Table 3.
Models | Accuracy (95%CI) | AUC (95%CI) | Sensitivity | Specificity | PPV | NPV | F1 | Brier |
---|---|---|---|---|---|---|---|---|
LR | 0.88 (0.85, 0.90) | 0.82 (0.79, 0.85) | 0.68 | 0.96 | 0.88 | 0.88 | 0.77 | 0.12 |
RF | 0.93 (0.91, 0.95) | 0.89 (0.87, 0.91) | 0.80 | 0.98 | 0.94 | 0.92 | 0.87 | 0.07 |
CatBoost | 0.89 (0.87, 0.91) | 0.84 (0.81, 0.87) | 0.72 | 0.96 | 0.89 | 0.89 | 0.79 | 0.11 |
XGBoost | 0.89 (0.87, 0.92) | 0.84 (0.82, 0.87) | 0.73 | 0.96 | 0.89 | 0.90 | 0.80 | 0.11 |
GBDT | 0.90 (0.88, 0.93) | 0.86 (0.83, 0.88) | 0.75 | 0.97 | 0.90 | 0.90 | 0.82 | 0.10 |
LightGBM | 0.91 (0.89, 0.93) | 0.87 (0.84, 0.90) | 0.78 | 0.96 | 0.90 | 0.91 | 0.83 | 0.09 |
Validation cohort | ||||||||
LR | 0.91 (0.86, 0.95) | 0.87 (0.82, 0.92) | 0.76 | 0.98 | 0.96 | 0.89 | 0.85 | 0.09 |
RF | 0.91 (0.87, 0.95) | 0.88 (0.83, 0.93) | 0.78 | 0.98 | 0.96 | 0.89 | 0.86 | 0.09 |
CatBoost | 0.91 (0.87, 0.95) | 0.88 (0.83, 0.93) | 0.78 | 0.98 | 0.96 | 0.89 | 0.86 | 0.09 |
XGBoost | 0.91 (0.86, 0.95) | 0.87 (0.82, 0.92) | 0.76 | 0.98 | 0.96 | 0.89 | 0.85 | 0.09 |
GBDT | 0.90 (0.86, 0.95) | 0.86 (0.81, 0.92) | 0.75 | 0.98 | 0.96 | 0.88 | 0.84 | 0.10 |
LightGBM | 0.92 (0.88, 0.96) | 0.89 (0.84, 0.94) | 0.80 | 0.98 | 0.96 | 0.90 | 0.87 | 0.08 |
LR Logistic Regression, RF Random Forest, CatBoost Categorical Boosting, XGBoost eXtreme Gradient Boosting, GBDT Gradient Boosting Decision Tree, LightGBM Light Gradient Boosting Machine, PPV positive predictive value, NPV negative predictive value; AUC: area under curve