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Abstract

Purpose of Review—Dysphagia is highly prevalent in Parkinson disease (PD) but is not 

typically identified nor treated until later in the disease process. This review summarizes 

current pharmacological, surgical, and behavioral treatments for PD-associated dysphagia and 

contributions from translational animal research.

Recent Findings—Swallowing is a complex physiologic process controlled by multiple brain 

regions and neurotransmitter systems. As such, interventions that target nigrostriatal dopamine 

dysfunction have limited or detrimental effects on swallowing outcomes. Behavioral interventions 

can help target PD-associated dysphagia in mid-to-late stages. Animal research is necessary to 

refine treatments and useful in studying prodromal dysphagia.

Summary—Dysphagia is an early, common, and debilitating sign of PD. Current 

pharmacological and surgical interventions are not effective in ameliorating swallowing 
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dysfunction; behavioral intervention remains the most effective approach for dysphagia treatment. 

Animal research has advanced our understanding of mechanisms underlying PD and PD-

associated dysphagia, and continues to show translational promise for the study of dysphagia 

treatment options.
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Introduction

Since its discovery, Parkinson disease (PD) has been known as a disease of the central 

nervous system, one that results in nigrostriatal dopamine depletion and hallmark motor 

disturbances (i.e., bradykinesia, resting tremor, rigidity, postural instability). As such, most 

treatment efforts have been dopamine-centric, aimed at ameliorating these debilitating 

hallmark motor signs of disease by targeting dopamine depletion in the brain. The disease, 

however, is now known to be a whole-body disease that begins prior to nigrostriatal 

involvement and motor sign development. In fact, hallmark motor signs of disease likely 

represent the mid-to-late stages of disease. Although the etiology is not yet fully understood, 

it is now accepted that PD onset may occur decades prior to diagnosis.

Some of the earliest noted signs of PD are autonomic, non-motor, and “other” 

motor features. These include gastrointestinal dysfunction, hyposmia, sleep disturbances, 

depression, diplopia, anxiety, cardiac dysautonomia, hypophonia, and, the focus of this 

review, dysphagia [1]. Dysphagia contributes to malnutrition, dehydration, economic burden, 

decreased quality of life, and mortality [2, 3, 4] in this population. The oral, pharyngeal, 

and esophageal stages of swallowing may be impaired and ultimately affect the efficient 

and safe transport of food, liquid, and/or saliva (bolus) from mouth to stomach, which can 

lead to inefficient oral intake and airway compromise (e.g., aspiration). In fact, aspiration 

pneumonia is the leading cause of death in PD [3, 4].

Despite the prevalence and impact on patient quality of life, there is limited research 

on how best to treat dysphagia, as well as other non-motor PD-associated signs. In fact, 

most of these features do not respond to dopamine replacement and are likely affected 

by other neurotransmitter systems [5, 6], rendering current pharmacologic and surgical 

interventions ineffective for the early and holistic treatment of PD. Studies examining 

mechanisms underlying non-motor signs of PD have unveiled the complexity of PD in terms 

of catecholaminergic involvement. Different neurotransmitter systems beyond dopamine—

including cholinergic, noradrenergic, and serotonergic—are compromised, implicated early, 

and contribute to dysfunction [1, 7].

It is also important to note that PD is heterogeneous in its presentation, further complicating 

our understanding of PD in the early stages and how to approach treatment, especially 

from a preventative standpoint. Leading hypotheses point to several subtypes of PD based 

on clinical presentation (including motor and non-motor presentation), as well as age 

of onset, sex, genetics, and major pathologic hallmarks [7]. Improved understanding of 

the mechanisms underlying differences among patients will aid in the development of 
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individualized therapies. For a detailed review of PD pathophysiology, the heterogeneity of 

presentation, and current diagnostic approaches, please refer to the complementary article 

in this issue “Dysphagia in Parkinson disease: Part I—Pathophysiology and Treatment 

Practices.”

As with other non-classical signs and symptoms, the pathophysiology underlying 

swallowing dysfunction in PD is poorly understood. Current understanding points to both 

dopaminergic and non-dopaminergic mechanisms being involved in PD-related swallow 

dysfunction, with the latter likely being implicated sooner [1]. Moreover, alpha-synuclein 

(α-syn) aggregates (a hallmark protein pathology in PD) have been found throughout the 

body, including in regions associated with swallowing (e.g., in salivary glands [8]); however, 

their direct impact on swallow function is not yet fully understood. Despite many differences 

in the onset, progression, and clinical manifestation of PD, dysphagia frequently occurs at 

some point in the disease process, with over 90% of people with PD being affected, and 

often leads to aspiration pneumonia, the leading cause of death in this population [2–4]. 

Moreover, changes in swallowing occur early in the disease process, often in the prodromal 

stage prior to diagnosis; however, given co-occurring sensory deficits in PD, individuals are 

often unaware of their swallowing changes until the disease progresses and severity of the 

dysfunction worsens.

Behavioral interventions remain the gold standard for dysphagia treatment, as current 

pharmacological and surgical interventions are not effective in ameliorating swallowing 

dysfunction [9, 10]. Despite research advancements, our understanding of mechanisms 

underlying dysphagia in PD, especially in the prodromal stage, is incomplete. This further 

complicates our ability to diagnose, treat, and study PD-associated dysphagia at its onset. 

There is a significant role for translational research, including animal models, for studying 

these underlying mechanisms as well as the efficacy of interventions that are otherwise 

impossible to conduct in humans. Moreover, research in human participants is limited by the 

inability to assess central and peripheral tissue changes during disease or after intervention, 

which is feasible with use of animal models. The contributions of animal models to the PD 

literature will be discussed in this review, as well as current treatment practices, existing 

gaps in knowledge, and future directions for PD-associated dysphagia research and clinical 

practice.

Treatment

Management of PD is categorized into three main intervention approaches: pharmacological, 

surgical, and behavioral. These interventions can be prescribed concurrently and are based 

on patient need, which changes over time. Most medical interventions are not directly 

prescribed for dysphagia management and their primary and secondary effects may have 

positive, negative, or no effect on swallowing function. Here, we will focus on commonly 

prescribed medication and neurosurgery for PD in general and how these affect swallow 

function, and then specifically address treatments for dysphagia and saliva management.

Krasko et al. Page 3

Curr Phys Med Rehabil Rep. Author manuscript; available in PMC 2024 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pharmacological

The current standard of care for pharmacological treatment of PD predominantly targets the 

nigrostriatal dopamine system through dopamine precursors (e.g., levodopa) [11], clearance 

enzyme inhibitors (e.g., carbidopa) [11], and dopamine receptor agonists (e.g., pramipexole) 

[12]. Because dopamine does not cross the blood–brain barrier, dopamine precursors such 

as levodopa are administered. To prevent levodopa from synthesizing into dopamine in 

the periphery prior to crossing the blood–brain barrier, carbidopa is often prescribed 

with levodopa. Combining levodopa with a monoamine oxidase inhibitor (carbidopa) 

also prevents premature levodopa break-down and clearance, and diminishes side effects 

associated with increased dopamine in the peripheral tissues [13]. In some cases, dopamine 

agonists may be clinically indicated as first-line treatment [13]. Pramipexole is clinically 

efficacious both alone and with levodopa for treating PD motor dysfunction [13]. However, 

treatments aimed at increasing dopamine signaling are not beneficial for PD-associated 

dysphagia [14, 15] and levodopa specifically shows limited benefit or adverse effects on 

swallowing function [16]. As such, it is recommended to assess swallowing function while 

controlling for drug effects (e.g., FEES-Levodopa-Test) [17].

Surgical

Deep brain stimulation (DBS) is a surgical treatment option for PD [18]. The procedure 

involves unilateral or bilateral surgical implantation of electrodes that generate electrical 

impulses in brain regions, most commonly the subthalamic nucleus (STN) or globus pallidus 

internus (GBi) [19]. Neither STN or GBi DBS demonstrates improved swallow safety, with 

some patients even worsening after treatment [20, 21]. Evidence shows a DBS benefit bias 

towards swallow efficiency, but not safety [22]. Novel stimulation-based treatments for PD-

associated dysphagia include DBS for non-STN regions [23], high frequency STN-DBS, and 

transcranial magnetic stimulation [24]. Work is still ongoing and additional brain regions 

and stimulation parameters should be considered for optimizing dysphagia treatment.

Behavioral

Behavioral approaches remain the gold standard treatment for PD-associated dysphagia. 

Interventions are characterized as restorative, compensatory, and adaptive. This review will 

focus primarily on restorative interventions, as the most recent PD-specific research on the 

other intervention types is currently sparse or studies were performed on populations beyond 

PD [25].

Rehabilitative interventions are exercises intended to improve swallow physiology without 

conscious manipulation of bolus flow or modification. These can be strength-based or skill-

based, depending on the physiological goal. Respiratory muscle strength training (RMST) is 

a strength-based exercise approach which is among the most widely researched treatments 

for PD-associated dysphagia. Expiratory muscle strength training (EMST) is currently the 

most researched approach and was originally developed to address reduced expiratory 

airflow commonly seen in PD [26]. The EMST device is a small tube with manually 

adjustable valving that allows air to pass through with progressively increased pressure 

thresholds. The physiological rationale for this exercise program is to provide resistance 

to the muscles of expiration to facilitate successful airway clearance [27]. EMST elicits 
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improvements in respiratory volumes [28], expiratory pressures [29••, 30], cough physiology 

[31, 32], and penetration-aspiration outcomes [20, 28]. Inspiratory muscle strength training 

(IMST) focuses on the muscles of inspiration to facilitate a larger volume of inspired 

air for exhalation. Studies have demonstrated increased recruitment of swallowing-related 

musculature, including the submental muscles, soft palate, and pharynx [33, 34] through 

use of ultrasound [34], high-resolution manometry [33], and electromyography [33]. 

IMST reportedly improves inspiratory muscle endurance; moderately improves maximum 

inspiratory pressures, maximum phonation time, and peak subglottic pressure; and only 

trivially (standardized effect size of < 0.2) improves voluntary peak cough flow [30, 32, 35]. 

Despite promising findings from prior work, additional studies examining efficacy of RMST 

programs are needed to address heterogeneity of protocol, dosing, and outcome measure 

across disease stages [28].

Lee Silverman Voice Treatment (LSVT-LOUD
®

) is a well-established treatment program 

designed to maximize the perceptual characteristics of voice through hierarchical 

advancement of vocal load via high-effort phonatory tasks [36]. Given that voice and 

swallowing share many of the same central and peripheral structures, a few small studies 

have explored the effects of LSVT on swallowing function [37, 38]. El Sharkawi and 

colleagues found several improvements related to swallow function, including increased 

anterior-to-posterior lingual propulsion, increased tongue base retraction, decreased oral 

transit time, decreased oral residue percentage, reduced pharyngeal transit time, and 

increased oropharyngeal swallow efficiency [37]. Similarly, a study by Miles and colleagues 

revealed swallowing improvements to swallow function after LSVT including reduced 

pharyngeal residue, reduced pharyngeal area at rest, increased maximal opening of 

pharyngoesophageal segment (PES), and increased PES opening duration [38]. Further 

research is needed to corroborate these effects on a larger scale.

Other strength-based exercise programs have also been studied in PD. Neuromuscular 

electrical stimulation (NMES) applies surface electrodes to provide sub-cutaneous electrical 

stimulation to the muscles and is well-established as an intervention to promote muscle 

recovery from injury in the skeletal muscles [39]. NMES has emerged as a potential 

treatment modality for dysphagia. Two studies have assessed NMES in PD, with 

one demonstrating improvements in hyoid movement and penetration-aspiration scores 

compared to placebo [40] and the other concluding that NMES did not elicit any further 

benefits compared to traditional dysphagia therapy [41]. The efficacy of NMES for swallow 

function in PD remains unclear and further research is warranted to optimize stimulation 

parameters. Finally, lingual strengthening has been explored in combination with EMST 

in PD patients, revealing improvements in lingual strength and maintenance of function in 

regard to clinical swallowing measures [42].

Skill-based interventions are designed to train the patient to improve coordination necessary 

to complete a specific task, as opposed to increasing muscle strength. Promising effects 

of respiratory-swallow coordination training and voluntary cough skills are reported for 

respiratory-swallow coordination, penetration-aspiration, vallecular/pyriform residue, and 

overall dysphagia severity [43]. Another intervention—sensory-motor training for airway 

protection (smTAP)—improves measures of reflexive cough including flow rate, volume, 

Krasko et al. Page 5

Curr Phys Med Rehabil Rep. Author manuscript; available in PMC 2024 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and urge-to-cough [29••]. Additionally, video-assisted swallow therapy (VAST), which 

uses endoscopy-facilitated biofeedback to encourage implicit modifications of swallowing 

physiology, has been assessed [44, 45]. VAST demonstrated improved pharyngeal clearance 

and SWAL-QOL scores [45]. Finally, the effects of air stacking have recently been applied 

to dysphagia therapy in PD [46]. Air stacking involves the manual over-insufflation of the 

lungs through use of an external insufflator, bypassing the restriction to inspiratory range 

of motion seen in PD, and capitalizing on the natural elasticity and recoil of the thoracic 

cavity [46]. Paired with EMST, air stacking elicits the most benefit to aspects of airway 

protection including reflexive and voluntary peak cough flow [32]. Despite PD affecting 

range of motion and coordination of swallowing/cough, behavioral interventions appear to 

be biased towards strength-based treatments [47]. More research is needed to determine the 

efficacy of skill-based interventions.

Surgical and pharmacological PD interventions are generally not designed to address other 

motor signs, such as dysphagia, and therefore are limited for or detrimental to swallowing 

outcomes. This may be, in part, due to the focus on basal ganglia-related dopamine systems 

and treatment of gross motor signs such as tremor. Because swallowing is a complex 

physiologic event that is controlled by multiple brain regions and neurotransmitter systems 

[14, 15, 48], identifying a treatment target (region of interest) is difficult. Although some 

behavioral interventions for dysphagia are promising, solid evidence remains limited by 

heterogeneity in patients, small sample sizes, and an overall lack of clinical trials. Most 

importantly, PD interventions are currently affected by limitations in timely diagnosis. There 

is a notable effort to shift toward a more proactive model of dysphagia rehabilitation in 

neurodegenerative populations [49]; however, proactive management of PD is not standard, 

as our understanding of prodromal PD is still developing.

Saliva

In addition to swallowing, changes to salivation are prevalent in PD across various stages 

of disease. Although distinct from dysphagia, salivary disturbances can greatly affect 

one’s swallow. About 50% of individuals with PD experience hyposalivation [50, 51] and 

xerostomia [50], and 50% experience sialorrhea [52]. Salivary flow in PD is complicated by 

commonly prescribed first-line medications. Clozapine [53] and levodopa [54] primarily 

increase salivary flow, while anticholinergic medications used to reduce tremor can 

result in xerostomia [55]. Sialorrhea is often managed with botulinum toxin injections 

to the parotid and submandibular glands to reduce salivary flow [56], whereas salivary 

replacements [57] and sialagogues [58] remain the most common treatments for xerostomia 

and hyposalivation. Although studies assessing non-pharmacological management of saliva-

related deficits in PD are sparse [59], some evidence points to the short-term benefit 

of behavioral intervention [60] and the long-term benefit of radiotherapy for sialorrhea 

management [61]. Gum chewing has also been found to promote swallow frequency, which 

may be an effective strategy for secretion management in PD [62]. Additional research 

is needed to understand the methods to best manage these conditions considering the 

contradictory nature of treating xerostomia and sialorrhea.
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Animal Research Related to PD-Associated Dysphagia

Human clinical research, especially with regard to dysphagia diagnosis and treatment, 

is limited by ethical constraint for rigorous placebo controls, inability to access tissues 

implicated in pathology, and heterogeneity inherent to PD (phenotype, onset, progression) 

and humans in general (age, diet, lifestyle, medical co-morbidities, medications, genetics, 

etc.). Furthermore, research typically begins after diagnosis and the ability to study 

prodromal- and early-stage PD is nearly impossible. Therefore, animal models offer better 

experimental control and the ability to study multiple aspects of disease pathology across 

disease progression. Selection of the model species is based on the relevant pathology 

and associated behavior. For swallowing specifically, rats, non-human primates, and pigs 

are commonly used, though the latter two have not been used for the study of PD-

associated dysphagia treatment [63, 64]. Several approaches to modeling PD in animals 

include systemic and region-specific neurotoxin administration and genetic manipulation. 

Each model targets different mechanisms of PD, including, but not limited to, nigral 

dopaminergic cell death, mitochondrial dysfunction, oxidative stress, inflammation, and/or 

α-syn phosphorylation and aggregation, and should be carefully chosen based on the aspect 

of pathology that is relevant to the gap in knowledge/research question. Unfortunately, while 

some research has been conducted to understand the mechanisms underlying dysphagia in 

PD, there is little research assessing the efficacy of interventions in PD-specific animal 

models at this time. However, more comprehensive research has been published on the 

treatment of dysphagia in an aging rat model, discussed below. Because PD is a disease 

of aging and there is some overlap in swallowing dysfunction, aging models can inform 

PD models. Moreover, most research has been conducted in males (with a few exceptions) 

because of the confounds of estrogen, especially in rat models. For example, estrogen is 

neuroprotective against certain neurotoxins and the rapid (4 days) estrous cycle in rats and 

mice makes controlling for estrous cycle operations challenging. That being said, animal 

work is paramount for improving understanding of the mechanisms underlying dysphagia in 

PD and advancing diagnostic criteria and interventions for optimal dysphagia management.

Neurotoxin Models

Because swallowing deficits in PD are readily apparent in the mid-to-late stages, yet 

are generally unresponsive to dopamine replacement and DBS, the role of nigrostriatal 

dopamine depletion in dysphagia is unclear. As such, neurotoxin models can be used 

to study the effects of nigrostriatal dopamine depletion on oromotor and swallow 

function (tongue function, licking, chewing, oropharyngeal and esophageal swallowing). 

6-Hydroxydopamine (OHDA), for example, is a catecholaminergic neurotoxin that induces 

neurodegeneration of the nigrostriatal dopamine system via intracerebral or systemic 

infusion [65–67]. After administration of 6-OHDA, rats demonstrate limb motor deficits, 

akin to the hallmark motor deficits seen in humans as a result of significant nigrostriatal 

dopamine depletion. Additionally, 6-OHDA administration in rats leads to swallow-specific 

changes, including altered tongue function (i.e., reduced tongue force [67], reduced lick 

force [65]), changes to chewing of uncooked pasta (i.e., reduced intensity, regularity, 

and rate of acoustic signal [68]), and impaired functional swallowing measured by 

videofluoroscopy (i.e., increased aberrant tongue movements, decreased bolus areas 
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[69]). These deficits affect swallowing safety and efficiency and translate to clinical 

findings of dysphagia in the mid-to-late stages of PD [3]. Other neurotoxins, including 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the pesticide rotenone, also induce 

nigrostriatal dopamine depletion and have been used to assess mechanisms underlying 

swallowing dysfunction in PD. The neurotoxin MPTP, for example, induces nigral 

dopaminergic cell death via complex I inhibition and subsequent oxidative stress and 

apoptosis [63, 70]. MPTP-induced dopamine depletion in non-human primates causes a 

series of acute toxic effects with clinical implications including reduced ability to self-feed 

due to mobility impairments, reduced appetite, and dehydration [63, 71]; in minipigs, 

MPTP results in motor deficits (muscle rigidity, hypokinesia, abnormal coordination, and 

position of the limbs), as well as reduced food intake [72]. These models, however, have 

not been used as extensively as the 6-OHDA rodent in examining the efficacy of dysphagia 

treatments.

Tongue Exercise in the 6-OHDA Model

6-OHDA animal work reveals that targeted limb training can slow or prevent limb 

motor deficits and reduce vulnerability of dopaminergic neurons [73, 74, 75]. Based 

on these findings, the effects of targeted lingual training on tongue function were also 

assessed and revealed contrasting findings. Tongue training in rats’ post-unilateral 6-OHDA 

administration resulted in improved tongue force and timing outcomes in a study conducted 

by Ciucci and colleagues [76]. These findings contrast with those of Plowman and 

colleagues; however, where progressive lingual resistance rehabilitation did not appear 

to improve cranial motor (lick) function, only limb motor rehabilitation improved limb 

motor functions [65]. It should be noted that methods differed slightly across these studies, 

including site of 6-OHDA infusion (medial forebrain bundle [76] vs. striatum [65]), 

schedule of water reward (variable ratio 5 schedule [76] vs. fixed-ratio 12 [65]), and the 

total number of weeks (4 weeks [76] vs. 6 weeks [65]) that rats underwent treatment for 

the rescue of tongue function. Both studies, however, revealed that tongue exercise was not 

associated with striatal dopamine content.

Taken together, findings reveal that nigrostriatal dopamine depletion does play a role 

in certain aspects of PD-associated dysphagia in the mid-to-late stages of disease when 

significant nigral dopamine is depleted, as evidenced by the development of oromotor 

deficits after neurotoxin administration. Additionally, targeted exercise may be useful in 

ameliorating swallowing deficits; however, the mechanisms underlying this rescue ought to 

be explored further. Moreover, given that swallowing is a complex sensorimotor process 

involving multiple systems, the use of neurotoxin models may not fully recapitulate swallow 

deficits as they appear in human PD. Neurotoxin models also exclude other prodromal, 

early, or later stage degeneration/pathology, which may be key to understanding why 
dopamine-based interventions are largely ineffective for the treatment of dysphagia in PD.

Genetic Models

Several genes have been linked to PD and have led to the development of genetic animal 

models. These genes include SNCA, GBA, LRRK2, PRKN, PINK1, and DJ-1, as reviewed 

elsewhere [77], which can be knocked out, knocked in, or overexpressed in animal models. 
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Genetic models have significantly improved our ability to study other mechanisms involved 

in the disease, especially in the prodromal stages of PD. Changes to sensorimotor function, 

including swallowing, occur up to 20 years prior to nigrostriatal dopamine depletion. Animal 

models that use genetic manipulations that are known to cause PD can model prodromal and 

early pathologic aspects of PD prior to nigrostriatal cell death. To date, most research related 

to swallowing has occurred in primarily two genetic models—DJ-1 and PINK1 knockout 

rats.

In humans, DJ-1 and PINK1 mutations are associated with autosomal recessive, early-onset 

PD. Both genes are implicated in protecting cells against oxidative stress and mitochondrial 

dysfunction. The deletion or mutation of DJ-1 leads to signs akin to the inherited early-

onset form of PD which presents with rigidity, tremors, alterations to vocalizations, and 

cognitive decline [66]. The DJ-1 knockout (−/−) genetic PD rat model has been used to 

study the prodromal and early-to-mid stages of disease (i.e., age 2–8 months) and shows 

oromotor and cranial sensorimotor deficits, including reduced tongue function regulation 

and impaired chewing [66, 78]. An important finding from this work is that there are 

significant correlations among limb motor and oromotor dysfunction and noradrenergic cell 

loss and tyrosine hydroxylase-immunoprotective (TH-ir) cell loss in the locus coeruleus 

[78]. The locus coeruleus is a brainstem nucleus that synthesizes noradrenaline and has 

projections to multiple brain regions, including those implicated in swallowing, mood, and 

cognitive function. In PD, the noradrenergic system is implicated early in the disease process 

[79•]. Loss of noradrenergic neurons exacerbates damage to dopaminergic neurons, while 

noradrenaline is anti-inflammatory and neuroprotective on dopaminergic degeneration [79•]. 

In PD, noradrenaline affects sensorimotor behaviors, including those of the upper airway 

(e.g., vocalization) [80]. As such, noradrenaline-based pharmacotherapies may be beneficial 

for PD, including for non-classical signs of disease, such as dysphagia.

Similarly, mutation of PINK1 (PTEN-induced putative kinase; PARK6) leads to 

mitochondrial dysfunction and progressive non-motor/other motor signs of disease, as well 

as α-syn aggregation and eventual nigrostriatal dopamine cell death, causing limb motor 

signs akin to sporadic PD [66, 81, 82, 83]. The Pink1−/− genetic rat model exhibits 

oromotor and early oral stage deficits that align with human clinical findings in PD [3, 

84]. Deficits include decreased mastication rate [82, 84], as well as increased tongue 

press force, variability, and rate with increased amounts of α-syn in the genioglossus 

muscle and a change in muscle fiber composition in the styloglossus muscle [84, 85]. 

Additionally, Pink1−/− rats exhibit increased bolus area and bolus velocity [82], suggesting 

dyscoordination affecting swallow safety and efficiency [3, 82]. Like DJ-1−/− rats, Pink1−/− 
rats also show relationships between behavioral deficits and neuropathology. Correlations 

between decreased mastication rate and TH-ir counts in the locus coeruleus have been 

reported [82], as well as increased amounts of α-syn protein in the nucleus ambiguus [82] 

which is a key region in the swallow central pattern generator. Sex differences have also 

been found in the Pink1−/− genetic rat model, such as differences in limb motor deficits [83, 

84] and cranial sensorimotor functions (e.g., vocalizations) [66, 83], but further research is 

needed to assess potential differences specific to swallowing function.
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Overall, findings demonstrate that both central and peripheral pathologies in early 

stages of disease implicate critical mechanisms for functional oropharyngeal swallowing. 

These include neurotransmitter systems other than dopamine (e.g., norepinephrine), α-syn 

pathology, and mitochondrial dysfunction. Genetic models significantly contribute to our 

evolving understanding of PD pathology and swallowing dysfunction. Although the efficacy 

of behavioral dysphagia interventions has not yet been assessed in these genetic animal 

models, findings from this work may be foundational for refining treatment options to better 

treat swallow-specific deficits in PD.

Tongue Exercise in Aging Models

To date, studies assessing swallowing interventions in PD-specific animal models have 

been limited; however, aging models (especially rats) have been widely used to study the 

efficacy of dysphagia interventions and will be briefly described in this review, as well. 

It is known that with age, muscle composition and function changes, including swallow-

related muscles such as the genioglossus (tongue) muscle. While tongue exercises are 

commonly prescribed to patients, the optimal dosing and exact effects on muscle properties 

are not fully understood. Tongue training and exercise methods have been used in rats as 

previously described [86, 87]. Studies reveal that, following progressive resistance tongue 

exercise, tongue forces increase [86, 88]. This positive change in tongue force generation 

post-exercise is seen across young, middle-aged, and old rat groups, as well [89]. In a 

study comparing different exercise doses (1, 3, or 5 day/week), 5 day/week intervention 

groups showed the greatest increase in tongue forces, and regardless of dose, tongue 

forces increased following exercise compared to sham groups [90]. Clinically, behavioral 

interventions may show promise in the short term, but lasting benefits of exercise are also 

poorly understood. As such, detraining protocols have also been implemented in rat studies 

and reveal that detraining does not eliminate improved tongue force following exercise, 

though decline in maintenance is seen in old (aged) groups compared to younger rats [88]. 

Whether these findings translate to a progressive degenerative model of PD, however, is 

not yet known. Since PD typically is a disease of aging and affects swallow function, this 

exercise approach is promising.

In terms of muscle biology, exercise appears to alter some properties, though changes are 

not as apparent to muscle biology as they are to function (e.g., force, as described above). 

Schaser and colleagues found brain-derived neurotrophic factor (BDNF) and receptor TrkB 

immunoreactivity levels in the rat hypoglossal nucleus to be positively cor-related with 

exercise in young and middle-aged rats. These associations, however, were weak in the 

older groups and in no-exercise controls, suggesting that other mechanisms may underlie 

the increased tongue forces seen post-exercise in older rats. In another study, 8 weeks of 

tongue exercise significantly increases tongue force as well as the variability of genioglossus 

(tongue) muscle fiber cross-sectional area [86]. This is in contrast to a more recent study, 

assessing the role of age and exercise on muscle fiber composition. While age was found 

to play a role in altering the proportion and size of type I (slow) and type II (fast) 

tongue muscle fibers, exercise did not alter tongue muscle fiber size or composition [90]. 

The tongue, however, includes many intrinsic and extrinsic muscles that serve different 

functions during swallowing [91], as well as speech [92] and airway patency [93]. As 
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such, consideration should be given to the intensity and duration of tongue training, as 

tongue muscles may naturally have increased endurance due to their multifunctional and 

frequent use. Tongue exercise was also shown to increase serotonin immunoreactivity in the 

hypoglossal nucleus, though this neurochemical change was only seen in young rats [94].

Existing Gaps in Knowledge and Future Directions

Despite dysphagia manifesting early in PD, treatment implementation typically occurs later 

in the disease process when features of dysphagia are more severe [95, 96, 97]. Additionally, 

our limited understanding of the underlying biologic mechanisms in the prodromal and early 

stage is a key hindrance to optimizing interventions, especially those that target prevention 

[98].

A major consideration in PD-associated dysphagia management is, in part, a consequence 

of the pharmacological and surgical treatments targeting the gross motor disturbances of 

the disease. These treatment options have been largely successful in managing limb motor 

and other gross motor functions [99]. Unfortunately, there are limited benefits to swallow 

function and, in some instances, worsen aspects of dysphagia [3, 17]. Advancements in 

surgical and pharmacological treatment options that can improve both gross motor and 

swallowing sensorimotor functions are necessary.

Different clinical presentations in terms of age of onset, phenotype, disease progression, 

and clinical management considering sex as an important biological variable have not yet 

been adequately addressed. Failure to substantially include females in previous research, 

including basic, translational, and clinical studies, has widened gaps in knowledge and 

minimizes the generalizability of current treatment approaches. The inclusion of females has 

been highly encouraged in recent years per NIH mandate [100]. This broader inclusion will 

aid in developing a more complete understanding of PD-associated dysphagia management, 

including responses to behavioral and pharmacological manipulations.

Conclusion

The pathophysiologic mechanisms that modulate swallow function, especially in the 

prodrome, are not well understood, and therefore diagnostic and treatment options remain 

suboptimal. Dopamine-based treatment paradigms aimed at improving gross motor function 

provide inconsistent benefits to the sensorimotor aspects of PD dysfunction. This encourages 

the idea that other neurotransmitter pathways in the CNS and PNS are likely involved 

and could be potential targets for future research to guide pharmacological, surgical, and 

behavioral treatment optimization. Behavioral treatments are currently the most effective 

treatment for dysphagia management in PD; however, benefits of these are still unclear 

and may be difficult to sustain as the disease progresses. Therefore, additional research 

that addresses these questions in current clinical approaches is necessary to develop and 

refine more targeted and sustained benefits in PD-related dysphagia. Animal research can 

contribute significantly to address these gaps in knowledge.
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