Skip to main content
. 2024 Sep 19;24:334. doi: 10.1186/s12871-024-02720-5

Table 3.

Model performance in predicting CRBD in the training and validation cohorts

Models Accuracy (95%CI) AUC (95%CI) Sensitivity Specificity PPV NPV F1 Brier
LR 0.88 (0.85, 0.90) 0.82 (0.79, 0.85) 0.68 0.96 0.88 0.88 0.77 0.12
RF 0.93 (0.91, 0.95) 0.89 (0.87, 0.91) 0.80 0.98 0.94 0.92 0.87 0.07
CatBoost 0.89 (0.87, 0.91) 0.84 (0.81, 0.87) 0.72 0.96 0.89 0.89 0.79 0.11
XGBoost 0.89 (0.87, 0.92) 0.84 (0.82, 0.87) 0.73 0.96 0.89 0.90 0.80 0.11
GBDT 0.90 (0.88, 0.93) 0.86 (0.83, 0.88) 0.75 0.97 0.90 0.90 0.82 0.10
LightGBM 0.91 (0.89, 0.93) 0.87 (0.84, 0.90) 0.78 0.96 0.90 0.91 0.83 0.09
Validation cohort
 LR 0.91 (0.86, 0.95) 0.87 (0.82, 0.92) 0.76 0.98 0.96 0.89 0.85 0.09
 RF 0.91 (0.87, 0.95) 0.88 (0.83, 0.93) 0.78 0.98 0.96 0.89 0.86 0.09
 CatBoost 0.91 (0.87, 0.95) 0.88 (0.83, 0.93) 0.78 0.98 0.96 0.89 0.86 0.09
 XGBoost 0.91 (0.86, 0.95) 0.87 (0.82, 0.92) 0.76 0.98 0.96 0.89 0.85 0.09
 GBDT 0.90 (0.86, 0.95) 0.86 (0.81, 0.92) 0.75 0.98 0.96 0.88 0.84 0.10
 LightGBM 0.92 (0.88, 0.96) 0.89 (0.84, 0.94) 0.80 0.98 0.96 0.90 0.87 0.08

LR Logistic Regression, RF Random Forest, CatBoost Categorical Boosting, XGBoost eXtreme Gradient Boosting, GBDT Gradient Boosting Decision Tree, LightGBM Light Gradient Boosting Machine, PPV positive predictive value, NPV negative predictive value; AUC: area under curve