node stimulus from the upcoming
community would appear when the random walk landed on the second
boundary node (o swapped with l/m/n). These boundary transitions were
impossible in the exposure phase, as an inner node from one community
could not lead to an inner node from another community. Over the
course of the parsing phase, we cycled which boundary nodes were
manipulated, i.e., one community transition was manipulated in the
first block of 200 stimuli, after which it was restored and a different com-
munity transition was manipulated and so on. The inner nodes that were
swapped for the boundary nodes were randomly selected, although the
selection remained constant over the 200-stimulus block. The manipu-
lated trials made up a third of the total number of community transition
trials or 4.59% of the total number of stimulus transitions.

A final posttest was given to determine participants’ explicit knowl-
edge of the community structure. The posttest involved a forced-choice
paradigm where one stimulus was presented at the top of the screen and
two other stimuli—a target stimulus in the same community and a lure
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stimulus in the other community—were presented below it. Participants
had to choose which stimulus on the bottom “went with” the one on top.
Each stimulus was presented four times, once with each of the other com-
munity members as the target, for a total of 60 trials.

Procedure
Each participant was greeted and given a consent form to fill out. An EEG
cap was subsequently fitted to and placed on their head. They were then
shown the entire set of stimuli on the screen and told that they would be
asked to decide whether each stimulus was rotated away from its initial
orientation or whether it was still in its original orientation. Participants
pressed one key (either J or K) when they thought the stimulus was
rotated and another when it was not; key assignment was counterbal-
anced across participants. Reaction time data were recorded. One
500 ms beep was played if the participant answered incorrectly, and a
different 500 ms beep was played if the participant failed to answer in
the allotted time frame. Light foam headphones were placed over the
EEG cap to allow the participants to hear the sounds. Stimuli were
rotated from their initial orientation 25% of the time. The rotation
task was used to keep the participants alert and attending to the stimuli;
their scores from the task were calculated to ensure they had paid atten-
tion throughout the exposure phase. Every 350 stimuli or ∼7.3 min, par-
ticipants were given a self-paced break. During the break, they were
instructed to ring a bell, at which point the researcher would enter the
testing room and adjust the impedances of the EEG cap as necessary.

The procedure for the parsing phase differed slightly for the first
group of participants (N= 11) and the second group of participants
(N= 24). For both groups, after the exposure phase had finished, the
EEG cap was adjusted again, and the participants were told that they
would now see a sequence of the same stimuli from the first part of
the experiment, all in their initial orientations. For Experiment 1, partic-
ipants were instructed to respond with a keypress on every trial, pressing
the “K” key when they felt a “natural breakpoint or transition” had
occurred in the sequence and the “J” key at all other times. Reaction
time data were recorded for all trials. For Experiment 2, participants
were instructed to press the spacebar when they felt a “natural breaking
point or transition” had occurred in the sequence and did not respond
otherwise. Reaction time data were recorded for trials during which
the spacebar was pressed. For both groups, no sound feedback was given.
Participants were given a self-paced break after the first 405 stimuli
(8.4 min) and then after another 390 stimuli (8.1 min). During these
breaks, impedances were checked again, and the caps were adjusted as
needed.

After the parsing phase, the EEG caps were removed, and the partic-
ipants (the second group, N= 24) were given the posttest. They were
instructed to answer on every trial, guessing if they weren’t sure.
Participants were given a maximum of 30 s to answer each trial.
Subsequently, the participants were asked to fill out a short survey about
their experience during the study and their strategies during the parsing
phase.

EEG data acquisition and preprocessing
EEG recordings were collected using a NetAmps 300 system with a
64-channel HydroCel Geodesic Sensor Net (Electrical Geodesics). All
electrodes were digitized at a sampling rate of 1,000 Hz and were refer-
enced to electrode Cz. We used four electrodes to record the horizontal
and vertical electrooculogram (EOG) of each eye. Off-line, we applied
filtering to the raw EEG recordings to remove low-frequency drift
(<0.5 Hz), high-frequency noise (>200 Hz), and electrical line noise
(60 Hz and harmonics). We then visually inspected the voltage time-
series and manually removed intervals associated with large non-neural
(e.g., muscle tension) artifacts. To remove noise related to eyeblinks and
eyemovements, we first decomposed the data using independent compo-
nent analysis and then calculated the correlation between each indepen-
dent component and the horizontal and vertical EOGs. We excluded any
component with a z-scored correlation greater than 3 and then recon-
structed the data.

We created epochs for each event type of interest by segmenting the
continuous EEG recording for all electrodes using pulses that marked the

onset of stimulus presentation events, which were sent from the stimulus
presentation machine to the EEG acquisition machine. Epochs were
defined from −100 to 1,000 ms relative to the stimulus onset. We first
baseline-corrected the data for each epoch by subtracting the average
voltage from the baseline period (−100 to 0 ms relative to the stimulus
onset) from the entire epoch. Next, we excluded epochs with potentially
nonphysiological noise using a sliding window (window length, 200 ms;
step size, 50 ms) to detect peak-to-peak voltage fluctuations in excess of
±250 µV (Luck, 2014). We temporally reflected each epoch for use as
mirrored pre- and postbuffer periods (Ezzyat et al., 2018; Weidemann
et al., 2019) and then performed spectral decomposition using wavelets
(Smith et al., 2022) with a time-bandwidth product = 4 and four cycles
for each frequency. We then discarded the buffer periods. We estimated
spectral power at 30 logarithmically spaced frequencies from 4 to 100 Hz
(Long and Kuhl, 2019). We applied a base-10 log transform to the raw
spectral power to reduce baseline differences between power at low ver-
sus high frequencies and in preparation for using parametric statistics
(Cohen, 2014). We then z-scored the data by averaging the signal ampli-
tude (power) within each epoch and across samples and then calculated
the mean and standard deviation of the amplitude across epochs. We
performed z-scoring separately within each channel and frequency.

Behavioral data analysis
For the exposure phase, we used one-sample and paired t tests to analyze
d′ and response times for the learned boundary and nonboundary
conditions (Fig. 1). For the parsing phase, we used one-way repeated–
measure ANOVAs and paired t tests to analyze the percentage of
transitions labeled that were parsed (i.e., that participants labeled “event
boundaries”) as well as response times. For the posttest data, we analyzed
percent correct with a Wilcoxon signed-rank test.

EEG data analysis
P300 amplitude. For across-participant analyses of the P300 ampli-

tude, we estimated the P300 individually for each participant by averag-
ing the amplitude of the preprocessed voltage response between 250 and
450 ms poststimulus onset (Polich, 2012). For the analysis in Fig. 2, we
calculated separate P300 amplitudes for novel boundary, learned bound-
ary, and nonboundary trials.

Region of interest definition. For some analyses we grouped elec-
trodes into four a priori regions of interest (ROIs) based broadly on their
spatial locations along the left/right and anterior/posterior axes of the
scalp (Weidemann et al., 2009; Long et al., 2014). Figure 3C shows the
spatial arrangement of these ROIs.

Feature selection: principal component analysis. Before measuring
pattern similarity within and between communities, we conducted a fea-
ture selection step by applying principal component analysis (PCA) to
the spectral decomposition of the EEG timeseries (Cunningham and
Yu, 2014; Lohnas et al., 2023). We applied PCA to the matrix of z-scored
power for each epoch at each frequency × electrode (spectral power
within each frequency was averaged across samples for each epoch).
For features with missing data due to artifacts (see above, EEG data
acquisition and preprocessing), we used a random value drawn from a
Gaussian distribution with (m, s) equal to the mean and standard devia-
tion of the feature across all remaining epochs (Izenman, 2008). After
computing the principal component (PC) transformation, we retained
components that explained a significant portion of the variance of the
data (M= 165.4 components across participants), based on the Kaiser
criterion (Manning et al., 2011). Using this subset of components, we
then analyzed the relative importance of each feature by averaging the
PC loadings across either frequencies or electrodes (Fig. 3A). We then
compared the across-participant distribution of average component
loadings to zero using a one-sample t test. We used the false discovery
rate (FDR, q < 0.05) to correct for multiple comparisons (Benjamini
and Hochberg, 1995).

Classification. We used multivariate classification to determine
whether scalp EEG activity differed for novel compared with learned
boundary transitions. We focused on the interval 250–450 ms
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poststimulus onset, given the prominence of the P300 component during
this interval (Polich, 2012). We averaged spectral power for each epoch
within this interval and then applied PCA to these frequency × electrode
features. Using PCA components that explained a significant proportion
of the variance in the data using the Kaiser criterion, we then used
L2-penalized logistic regression to classify novel versus learned boundary
epochs. To avoid overfitting the penalty parameter, we performed clas-
sification separately using eight logarithmically spaced penalty parame-
ters between 1 × 10−4 and 1 × 104 and averaged classifier performance
across all penalty parameters. To quantify classifier performance, we
used area under the receiver operating characteristic curve (AUC). We
calculated AUC using leave-one-trial-out cross-validation (Hastie
et al., 2009) and compared the across-participant average AUC to chance
(AUC, 0.50) using a one-sample t test (Fig. 4A). We used a previously
reported method to assess the relative importance of the PC features
that the classifier used to discriminate novel from learned boundaries
(Haufe et al., 2014). Specifically, we calculated a vector of feature impor-
tance values A as follows:

A = Sx w
s2
y

,

where Σx is the data covariance matrix, w is the vector of classifier feature
weights, and s2

y is the variance of the logit-transformed classifier outputs.

We then used these feature importance values to calculate a weighted
average importance for the original frequency × electrode features
(Fig. 4B,C).

For the predictive classification analyses in Figure 5, we trained clas-
sifiers to differentiate patterns of neural activity collected while viewing
inner nodes from two communities (e.g., l/m/n vs g/h/i) and then applied
the classifiers to adjacent boundary nodes from the held-out community
(e.g., a and e; Fig. 5A). Classifiers were applied to learned boundary node
data averaged within windows of the stimulus presentation period (window
length, 100 ms; window step, 50 ms). We restricted our analyses to bound-
ary node visits in which the same boundary node had not been visited
within the previous two trials.We iterated this process across all three com-
binations of trained and tested communities, assessed performance using
AUC for each iteration, and then averaged AUC timecourses across the
three iterations of trained and tested communities (Fig. 5B).

Pattern similarity analysis. After selecting significant features using
PCA, we identified all pairs of inner node (i.e., not boundary nodes)
epochs within Hamiltonian paths with an interitem lag of 3 for which
participants did not parse the sequence. This allowed us to compare pat-
tern similarity between pairs of items within and across communities
that were matched in terms of their temporal lag and behavioral
responses. The three conditions of interest are depicted in the schematic
in Figure 6A. The novel boundary condition consisted of epoch pairs
with an intervening manipulated between-community transition. The
learned boundary condition consisted of epoch pairs with an intervening
nonmanipulated between-community transition. The nonboundary condi-
tion consisted of the remaining epoch pairs that were separated exclusively
by within-community transitions. We calculated the Pearson’s correlation
between each epoch pair using the significant PCs. The resulting r values
were then transformed using the inverse hyperbolic tangent function
(Fisher’s r-to-z transform), averaged within each condition, and compared
across participants using a one-way (novel/learned/nonboundary)
repeated–measure ANOVA. We then used repeated measures t tests for
pairwise comparisons between conditions.

Statistics. We report descriptive statistics as mean ± standard error of
the mean. For variables assumed to be normally distributed, we used para-
metric inferential tests (t tests, ANOVA) to assess significance; otherwise,
we used nonparametric tests (Wilcoxon signed-rank and permutation
tests). Effect sizes are reported as Cohen’s d or (partial) eta squared (η2).

Data and code availability. Data and code for this study will be avail-
able via the Open Science Framework (https://osf.io/mwjya/).

Results
Behavioral performance during learning
During the exposure phase, participants learned the graph structure
by viewing extended sequences of the fractal images (Fig. 1A).
Participants’ task was to indicate whether the presented image
was a standard or rotated version of the image. Participants
performed well on the rotation task, indicating task compliance
(d′ =2.03± 0.11; t(33) = 19.1; p=2.0 × 10

−19; d=3.28). Participants
detected targets equally well for learned boundary and nonbound-
ary transitions (learned boundary, d′ =2.14± 0.12; nonboundary,
d′ = 2.03 ± 0.10; t(33) = 1.6; p= 0.12; d= 0.27; Fig. 1B). However,
participants were slower to respond to learned boundary
transitions compared with nonboundary transitions (learned
boundary, M= 676 ± 11 ms; nonboundary, M= 665 ± 10 ms;
t(33) = 2.32; p= 0.03; d= 0.40; Fig. 1B). These data suggest that
the exposure phase allowed participants to learn the graph struc-
ture and the differences between nodes within and between
communities.

Behavioral performance during parsing
During the parsing phase, participants were again exposed to
extended sequences of fractal images and were asked to indicate
with a button press when they perceived a “natural breakpoint or
transition” in the sequence. As in the exposure phase, transitions
from one trial to the next could be classified as either nonbound-
ary or boundary. However, unlike the exposure phase, the pars-
ing phase included two types of boundary transitions: learned
boundaries, which had been learned previously during exposure,
or novel boundaries, which were not previously encountered
(Fig. 1A; see Material and Methods).

Based on their learning during the exposure phase, we predicted
that participants would be more likely to parse the sequence at
transitions between communities (learned and novel boundary),
compared with transitions that remained in the same community
(nonboundary). Participants’ parsing behavior differed across con-
ditions (novel, 18.3 ± 2.5%; learned, 19.0 ± 2.5%; nonboundary,
14.0 ± 1.5%; F(2,66) = 5.17; p=0.008; h2 = 0.16; Fig. 1C, left).
Compared with nonboundary transitions, participants parsed
more frequently at both novel (t(33) = 2.21; p=0.03; d=0.38) and
learned boundary transitions (t(33) = 2.73; p=0.01; d=0.47).
There was no difference in parsing proportion between novel
and learned boundaries (t(33) = 0.60; p=0.55). These parsing data
suggest that participants perceived both novel and learned transi-
tions as boundaries between communities.

Participant response times also differed for the three transi-
tion types (F(2,66) = 7.59; p= 0.001; h2 = 0.23; Fig. 1C, right).
Here, participants were slower to parse novel boundary transi-
tions (690 ± 23 ms) than both learned boundary (648 ± 22 ms;
t(33) = 2.44; p= 0.02; d= 0.42) and nonboundary transitions
(631 ± 16 ms; t(33) = 3.70; p= 0.001; d= 0.63). However, learned
and nonboundary transitions did not differ (t(33) = 1.27; p=0.21).
Taken together with the parsing data, the response time data sug-
gest that novel boundaries were unexpected relative to learned
boundaries, leading to slower responses; however, participants
were still equally likely to parse the sequence at both transition
types.

Behavioral performance in the posttest
A subset of participants (N= 24) completed a posttest in which
they were asked to pair items that they felt belonged in the
same community. Participants varied in their performance on
this explicit measure of association but as a group performed
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better than chance (M=65.6 ± 3.1% vs chance= 50%; p=8.3 × 10−6

Wilcoxon signed-rank test; d= 1.02; Fig. 1D). This suggests that
participants learned the graph structure in a way that they could
use to explicitly group images into communities.

To determine whether posttest performance was related to
segmentation behavior, we correlated the probability of parsing
the sequences at learned boundaries with overall posttest perfor-
mance. We found that people who parsed the sequences more
often at learned boundaries (relative to nonboundaries) also per-
formed better on the posttest (r(22) = 0.542; p= 0.006; r

2 = 0.294).

EEG responses to between- and within-community transitions
The behavioral data from the exposure phase show that partici-
pants learned the community structure in a way that led to higher
rates of parsing for boundary transitions (between communities)
compared with nonboundary transitions (within a community)
and above-chance explicit memory for pairwise associations
between the fractal images. The behavioral data from the parsing
phase showed that participants were slower to parse at novel
boundaries, suggesting that although participants perceived
both learned and novel boundaries as breakpoints in the
sequences, novel boundaries were more unexpected relative to
learned boundaries. Our first question in analyzing the EEG
data was whether these behavioral differences between learned
and novel boundaries were related to an established neural mea-
sure of contextual updating.

When an individual encounters information that signals con-
textual novelty, parietal scalp EEG recordings show a voltage

deflection ∼300 ms after the stimulus onset (P300; Donchin,
1981; Donchin and Coles, 1988; Polich and Kok, 1995). In
most accounts, the P300 response to contextual novelty results
from differences in probability for different stimuli (Verleger,
1988); however other theoretical models propose that contextual
updating need not be tied directly to differences in probability
(Nieuwenhuis et al., 2005). In our task, we included event bound-
aries of two types: those that differed from nonboundary transi-
tions in terms of probability (novel boundaries) and those with
equivalent probabilities that nonetheless signal an update in
the context (i.e., a transition to a new community; learned
boundaries).

We found that EEG amplitude during the temporal window
of the P300 differed across conditions (F(2,64) = 4.44; p= 0.016;
η2 = 0.14). The amplitude was higher for learned boundary
transitions compared with that for nonboundary transitions
(t(33) = 2.45; p= 0.02; d= 0.43), consistent with the idea that mov-
ing between communities leads to contextual updating associated
with the P300. Learned boundary transitions were also higher
than novel boundary transitions (t(32) = 2.63; p= 0.01; d= 0.47),
which did not differ in the overall amplitude from nonboundary
transitions (t(32) =−1.08; p= 0.29). As a comparison, we also ana-
lyzed the EEG amplitude for the early peak that was evident
between 50 and 250 ms relative to the stimulus onset.
However, there were no differences in the amplitude during
this early window (F(2,64) = 1.53; p= 0.22).

Next, we asked how the P300 amplitude was related to partic-
ipants’ behavioral segmentation of the sequence into events.

Figure 1. A, Left, Participants viewed a sequence of fractal images. Middle, During the exposure phase, transitions between fractal images were defined by an undirected graph that organized
the images into communities. Right, During the parsing phase, the boundary nodes from two communities were switched with inner nodes for a block of trials, creating novel boundary
transitions (green borders). Other boundary transitions remained unchanged (learned boundary, blue borders). B, During the exposure phase, participants performed similarly on the rotation
task (p= 0.53) but responded more slowly to learned boundary trials (p= 0.03). C, During the parsing phase, nonboundary transitions were less likely to be parsed compared with novel
(p= 0.03) and learned (p= 0.01) boundary transitions. Response times for novel boundary transitions were slower than for learned (p= 0.02) and nonboundary (p= 0.001) transitions.
D, On the posttest for explicit memory for the associations, accuracy was above chance (65.6%; p= 8.3 × 10−6).
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If the P300 reflects updating of a neural context at event bound-
aries, we predicted that the size of the P300 response should
correlate with the probability of parsing the sequence at an event
boundary. Consistent with our hypothesis, we found that the
increased P300 amplitude for novel boundaries compared with
nonboundaries at electrode Pz was correlated with increased
probability of parsing the sequence at novel boundaries
(Fig. 2B; r(31) = 0.521; p= 0.002; r

2 = 0.271). In contrast, there
was no such correlation when comparing learned boundaries
and nonboundaries (Fig. 2C; r(32) =−0.005; p= 0.98). The novel
boundary correlation was significantly greater than the correla-
tion for learned boundaries (permutation test, p= 0.012).
Together, these analyses suggest that the P300 amplitude is
sensitive to transitions between events, related to explicit event
segmentation for novel boundaries, and implicit detection of a
new context for learned boundaries.

PCA of spectral features
Having shown that a larger parietal P300 response to novel
boundaries occurs alongside a higher probability of parsing the
sequence at such boundaries (but not learned boundaries), our
subsequent analyses focused on understanding the spatial and
temporal distribution of EEG responses to novel and learned
boundaries. Before doing so, we first sought to identify and char-
acterize the latent features that explained significant variance in
the data using PCA (Manning et al., 2011; Cunningham and
Yu, 2014; Lohnas et al., 2023). We applied spectral decomposi-
tion to the voltage data from the image presentation epochs for
all stimuli and retained significant PCs based on the Kaiser crite-
rion (Fig. 3A; see Materials and Methods).

We first asked what PCA-identified features explained signifi-
cant variance across participants. We began by mapping the
across-scalp topography of individual electrodes with PC weights
that were reliably different from zero. Larger weights for some
electrodes and not others would suggest that some scalp locations
contributed more strongly than others to the latent PC features in
our data. We identified only one electrode (CP1) with a signifi-
cant PC component score (Fig. 3B, filled gray circle), suggesting
that, in general, multivariate patterns of activity in our task were
not dominated by the responses of individual electrodes but
instead broadly distributed across space. However, when aggre-
gating electrodes into left/right hemispheres × anterior/posterior
locations, PC component scores were higher in posterior regions
(F(1,33) = 4.71; p= 0.04; h2

p = 0.22; Fig. 3C). There was no differ-
ence between the left and right hemispheres (F(1,33) = 0.11;
p= 0.74) and no interaction (F(1,33) = 0.02; p= 0.89). PC scores
were greater than zero in the left anterior (t(33) = 2.53; p= 0.02;
d= 0.44), left posterior (t(33) = 5.14; p= 1.2 × 10

−5; d= 0.88), and
right posterior regions (t(33) = 3.63; p= 0.001; d= 0.62; Fig. 3C).

We next asked whether PC scores indicated that particular
frequency bands explained significant variance in the data or
instead whether the PCs loaded more uniformly across the fre-
quency spectrum. Here, we found that PCs loaded more strongly
on specific frequency bands: 5–7 Hz (theta), 9–10 Hz (alpha),
17–21 Hz (beta), and 45–80 Hz (gamma; Fig. 3D, gray-shaded
regions; p < 0.05 FDR-corrected). There were no frequencies at
which the PC scores were significantly below zero after FDR cor-
rection, at least when averaged across all electrodes. Component
scores were also similar when comparing the significant theta,
alpha, beta, and gamma bands to each other (F(3,99) = 1.02;

Figure 2. A, We analyzed the P300 amplitude at electrode Pz. B, The average Pz amplitude differed for novel, learned, and nonboundary trials during the 250–450 ms interval poststimulus
onset (p= 0.016). C, The novel–nonboundary difference in the P300 amplitude at Pz was correlated with the novel–nonboundary difference in the probability of parsing the sequence
(p= 0.002). D, There was no correlation between P300 amplitude and parsing difference for learned versus nonboundary trials (p= 0.98). The correlation between P300 and parsing greater
for novel boundaries than for learned boundaries (permutation test, p= 0.012).
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p= 0.39). Taken together with the electrode-level analysis, the
PCA analysis suggests there is significant variability in spectral
activity in our task; the data also suggest these latent features
are distributed widely across both space and frequency.

Neural representation of novel and learned boundaries
Having established and characterized latent spectral features in
the data using PCA, we next asked whether these features reflect
differences in neural activity in response to novel and learned
boundaries. To answer this question, we used the PC features
to train a classifier (L2-penalized logistic regression; see
Materials and Methods) to differentiate neural activity for novel
versus learned boundary trials. Classification was significant
across the group (mean cross-validated AUC, 0.523; t(33) = 2.25;
p= 0.03; d= 0.39; Fig. 4A), showing that the neural response to
novel and learned boundaries can be decoded from multivariate
features broadly distributed across space and frequency. In con-
trast, classification was not greater than chance when using only
the Pz amplitude (AUC, 0.507; p= 0.43); the difference between
the multivariate and univariate classifiers was not significant
(p= 0.16). This suggests that group-level differences in the ampli-
tude at electrode Pz (i.e., a univariate classifier) are not sufficient
to differentiate novel versus learned boundaries at the individual
trial level.

To determine what features were important to the classifier’s
decisions, we analyzed the average classifier feature importance
estimates (Haufe et al., 2014). Specifically, we compared the scalp
topography of classifier feature importance estimates separately
for theta and gamma frequencies (Fig. 4B). We focused on the
theta and gamma bands based on prior work indicating these fre-
quencies are broadly associated with successful performance
across a range of cognitive states (Klimesch, 1999; von Stein
and Sarnthein, 2000; Burke et al., 2013). Theta and gamma activ-
ities also change in response to neuromodulatory systems that
are associated with environmental uncertainty (Berridge and

Foote, 1991; Sara, 2015; Mather et al., 2016). The maps suggested
that the classifier made use of broadly distributed differences in
both theta and gamma power. To determine whether individual
ROIs or frequencies were especially important for classification,
we aggregated the classifier feature importance estimates separately
for features in the theta versus gamma bands, as well as posterior
versus anterior electrodes. Feature importance was higher for
posterior compared with anterior ROIs (F(1,33) = 4.45; p= 0.04;
h2
p = 0.07; Fig. 4C); this effect was driven by increased feature

importance in the theta band (t(33) = 2.46; p= 0.02; d= 0.42).

Predictive representations at community boundaries
In our task, novel and learned boundaries both indicate a transi-
tion to a new community; however, they differ critically in
whether or not this transition is predictable based on prior learn-
ing. We therefore asked whether neural activity before a transi-
tion reflects learned predictions about what should happen
next in the sequence (Sherman and Turk-Browne, 2020; Lee
et al., 2021). Although prior fMRI evidence has identified predic-
tive representations following learning of sequential statistical
regularities (Schapiro et al., 2012; Hindy et al., 2016), little is
known about the temporal evolution of predictive responses
and how it relates to potential upcoming events. We sought to
address this question with our data, taking advantage of the tem-
poral resolution of the EEG signal. To identify predictive
responses to a stimulus, we trained multivariate classifiers on
neural activity for inner node trials for a given community and
then tested the trained classifier on activity recorded during visits
to the adjacent boundary nodes (Fig. 5A).

If boundary nodes carry information that predicts the upcom-
ing community, then adjacent-community classification should
be significant during viewing of the boundary nodes. Further, if
predictive responses reflect the retrieval of a distinct representa-
tion of the adjacent community, the timecourse of classification
should track the timecourse of retrieval of this association

Figure 3. A, The postprocessed voltage timeseries (epochs × electrodes) was decomposed into spectral power and then averaged across time for each epoch. Using all trial types (novel/
learned/nonboundary), we identified significant features using PCA applied to these frequency × electrode features. B, When averaging over frequencies, only one individual electrode (CP1, gray
circle) had a significant PC score. C, PC scores were above zero in left anterior, left posterior, and right posterior ROIs (all p< 0.03 FDR-corrected). D, PC scores averaged across electrodes were
significantly above zero at frequencies corresponding to power in the theta, alpha, beta, and gamma bands (gray-shaded regions, p< 0.05 FDR-corrected).
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(Staresina et al., 2012). We trained and tested classifiers sepa-
rately for time windows across the epoch, taking advantage of
the temporal resolution of our data to determine the timecourse
over which predictive information emerges during boundary
node viewing. We found that classifier performance was signifi-
cant between 250 and450 ms relative to the stimulus onset
(Fig. 5B, asterisks indicate FDR-corrected time windows).
Classifier performance was also significant when averaging
across the entire stimulus presentation interval (M= 0.514;
p= 2 × 10−5; d= 0.85; Fig. 5C). In contrast, when using classifiers
trained on permuted category labels, performance was significantly

lower than when using the true labels (t(33) = 4.08; p= 3 × 10
−4;

d= 0.71) and no different from chance in any time window
nor when averaged across the stimulus presentation interval
(p= 0.98).

The preceding data suggest that a predictive response emerges
∼250 ms after the stimulus onset, consistent with the retrieval of
associated information about the adjacent community during the
temporal interval of the P300. We next asked whether spending
more time in a community before visiting a boundary node led to
stronger predictions for the adjacent community. To answer this
question, we applied the classifiers to boundary nodes, splitting

Figure 5. A, We applied classifiers to neural activity at learned boundaries to measure evidence for predictive activity for the neighboring community. B, Classifier performance was above
chance for much of the learned boundary presentation period (asterisks indicate p< 0.05 FDR-corrected time windows). C, When averaged across the entire presentation period, the classifier’s
performance in predicting the next community (M= 0.514) was significant (p= 2 × 10−5). D, Classifier evidence for the adjacent community was higher the more trials occurred in the same
community before a visit to a boundary node (late vs early boundaries, p= 0.02).

Figure 4. A, Across the group, novel versus learned boundary classification was significant (p= 0.03). B, Topographic maps of classifier feature importance show broadly distributed differ-
ences in theta and gamma power supporting classification. C, Analysis of feature importance showed that theta power in posterior electrodes contributed significantly (p< 0.02) to classification
performance
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trials into early and late groups based on the median number of
trials spent in one community before moving to a different com-
munity. Classification was higher for late boundaries (late AUC,
0.521 ± 0.004) compared with that for early boundaries (early
AUC, 0.509 ± 0.004; t(33) = 2.42; p= 0.02; d= 0.42; Fig. 5D), sug-
gesting that neural predictions at boundaries are stronger when
more time has already been spent within a given community.

The preceding analyses suggest that community boundaries
evoke neural activity that predicts the adjacent community.
Because we trained our classifiers only on inner node trials, it
is unclear whether these predictions reflect general information
about the adjacent community or specific information about
upcoming nodes. For example, when visiting node a, is there
specific evidence for node o beyond general evidence node o’s
community? To test this, we took advantage of an aspect of
our design, which is that some inner node trials were swapped
with boundary nodes from the same community for portions
of the session, thus temporarily placing inner nodes in “bound-
ary” positions (i.e., the novel boundaries). We asked whether pat-
tern similarity between a and o (learned–learned pair) differed
from pattern similarity between a and m (learned–novel pair).
If the predictive activity at boundaries predominantly reflects
item-level representations, then learned–learned pairs should
be more similar than learned–novel pairs. If instead the activity
reflects community-level representations, then there should be
no difference. Consistent with a general prediction for the
upcoming community, we found that learned–learned pattern
similarity was not different from learned–novel pattern similarity
(0.394 vs 0.392; t(33) = 0.28; p= 0.78).

The previous analyses suggest that a reliable predictive
response emerges ∼250 ms after the stimulus onset, consistent
with the retrieval of associated information about the adjacent
community during the temporal interval of the P300. However,
it is also possible that significant classification reflects a more
general process that is not specific to boundary nodes. To test
whether boundary trials are unique in this way, we took the clas-
sifiers from the preceding analysis (trained on inner nodes from
two communities) and tested them on inner nodes from the held-
out community that were visited just prior to a boundary node
(preboundary nodes). If above-chance classification is due to
evidence about the adjacent community that is unique to bound-
aries, then applying the classifiers to preboundary nodes should
lead to chance performance. Indeed, we found that classification
of preboundary nodes was not significantly different from chance
for any individual time window (all FDR-corrected p values,
>0.77) nor when averaging across the stimulus presentation

epoch (M= 0.50; p= 0.18). In addition, classification of boundary
nodes was significantly higher than classification of preboundary
nodes (t(33) = 3.00; p= 0.005; d= 0.52). Taken together, these data
suggest boundary trials contain unique information about the
adjacent community.

Neural representation of community structure
Given that a representation of the adjacent community emerges
250–450 ms after encountering a boundary stimulus, we next
asked whether learning of the community in our task was
reflected in the neural representations of inner nodes (Schapiro
et al., 2013). To determine whether learning influenced the pat-
tern of activity recorded at the scalp, we used the PC features
to calculate the correlation between pairs of items that spanned
novel boundaries, learned boundaries, and nonboundaries
(Fig. 6A). We predicted that learning the community structure
during the exposure phase would lead to higher pattern similarity
in the parsing phase for nonboundary spanning pairs (Schapiro
et al., 2013; Pudhiyidath et al., 2022). We found higher similarity
for pairs from the same community compared with those from
different communities (nonboundary, 0.35 ± 0.03 vs learned
boundary = 0.29 ± 0.02; t(31) = 2.51; p= 0.02; one-way ANOVA:
F(2,62) = 3.42; p= 0.04; h2

p = 0.11; Fig. 6B). Nonboundary pattern
similarity did not differ when compared with pairs that were sep-
arated by a manipulated community transition (novel boundary,
0.31 ± 0.02; t(31) = 1.36; p= 0.19). There was also no difference in
pattern similarity between pairs that spanned learned and novel
community boundaries (t(31) = 1.38; p > 0.18). These findings
show that learned community structure shapes the neural repre-
sentations of events as measured with scalp EEG: for the two
conditions that were consistent with prior learning (nonbound-
ary and learned boundary), we found greater similarity for items
within a community compared with those across communities.

Finally, we also asked whether the pattern similarity effects
were related to posttest performance. However, greater
nonboundary similarity (relative to learned boundaries) was
not correlated with posttest performance (r(21) = 0.062; p= 0.78).

Discussion
We used a sequential image presentation paradigm combined
with scalp EEG to measure neural responses to event boundaries
that were either consistent or inconsistent with previous learning.
We found that participants parsed the sequences at novel
and learned boundaries but were slower to do so for novel
boundaries, suggesting a violation of sequential expectations.

Figure 6. A, We calculated the similarity (Pearson’s r) between PC patterns for items that spanned novel boundaries, learned boundaries, and nonboundaries. B, Pattern similarity was higher
for nonboundary pairs compared with learned boundary pairs (p= 0.02).
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Segmentation at novel boundaries was also associated with a
scalp P300 response. Novel and learned boundaries produced
distinct patterns of neural activity across the scalp, and activity
during learned boundaries suggested prediction of the upcoming
community. The findings suggest the brain can flexibly respond
to event boundaries of distinct types, which could support
dynamic modulation and updating of neural activity in response
to ongoing experience.

Our study provides the first evidence linking EEG activity
during the window of the P300 with information processing at
event boundaries. The P300 typically occurs between 250 and
450 ms after a stimulus and is thought to reflect updating of an
internal context representation in response to salient sensory
information in the environment (Donchin and Coles, 1988).
Theoretical accounts have suggested that the P300 scalp response
may reflect arousal-mediated locus ceruleus release of norepi-
nephrine (Pineda et al., 1989; Nieuwenhuis et al., 2005), consis-
tent with the hypothesized role of norepinephrine in resetting
neural network activity (Bouret and Sara, 2005; Sara, 2009).
Based on these models, we predicted that P300 activity would
differ for novel compared with learned event boundaries if these
two types of boundaries differentially engaged the locus ceruleus
arousal system. Consistent with this prediction, we found that
multivariate classifiers reliably discriminated between novel
and learned event boundaries during the P300 temporal window.
In addition, we found that the parietal P300 amplitude itself cor-
relates with the probability that people perceive event boundaries
at novel boundary transitions. Our data therefore identify a func-
tional role for P300-related scalp EEG activity in processing and
perceiving event boundaries and suggest that locus ceruleus nor-
epinephrine activity may play a key role in the brain’s response to
event boundaries. In this way, our data complement previous
empirical (Clewett et al., 2020) and theoretical work (Swallow
et al., 2022) that relate the brain’s arousal system and perception
of event boundaries.

We identified a role for low-frequency spectral features (in the
theta range) at posterior electrodes in both our PCA (Fig. 3C,D)
and our classification of novel versus learned boundaries
(Fig. 4B,C). Topographic maps from both analyses suggested
the theta effects were strongest at lateral and inferior electrodes
spanning the temporal and parietal lobes, consistent with previ-
ous work that has identified the temporoparietal junction as a key
cortical generator of the scalp P300 (Knight et al., 1989;
Yamaguchi and Knight, 1991; Verleger et al., 1994). The tempor-
oparietal junction is a core area of the default network (Andrews-
Hanna et al., 2010), and activity in this network supports people’s
ability to understand sequences of events in continuous experi-
ence through integration of information across varying time-
scales (Simony et al., 2016). Other research has suggested that
theta activity reflects neural network synchronization that sup-
ports the organization of information in working memory
(Klimesch, 1999; Sauseng et al., 2010). In the context of our
task, workingmemory representations related to a representation
of the current event may undergo differential updating at novel
versus learned between-community transitions. Thus, while
speculative, our data are consistent with a role of temporoparietal
theta activity in the updating of event representations at transi-
tions between ongoing events.

By first exposing participants to an extended sequence of
semantically meaningless stimuli, we controlled how participants
learned to segment the stimuli into groups. In everyday human
experience, we segment events based on a wealth of prior knowl-
edge about how events relate to each other and about causal

relations between different events, antecedents, and outcomes
(Zacks and Tversky, 2001). Because we controlled the back-
ground knowledge that participants learned in our task, we
were able to precisely manipulate whether and in what way a pre-
sented stimulus was consistent or inconsistent with previous
learning. However, it remains an open question whether or not
human semantic knowledge generates expectations that are sim-
ilar to those that could be generated from the learning in our task.
Causal inference is likely to be a key driver of event segmentation
in naturalistic settings (Gershman and Niv, 2010; Franklin et al.,
2020; Shin and DuBrow, 2021), which may arise from semantic
knowledge and guide or constrain how organisms generate
expectations in these settings.

Previous research has shown that people can use statistical
learning to rapidly extract information about structure at multi-
ple scales in the environment (Schapiro et al., 2016; Forest et al.,
2022), which can support processes such as categorization and
inference (Schlichting and Preston, 2015; Morton et al., 2020;
Pudhiyidath et al., 2022). A key question in this domain concerns
the nature of the learned representation(s) that guide behavior
(Mack et al., 2020; Zeithamova and Bowman, 2020). After the
learning phase of our task, people could conceivably represent
the specific item–item transitions encountered during learning
or general knowledge of each item’s community membership
in the absence of information about specific transitions. If people
represent specific item transitions, then they should be sensitive
to violations of this learning, as reflected in the current study by
novel boundary transitions. Alternatively, if people represent
only generalized knowledge about the community structure,
their performance should not differ for novel compared with
learned boundary transitions, since in both cases there is a
sequence transition between communities. We found evidence
consistent with both types of representation. Participants were
equally likely to parse transitions at novel and learned boundar-
ies, consistent with an abstract and general representation about
each item’s community membership. At the same time, partici-
pants were also slower to parse novel compared with learned
transitions, suggesting they were also sensitive to the novel
item–item transition. Thus, participants seem to represent struc-
ture in our task at multiple scales, consistent with recent theoret-
ical accounts proposing a mixture of representations supporting
decision-making and prediction about events after learning
(Momennejad et al., 2017; Franklin et al., 2020).

The ability to predict the future state of the environment is a
fundamental goal of neural information processing (Rao and
Ballard, 1999; Friston, 2005; Hutchinson and Barrett, 2019)
and is thought to be one of the primary reasons why people seg-
ment their experiences into events (Richmond and Zacks, 2017;
Stawarczyk et al., 2021). Prediction error plays a critical role in
this process, allowing people to update their event-based predic-
tions in response to inputs that violate expectations (Reynolds
et al., 2007; Zacks et al., 2007, 2011). However, previous research
has also shown that prediction errors per se are not always nec-
essary for segmentation; for example, people can segment expe-
riences based on shared temporal context (Schapiro et al., 2013)
or changes in predictive uncertainty (Hansen et al., 2021).
Theoretically, outcomes that are associated with greater uncer-
tainty provide more information than outcomes associated
with less uncertainty (Shannon, 1948). When considered along
with our observation of distinct electrophysiological responses
to novel and learned boundaries, the data suggest a link between
the anticipation of and response to event boundaries and pro-
cessing of ongoing experience (Baldwin and Kosie, 2021).
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Previous work has suggested that event boundaries may be
advantageousmoments for the brain to encode an episodic mem-
ory for a just-experienced event (Ben-Yakov and Dudai, 2011;
Ben-Yakov et al., 2013; Baldassano et al., 2017; Michelmann
et al., 2021; Lu et al., 2022) via rapid reinstatement of a represen-
tation of the event (Clewett and Davachi, 2017; Griffiths and
Fuentemilla, 2020). Consistent with this hypothesis, scalp EEG
signals at event boundaries are more similar to recently encoun-
tered sequences when the items in the sequence are trial-unique
(and putatively episodic) as opposed to repeated across trials
(Sols et al., 2017). This pattern similarity correlates with later
memory performance, suggesting a link between neural rein-
statement at event boundaries and memory. Scalp EEG pattern
similarity between event boundaries and preceding events is sim-
ilarly enhanced and related to memory performance under nat-
uralistic stimulus conditions (Silva et al., 2019). In our data, we
find distinct electrophysiological representations of event bound-
aries when they arise under different forms of uncertainty (novel
vs learned boundary classification; Fig. 4A), which suggests a
potential means for the brain to shape this boundary-related
retrieval process toward events at different scales (Duncan and
Schlichting, 2018; Cohn-Sheehy et al., 2022; Pu et al., 2022;
Hahamy et al., 2023) or even to bias the memory system away
from retrieval of the preceding event and toward encoding of
new information (Heusser et al., 2018; Turker and Swallow,
2019; Brunec et al., 2020; Rouhani et al., 2020; Smith et al., 2022).

In sum, we observed behavioral and electrophysiological differ-
ences in howpeople process type of event boundaries after learning.
Scalp EEG recordings showed rapid divergence in response to event
boundaries that differed in their consistency with prior learning
and in a way that suggested a role for neuromodulator-mediated
arousal systems. Our study advances our understanding of the
mechanisms by which the human brain organizes continuous
experience into distinct and meaningful events.
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