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Abstract

Deep learning has proven highly effective in various medical imaging scenarios, yet the lack of 

an efficient distribution platform hinders developers from sharing models with end-users. Here, 

we describe brainchop, a fully functional web application that allows users to apply deep learning 

models developed with Python to local neuroimaging data from within their browser. While 

training artificial intelligence models is computationally expensive, applying existing models to 

neuroimaging data can be very fast; brainchop harnesses the end user’s graphics card such that 

brain extraction, tissue segmentation, and regional parcellation require only seconds and avoids 

privacy issues that impact cloud-based solutions. The integrated visualization allows users to 

validate the inferences, and includes tools to annotate and edit the resulting segmentations. Our 

pure JavaScript implementation includes optimized helper functions for conforming volumes 

and filtering connected components with minimal dependencies. Brainchop provides a simple 

mechanism for distributing models for additional image processing tasks, including registration 

and identification of abnormal tissue, including tumors, lesions and hyperintensities. We discuss 

considerations for other AI model developers to leverage this open-source resource.

Introduction

Neuroimaging has emerged as a powerful tool for studying brain structure, function, and 

connectivity, offering insights into the underlying neural mechanisms of various cognitive 

processes and disorders. As we describe next, recent AI models have proved to be more 

accurate, robust, and rapid than traditional image preprocessing stages, including brain 
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extraction, tissue segmentation, regional parcellation, and anomaly detection. The rate-

limiting factor in bringing these AI models to academic and clinical settings is that they are 

difficult to deploy to end users, often requiring creation of project specific environments by 

experts in the field. These complexities, coupled with the lack of a platform for deploying AI 

solutions to common neuroimaging problems, severely limits the impact of these potentially 

revolutionary tools.

The promise of AI to revolutionize brain imaging

Machine learning models have already proved capable of robustly, rapidly, and objectively 

solving many labor intensive and error-prone neuroimaging tasks. These benefits are 

particularly attractive given the burgeoning availability of large open-access datasets that 

allow teams to aggregate images across diverse populations to make new discoveries. 

Here we summarize a few notable breakthroughs. Critically, for each advance, we also 

highlight the barriers that hinder end users from exploiting these tools. Our goal is not to 

provide an exhaustive list of AI-based medical imaging software, but rather to provide an 

overview of the breadth of existing, and potential applications, by highlighting a few seminal 

solutions. We further restrict our review to the applications of machine learning to replace 

traditional image processing stages including brain extraction, brain segmentation, regional 

parcellation, coregistration, normalization, and anomaly detection; the prognostic benefits 

for behavior and disease1–6 are beyond the scope of the present work.

Brain Extraction—Brain extraction, the segmentation of brain tissues from surrounding 

tissue, fat and bone, plays a vital role in brain imaging. The traditional FSL Brain Extraction 

Tool (BET) has been widely adopted as a first step towards restricting analyses to cortical 

regions and additionally aids algorithms responsible for registration of similar modalities 

(i.e., T1w structural scans) between individuals and co-registration across modalities within 

a given subject (i.e., T1w to T2-FLAIR)7. Furthermore, accurately extracted brains are 

better anonymized than medical images de-identified using traditional defacing methods. 

This is particularly the case in clinical situations where scalp features may be recognizable 

(dermoid cysts, craniotomy scars, ear shape)8. FSL’s BET has already been ported to web 

assembly, providing a zero-footprint solution9. Recently, several machine learning-based 

brain extraction models have been shown to outperform BET. Two noteworthy examples are 

HD-BET10 and SynthStrip11, the latter of which has proven exemplary when working with 

disparate image modalities and images of inconsistent quality. However, the deployment 

of these machine learning tools is hampered by the fact that they require local software 

installation and perform slowly, or not at all, without access to a local Nvidia graphics card.

Brain Segmentation—FreeSurfer12, FSL FAST13, and SPM14 all provide elegant 

solutions to the problem of brain segmentation, and each accurately classifies voxels as 

white matter, gray matter or cerebral spinal fluid. The thousands of citations attributed 

to each of these programs demonstrates that these measures provide users with access 

to a powerful biomarker for brain function and disease. Recently, several teams have 

introduced competitive machine-learning based models, including SynthSeg15. SynthSeg 

is now included with recent FreeSurfer versions, making model distribution straightforward. 

Plis et al. Page 2

Apert Neuro. Author manuscript; available in PMC 2024 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, to gain the full speed benefits, users still need an Nvidia graphics card 

accompanied by properly installed CUDA drivers.

Brain Morphometry (Parcellation/Volume/Thickness)—Estimates of cortical 

thickness combined with parcellation into distinct regions, based on any variety of publicly 

available brain atlases, has proved a powerful method for neuroscientists. Indeed, the 

seminal FreeSurfer articles12,16–18 have each been cited thousands of times. Recently, a 

deep learning based implementation of FreeSurfer brain parcellation, FastSurfer19, was 

developed. This new version produces volume segmentation results that are similar to those 

produced by FreeSurfer, but in a fraction of the time. Additionally, FastSurfer demonstrated 

better test-retest reliability than FreeSurfer in estimating cortical thickness in longitudinal 

studies. However, once again, users wishing to take advantage of this incredible speed-up 

must have access to a high-performance Nvidia GPU with appropriate CUDA drivers.

Spatial Coregistration and Normalization—Spatial coregistration methods play a 

crucial role in many neuroimaging pipelines. For example, multi-volume time series such 

as functional MRI (fMRI) and diffusion-weighted imaging benefit from motion correction, 

a process in which all volumes are aligned to either the first volume or the mean volume 

of a series of images. It is also often necessary to coregister images of different modalities, 

or acquired at different timepoints, from the same individual. For example, aligning a 

low-resolution fMRI scan to a high-resolution anatomical image is fundamental. Finally, it is 

common to spatially normalize images, warping each individual’s brain to match the shape 

and alignment of a common anatomical template, a process that allows for comparisons 

between individuals as well as application of group-level statistics. EasyReg20 has provided 

a convolutional neural network that is fast, works across modalities, and does not require 

pre-processing (such as brain extraction or bias field correction) to operate. An exception to 

the general rule, this FreeSurfer tool provides reasonable inference speed without requiring a 

graphics card or other specialized hardware.

Anomaly Detection—Mapping the location and extent of brain injury can aid the 

diagnosis, prognosis and treatment of the brain2 with seminal work describing the methods 

for objective analyses highly cited21,22. Within the field of medical imaging, substantial 

effort has been put into the development of automated algorithms for detecting various 

anomalies including but not limited to, white matter hyperintensities23, microbleeds24, 

tumors25, as well as both acute26 and chronic stroke27 lesions. These methods are 

important, especially within the field of stroke. For example, lesion studies can provide 

a stronger inference than activation measures by revealing brain regions that are necessary28. 

However, manually drawing a lesion on a high-resolution scan can often take an hour, with 

demarcation along the edges being highly subjective29. Seminal work used traditional spatial 

normalization with outlier detection and clustering to automatically identify chronic30 

and acute31 injuries. Both of these methods do depend on the robustness of the spatial 

normalization, which can be disrupted by the presence of brain injury32, albeit the 

acute method cleverly uses both the diffusion-unweighted and weighted imaging pair and 

leverages the fact that acute injury only appears in the latter (so spatial transforms are 

estimated for an image where the injury is invisible, while the lesion is identified from the 

Plis et al. Page 3

Apert Neuro. Author manuscript; available in PMC 2024 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



image where it is visible). Another limitation of both approaches is that they require Matlab 

software, which hinders web deployment. More recently, LINDA introduced a random forest 

machine learning algorithm to identify chronic lesions33 and ADS (Acute-stroke Detection 

Segmentation) employed a deep learning model to identify acute injury26. However, 

both of these tools rely on accurate initial normalization using traditional methods34 

which do influence the robustness, deployability and performance of these algorithms. 

The emergence of clinical datasets with gold-standard human drawn lesions27 can allow 

objective competitions to identify accurate automated lesion identification.

In conclusion, AI-augmented image processing has the potential to provide fast, robust and 

objective solutions for many common and fundamental neuroimaging tasks. Ensuring easy 

and fast deployment of these approaches is critical for researchers and clinicians wishing to 

aggregate vast databases of medical images across multiple sites and/or studies.

Mechanisms for Sharing Neuroimaging AI Models

Despite the proven utility of existing AI models, they remain difficult to distribute to 

other scientists and clinicians. Many models demand specific software and hardware 

configurations. The level of technical expertise required to install and maintain these 

configurations is beyond the ability of many researchers and clinicians. We briefly 

describe four mutually inclusive solutions to distribute machine learning models that fill 

different niches: native installation, containers, cloud implementations, and edge-based web 

technologies.

Solution #1: Native Installation—Perhaps the most common method for distributing 

AI models in the field of neuroimaging is through bare-metal installations. This traditional 

approach requires users to install the necessary drivers and software environments directly 

onto their local systems. This typically includes setting up a Python environment to manage 

and isolate dependencies effectively. Users must then clone the model’s repository from a 

version control system like GitHub, install required dependencies using package managers 

like pip, and subsequently download the specific AI models needed for the task (which 

may be hosted on separate sites due to file size limitations imposed by most online code 

repositories). This time-consuming process assumes the availability of specific types of 

hardware (i.e., a x86 architecture CPU and an Nvidia GPU equipped with the appropriate 

CUDA drivers). Addressing these hardware and emergent software discrepancies places 

a considerable burden on both the model developers and the end users, with developers 

being forced to ensure their models are compatible with a range of operating systems/

hardware configurations, and end users being forced to buy and maintain specific hardware 

components. Indeed, maintenance of software ecosystems essential to properly train and 

use AI models often requires driver/software updates that can break the system, demanding 

painful and time-consuming complete reinstallations.

Solution #2: Containers—Containers like Docker and Singularity/Apptainer offer 

valuable solutions for managing and distributing complex software more efficiently. 

These tools act as encapsulated environments, allowing developers to package their 

applications along with all of the necessary dependencies and configurations required to 
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use them successfully. By doing so, they mitigate compatibility concerns and streamline 

the deployment process across different computing environments. Moreover, Docker 

and Singularity/Apptainer enable precise version control, ensuring that software behaves 

consistently regardless of the underlying system thereby simplifying software distribution 

while, at the same time, enhancing reproducibility and reliability of computational tasks. 

Field-general solutions like Docker and Singularity/Apptainer have thus far dominated the 

field of neuroimaging-relevant tools. However, infrastructure specific to the deployment 

of brain-data based inference generation models has recently emerged. Nobrainer (https://

github.com/neuronets/nobrainer) pioneered an infrastructure for sharing algorithms from 

different organizations including SynthMorph35, SynthSeg15 SynthSR36, SynthStrip11, 

kwyk37, and DeepCSR38. Nobrainer provides a unified container for running all of these 

models, simplifying the distribution and usage of AI inference. However, as of this writing 

this container only supports the x86 architecture, is only tuned for Linux, and inference is 

only accelerated with NVidia graphics cards1. Another more generalized example of this 

approach is neurodesk39 which allows loading of specific software versions as self-contained 

packages. For example, one could load either current or previous releases of FreeSurfer 

to replicate studies that used previously described models from that team (e.g. easyReg, 

SynthSeg, SynthStrip, SynthSR).

Solution #3: Cloud Computing—For many use cases, cloud computing can provide 

an elegant method for deploying machine learning inferences. In this case, a centralized 

computer houses the specific software, versioning and hardware required to compute 

inferences. The user simply needs to select the images to process, and upload their data. 

A clear example of this approach is brainlife40 (brainlife.io) which allows users to apply 

machine learning inferences like SynthSR and SynthStrip to either a user’s personal data or 

from linked open-access repositories such as OpenNeuro41. Another example is neurodesk 

which can be deployed as cloud instances39. An important benefit of cloud resources is their 

ability to scale on demand, whereas other methods are constrained by local hardware. This 

advantage makes them particularly apt for processing large datasets that would be difficult 

to analyze in a timely manner using local compute resources. Therefore, cloud computing 

enhances efficiency by allowing multiple users to concurrently share a pool of resources, 

eliminating the need for each user to maintain sufficient resources to handle their peak 

demands independently. However, cloud resources are not ideal for every application. One 

significant limitation is that images must be shared with another organization. This is not a 

viable option in many situations for ethical, regulatory, or legal reasons (particularly prior 

to anonymization measures such as removing the face or scalp from images). Further, cloud 

computing can incur a penalty for transferring large data between a user’s computer and 

the remote service. Another serious limitation with current cloud implementations is that the 

results are not interactive; a strong assumption is that all input data are similar and that the 

output from the automated models is without error. In practice, both of these assumptions 

are rarely correct. Interactive visualization and editing tools are required to help confirm and 

ensure that the inference model processed the images successfully.

1 https://github.com/neuronets/nobrainer-zoo/issues/42 
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Solution #4: Edge-Based Deployment—The final method of distributing 

neuroimaging machine learning models leverages edge-based web technologies. This 

method harnesses the power of end users’ local compute resources to process images and 

generate and save the derivatives. This approach leverages two properties of most inference 

models: estimating the inferences of existing models is much less computationally taxing 

than training new models, and application of existing models to existing data is a task that is 

ideally suited for graphics cards’ advantage for massively parallel operations. Of particular 

interest, the Open Neural Network Exchange (ONNX) web runtime and TensorFlowJS 

JavaScript packages allow models to be run using the WebGL and WebGPU libraries which 

harness the local graphics card regardless of manufacturer, thanks to the browser acting 

as an operating system removing the need for the user to provide specific hardware and 

drivers (e.g., Nvidia graphics cards with CUDA libraries). Since the image data is not shared 

with the cloud, edge computing can address the privacy concerns associated with cloud 

computing. From the model developer’s perspective, a key advantage of edge computing is 

that it harnesses the end user’s hardware for computation, allowing it to scale effortlessly 

with the number of users. This is in contrast to cloud computing, where demands on 

centralized hardware increase as the number of active users grows, requiring continuous 

resource allocation and management.

Edge-based deployment is simple for the user, with no software to install. To start using 

pre-trained deep learning models a user just needs to open a URL in their browser, which 

in our case takes around 200 ms to load six segmentation models and provide 15 ways to 

run them. These packages run the models locally within the sandbox of the user’s browser 

without the need for data exchange with a remote server, as there is no back-end. Since 

image data remains local, this approach bypasses privacy concerns of cloud solutions and 

is therefore ideally suited for clinical applications (such as lesion detection) and image de-

facing or brain extraction which remove recognizable features to allow subsequent sharing 

of anonymized images. The brainchop42,43 project from the Nobrainer team showcases this 

approach, providing models for brain extraction, tissue segmentation and parcelation as 

shown in Figure 1.

Rather than assume that all inferences are successful, brainchop allows users to interactively 

view the input and segmented images, ensuring model accuracy. In this way, brainchop is 

an ideal framework for customization and user-driven model tuning that could eventually 

allow end-users to further refine/tailor AI models to their specific needs or the needs of 

the research community. One way this could be accomplished is by including the ability to 

adjust model parameters, like threshold levels, segmentation boundaries, and coregistration 

points directly within the visualization/feedback module. For instance, in cases where 

automated image segmentation fails due to atypical anatomy or poor image quality, users 

could manually refine the segmentation boundaries. This interactive approach could be used 

to iteratively provide AI model developers with error feedback, that could then be used to 

justify change in the AI model, perhaps resulting in an improved ability to process both 

normal data and handle occasional edge-cases. We envision that this on-the-fly feedback 

could be part of a virtuous cycle that would allow AI systems to continuously ‘learn’ and 

improve their performance over time. It is worth noting that visualization is useful for 
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machine learning regardless of the form of distribution (e.g., native, container, cloud or 

edge), and a web-based visualization module could be shared across all these methods. 

Indeed, this could allow crowdsourced training for huge datasets, leveraging the diversity of 

aggregated datasets and editors.

Mission Statement

Our primary objective is to provide a method to deploy neuroimaging AI models that is 

simple, efficient, ensures data safety, and provides users with sufficient feedback to catch 

and fix errors. This method should allow developers to quickly and easily deploy their AI 

models and allow users to confidently apply these solutions to their images. We believe 

the best way to achieve this objective is through edge-based computing which protects 

privacy by using local hardware, has zero footprint (no specialized software to install) and 

is universal (works on any operating system and graphics card). To achieve this aim, we 

comprehensively refined and optimized brainchop, bringing it from a prototype to a robust 

tool that can be directly used by end users with existing models and harnessed by other 

teams with their own models. These refinements include removing dependencies, improving 

performance, and adding features such as the ability to manually edit AI-generated native 

space segmentations. The Methods section describes our implementation and the Results 

section describes the performance improvements relative to the initial prototype.

Methods

Design Considerations

Here we describe refinements since brainchop version 2, which we have previously 

described42,43. The Results section provides objective measures for the cumulative benefit 

of these optimizations. The major performance difference between version 2 and 3 is 

implementing 16-bit instead of 32-bit textures for the models which significantly improved 

the performance by reducing memory usage and data transfer times. In contrast, the version 

4 optimizations focused on new features, reducing idle time, reducing time spent on 

concurrent tasks and the image processing stages that occur before and after the model 

inferences. Therefore, it is worth noting that the changes from version 2 to 3 impact the 

actual inference time of the model, while the changes from version 3 to 4 largely focus 

on processing operations that occur before and after the inference. Therefore, the version 

4 optimizations will have smaller proportional benefits as the inference model complexity 

increases (though it is worth noting that the introduction of web workers can reduce time 

spent idle or waiting for concurrent tasks).

The new user interface is shown in Figure 2. The user can drag and drop a voxel-based 

medical image of the head, in any of the supported formats (with NiiVue already providing 

support for the NIfTI, NRRD, MRtrix MIF, AFNI HEAD/BRIK, MGH/MGZ, ITK MHD, 

ECAT7, and DICOM formats) and select any of the pre-specified image processing models 

from the drop down menu. The results are shown as an interactive overlay on top of the 

source image, with sliders allowing the user to independently adjust the visibility of the 

source and classified image. A button allows the user to save the model as a NIfTI-format 

image. Alternatively, a button allows the user to save the entire scene (background image, 
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overlay, drawings, contrast settings, crosshair location and annotations) as a single file 

(using NiiVue’s document format with the `.nvd` extension) that can be viewed with any 

NiiVue instance. As we note, this provides a virtuous cycle between model developers and 

users, providing a mechanism for sharing edge cases where models do not act as expected. 

A checkbox allows users to select whether models are run on an independent thread (web 

worker) or on the main thread. Simple drawing tools allow the user to modify segmentation 

models, with the ability to edit model results. To provide a minimal user interface, these 

tools currently only provide binary operations, but the underlying NiiVue visualization 

system can support more complicated drawings (e.g., using different pen colors to edit 

specific classes for the segmentation and parcelation models). We also provide a diagnostics 

model, which provides text-based details on the user’s system and the execution of the most 

recent model. These details can help troubleshoot unexpected behavior. The user interface is 

built using pure HTML, rather than using a widget framework (e.g., Angular, React, or Vue). 

This minimal, framework agnostic approach aids users who wish to embed these models in 

their preferred framework, as the web page directly interacts with the modular NiiVue and 

brainchop functions.

Segmentation accuracy and out-of-sample robustness are the driving objective measures 

for selecting between competing neuroimaging machine learning models. However, 

considerations regarding the speed and resource demands of the inference models have clear 

implications. Users at well-resourced institutions working with huge datasets would clearly 

prefer fast but demanding solutions. On the other hand, catering to these users excludes 

many potential users. Brainchop supports both groups by having both fast but demanding, 

as well as slow but lean variations for some of the more complex models. The current 

brainchop models are all based on MeshNet44 models that are renowned for their modest 

computational requirements. These models were converted to TensorFlow.JS (TFJS)45. 

Beyond the basic model inference, we also provide TensorFlowJS filters for attenuating 

noisy voxels to improve segmentation accuracy. Both models and filters currently use the 

WebGL2 TFJS backend that leverages the graphics card of the user’s computer (and can 

be extended to the WebGPU backend if this matures to support 3D convolutions). Indeed, 

the recent releases of brainchop conduct more of the computations on the graphics card, 

improving the speed.

Input Image Harmonization—Raw neuroimaging data is often acquired with a range 

of resolutions and voxel sizes. However, machine learning models are typically trained on 

images of a specific resolution. Similar to many other neuroimaging AI tools, brainchop 

requires that the input images are 256×256×256 voxels with a 1mm isotropic resolution. The 

original brainchop used the Python code from FastSurfer19 to reslice input images of any 

resolution to these dimensions. However, this choice added a large number of dependencies 

including matplotlib, cycler, six, fonttools, kiwisolver, pillow, python-dateutil, pytz, scipy, 

nibabel, and numpy all of which needed to be emulated via pyodide. As we demonstrate 

in the Results section, downloading these packages to conform an initial image is slow 

(particularly penalizing users with limited internet bandwidth), retaining these packages for 

subsequent images holds on to local memory, and the emulation for reslicing is slow. To 

address this, we ported these routines to pure JavaScript.
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Threads and Web Workers—The original brainchop ran all computations on the web 

page’s main thread, which impacted performance and interactivity. The current version 

of brainchop allows the user to specify whether the models run on the main thread 

(using timers and callback functions to return results) or independently on a web worker 

thread (using asynchronous calls when necessary and messaging to return results to the 

main thread). This feature required numerous changes as we found that contemporary 

web workers have constrained heap size relative to the main thread. To address this, we 

preallocated arrays of known sizes rather than dynamically growing arrays. Fortuitously, this 

led to speed benefits. We maintain code for both the main thread and web worker for two 

reasons. First, a web worker requires access to an OffScreen canvas that has only recently 

been introduced in the WebKit-based browsers such as Safari and is not yet supported by 

TensorFlowJS (so at the time of this writing our models must run on the main thread for 

these browsers). Second, there is no intuitive way to predict whether a given task will 

perform better on the main thread or using a web worker. Pragmatically testing the Chrome 

and Firefox browsers we have observed that some models are faster with web workers while 

others are faster on the main thread in a complex manner that interacts with the choice of 

browsers. We speculate that this reflects differences in resources provided to these different 

threads. Regardless, these differences might change with future web browser updates, so 

providing both methods allows the developers and users to choose the fastest solution for 

their situation.

Connected Components—The results of many AI image segmentation models benefit 

from refinement for connected components. For example, it is often necessary to ensure that 

voxels in a given area are contiguous with each other. For instance, proper consideration 

of connected components prevents erroneous identification of two areas (connected by a 

narrow bridge) as a single contiguous region. We developed a fast, pure javascript solution 

based on the algorithm of Thurfjell and colleagues46. Specifically, we ported the C code 

from SPM’s bwlabel function47. Crucially, since parcellations can include many classes (for 

example, our FreeSurfer parcellation model generates 104 distinct regions), we modified the 

algorithm to identify the largest connected components of all classes in a single pass.

Image Visualization—The prior releases of brainchop used the WebGL1-based Papaya 

for visualizations. Unfortunately, the development of Papaya has been suspended and 

WebGL1 does not support 3D textures that can aid interactive volume rendering. Therefore, 

brainchop also depended on a WebGL2-based ThreeJS volume rendering module. To 

address this, we upgraded brainchop to use the WebGL2-based NiiVue which supports 

volume loading (allowing brainchop to import images in the NIfTI, NRRD, MRtrix 

MIF, AFNI HEAD/BRIK, MGH/MGZ, ITK MHD, ECAT7, and DICOM formats), planar 

visualization and volume rendering using a single context (reducing resource usage) without 

requiring Papaya or ThreeJS. While our reference implementation uses NiiVue for our 

visualization, our modular code can be embedded in other web-capable viewers including 

BioImage Suite Web48, the OHIF viewer49, and VTK.js (https://kitware.github.io/vtk-js/i). 

Since NiiVue has already been adopted by the AFNI, brainlife, FreeSurfer, FSL and 

OpenNeuro teams and is supported by an active grant (NIH RF1MH121885), sustained 

development is ensured. Additionally, NiiVue provides several important capabilities to 
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enhance brainchop. First, NiiVue provides drawing tools that allow users to edit models, for 

example removing mis-classified tissue before saving the result. In the future, we envision 

dynamic models, where a user can correct a single slice and the model uses this feedback 

for other slices. Second, NiiVue provides an ability to not only save NIfTI-format images, 

but also annotate images and save the entire scene. This allows one user to interactively 

adjust the contrast, crosshair position and write comments that they can send as an email 

attachment to another user. A nice feature of web pages is that they are required to live in 

a sandbox, without access to a computer’s file system and restricted memory. Therefore, 

web pages provide relatively safe attachments. This can help create a virtuous cycle between 

model users and model developers, allowing end users to document edge cases.

Refactoring—The original brainchop code was monolithic, with the machine learning 

code interleaved with Papaya specific visualization calls as well as diagnostics. The desire 

to support NiiVue as well as the move to support image processing using either web 

workers (which must communicate with the main thread via serialized objects) and the 

main thread (which can pass data directly via callbacks) encouraged us to modularize the 

code. Separating the visualization from the image processing can allow future developers to 

replace NiiVue with another visualization tool, or even remove the visualization entirely (for 

example, running the image processing from the command line using node.js). Likewise, 

brainchop functions for acquiring machine specific diagnostic data (which can help resolve 

machine specific issues) are now provided in a separate file.

License

Our implementation uses the permissive and open BSD 2-Clause (NiiVue) and MIT 

(brainchop) licenses. We see these licenses as being universal donors, allowing inclusion in 

all other projects and not restricting contributions from researchers at different institutions50.

Installation

Anyone with access to a web browser can use brainchop (https://brainchop.org/). This 

provides drag-and-drop support for any voxel-based format that NiiVue supports (e.g. 

NIfTI, NRRD, MRtrix MIF, FreeSurfer MGH, ITK MHD, DICOM). Developers can easily 

clone the main repository to create forks that support their own models (https://github.com/

neuroneural/brainchop) and if they wish they can make pull requests to contribute to the 

core functions. The source code is also available at github (https://github.com/neuroneural/

brainchop) with a command to host a local hot-reloadable web page (ǹpm run dev`) that 

can run on the Linux, Windows, and MacOS operating system. The hot-reloadable page 

automatically refreshes when any of the source files are modified, allowing developers to 

interactively modify the underlying code.

Results

The impetus for our optimization of brainchop was to improve compatibility (support for 

constrained hardware), enhance interactivity (with web workers running in the background), 

reduce dependencies (easing deployment) and adding features (e.g., the ability to edit model 

predictions). The benefits of these modifications are impossible to objectively quantify. 
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However, a consequence of these changes is that the resulting models are faster and require 

less resources. Here we quantify the improvements in these metrics.

We evaluated the performance of brainchop release 4.0 (which incorporates all the features 

described in the previous section) with brainchop release 2.1 (which incorporates feedback 

from the review of our earlier publications42), as well as release 3.2.1. For brevity, we 

refer to these releases as versions 2, 3 and 4 respectively, though we note that each version 

has multiple releases that each introduce incremental improvements. All testing used a 

T1-weighted 3D gradient echo with inversion recovery scan (TI = 750ms, TR = 7.25ms, TE 

= 3.1ms) acquired using a UIH scanner (https://github.com/neurolabusc/dcm_qa) with the 

raw image having an interpolated resolution of 460×512 in the sagittal plane (230×256mm 

field of view) with 160 1mm thick slices with an in-plane acceleration factor of 2.5. This 

image was chosen as no images from this manufacturer were included in any of the training 

datasets. All tests were conducted on a 16GB Apple MacBook Pro with an Apple M2 Pro 

CPU and integrated GPU running MacOS with the Chrome browser version 124 as well as 

an AMD Ryzen 7950X3D CPU with 128GB of RAM and aNVIDIA RTX 4070 Ti 12GB 

graphics card running Linux with the Firefox v 128 browser. All tests were run 3 times with 

the median time reported.

Brainchop 4 allows the user to select between 15 models, providing three families of 

operation: tissue segmentation, brain extraction, and parcellation. The performance of these 

models on the test image is shown in Figure 2. Specific models vary in terms of the number 

of segmentation classes (e.g., number of regions for a parcellation) and hardware demands 

(e.g., the FreeSurfer 104 region parcellation provides both a slow, low memory model as 

well as a faster, higher memory model). For evaluation, we tested one exemplar from each 

family. We chose the `Tissue GWM (light)` segmentation model that identifies white and 

gray matter throughout the brain. The representative brain extraction model was Èxtract the 

Brain (FAST)`. Finally, the FreeSurfer 104 region model was the representative parcellation 

model, using the `Low Memory` variation for the MacOS computer (which used integrated 

graphics) and the `High Memory` variation for the Linux computer (which had a discrete 

graphics card).

While all subsequent measures focus on the time to perform tasks, it is worth noting that 

our revisions also dramatically reduce memory demands. In particular, the older version of 

brainchop downloads and runs Python code in emulation to conform data, with this code 

cached in memory to accelerate future runs. After running this stage, a brainchop web page 

reports consuming around 270MB of memory, and after several runs of models this can 

exceed 500MB of memory usage. In contrast, the new pure JavaScript conform function is 

very compact, and, by forcing web workers to terminate when the process is completed, we 

can ensure thorough garbage collection, with memory usage reported around 8MB when not 

actively calculating a model.

Memory differences are also observed for the 104 region parcellation. This model failed 

with brainchop 2 using the MacOS computer. This model succeeded with brainchop 3, 

which we believe reflects the improvements in memory usage. However, brainchop 4 

dramatically reduces heap memory usage relative to version 3 (as previously noted, adding 
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web workers required optimization of heap usage). Specifically, version 4 has 173 times less 

peak heap usage than version 3 (7.7 vs 1338.2MB).

Figure 3 illustrates the performance improvement of brainchop versions 3 and 4 relative to 

brainchop 2. This figure illustrates performance on the conform function as well as the time 

to compute the segmentation, extraction and parcellation models.

The first stage with all processing was to conform the data to be 256×256×256 voxels 

with a 1mm resolution using an unsigned 8-bit data type. This timing is excluded from all 

subsequent tests, which used the conformed image as input. Because the time to download 

the large Python libraries depends on internet bandwidth, and the fact that this step is only 

required for the first run, we only report the time to compute the conform stage. This stage 

uses identical code for brainchop versions prior to version 4, so only one set of comparisons 

is provided. On the MacOS computer, version 4’s native code was 6.8 times (676ms vs 

4611ms; or 582%) faster than the emulated Python, while conforming was 4.9 times (739ms 

vs 3655ms) faster on Linux.

Brainchop 4 is dramatically faster than brainchop 2. On the MacOS computer, tissue 

segmentation was 4.2 times faster (2144ms vs 9001ms), brain extraction was 4.2 times faster 

(1962ms vs 9251ms) and the 104 model parcellation only ran using the optimized code 

(23196ms). For the Linux computer, tissue segmentation was 13.2 times faster (898ms vs 

11820ms), brain extraction was 13.9 times faster (911ms vs 12646ms) and the parcellation 

was 7.0 times faster (1627ms vs 12428ms)

Brainchop 4 is also reliably faster than brainchop 3. On the MacOS computer, tissue 

segmentation was 2.6 times faster (2144ms vs 5519ms), brain extraction was 2.7 times 

faster (1962ms vs 5788ms) and the 104 model parcellation was 37 times faster (23196ms 

vs 85048). For the Linux computer, tissue segmentation was 9.3 times faster (898ms vs 

8387ms), brain extraction was 10.3 times faster (911ms vs 9419ms) and the parcellation was 

4.8 times faster (1627ms vs 8444ms).

Discussion

The brainchop web page provides fast and robust brain extraction, tissue classification 

and parcellation with a simple drag and drop interface. The models work across hardware 

and software, merely requiring any modern web browser. All computations are conducted 

locally, protecting the privacy of the user’s data. By leveraging the user’s graphics card, 

most models run in a few seconds. The graphical interface lets the user inspect the results. 

The user can also edit errors, save the resulting images and provide diagnostics back to the 

developers. Taken together, this showcases an end-to-end ecosystem for deploying image 

processing AI models for voxel-based neuroimaging data.

Furthermore, brainchop provides a framework for other developers to extend. Developers 

can fork the project to distribute their own models, or contribute new models to enhance the 

core brainchop distribution. In particular, we look forward to models that can provide image 

registration and anomaly detection, as well as those that are not modality dependent.
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We recognize that most neuroimaging AI model development teams use Python-based 

model training frameworks like PyTorch and TensorFlow, and utilize the mature and well 

supported set of Python libraries such as numpy and nibabel. One of our primary goals 

was to provide optimized, high performance JavaScript helper functions to allow these 

developers to easily bring their models to web pages. In the future, we hope to expand these 

functions to meet the needs of the community. For example, we have already introduced 

a function to conform data, but some may also want methods to reverse this process (to 

transform a classification image back to the native space of the source image).

Limitations

Our objective is to create an ecosystem that will help other model developers disseminate 

their work to end users. Our initial models are purposefully restricted to tissue segmentation, 

brain extraction and brain parcellation, but this need not be the case as brainchop 

continues to evolve. As noted previously, other groups have described models for spatial 

registration, and mapping abnormalities (acute stroke, chronic stroke, tumor, white matter 

hyperintensities) that could be converted too, but these are not available as edge applications. 

Furthermore, all of our current models require T1-weighted MR scans as input, and will fail 

with other modalities. Of course models could be trained to use other modalities, especially 

given the demonstrated multi-modality robustness of models like SynthStrip11. Another 

limitation is that many of the technologies we are using are emergent, and there are clear 

early-stage difficulties. First, while our current code runs across operating systems (Linux, 

Windows, MacOS) and graphics card vendors (Apple, AMD, Intel, NVidia) during our 

development we identified interactions, such that a specific graphics card would work on 

one operating system and not another. A nice aspect of having live demos is that it was easy 

for the vendor to duplicate our problem, which is a necessary first step towards resolution of 

core issues that create compatibility issues for TFJS users. Second, as we note above, some 

web worker implementations and access to the OffScreen canvas remain immature which 

impacts performance. Despite using web standards, we note that at the time of this writing 

many tablets and phones do not currently support our TFJS models. Also, it is worth noting 

that efforts to improve the privacy of web browsers can interfere with frameworks like 

ONNX and TFJS that use the graphics card for computation. For example, Firefox features 

an advanced function named `privacy.resistFingerprinting` which falsely reports artificially 

constrained graphics card capabilities so the variabilities in hardware cannot be used to 

identify a user. With this security feature set, frameworks will report that the hardware is 

insufficient to run typical machine learning models.

Future Directions

The current brainchop distribution has a deliberate minimalism, providing a basic recipe for 

delivering AI models to users. However, we have a clear vision for upcoming forks that 

can address specific niches. Specifically, we are actively working with teams that are using 

ONNX51, an interoperable format for many training frameworks, to support a diverse variety 

of models and TinyGrad (an emerging lightweight deep learning library) rather than only 

supporting TFJS. These solutions all rely on the same core helper functions, but leverage 

the specific strengths of each of these platforms. NiiVue also supports `boostlets` that can 

allow a user to interactively select a region of an image and apply a filter, with initial 
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functions already supporting the Segment Anything Model52. As noted, we envision a future 

in which dynamic models will learn in real time as users make corrections, propagating 

this knowledge downstream. To ensure privacy, web pages are intentionally constrained. 

However, the modular design of NiiVue and brainchop make it easy to embed in desktop 

applications. Indeed, the NiiVue project already includes electron applications and Apple 

applications (built using Swift) that embed the visualization into a desktop application. 

This can aid niches such as processing BIDS datasets (where features like the inheritance 

principle are incompatible with a web page’s restricted permissions). While our current 

models offer solutions for brain extraction, tissue segmentation, and region parcellation, 

we envision teams leveraging these core functions for additional applications. For instance, 

future models could be utilized for anomaly detection, lesion mapping, spatial registration, 

and quantifying structural and functional brain connectivity.

Acknowledgements

MM, SSG were supported by the NIH grant RF1-MH121885. SMP was in part supported by NIH 2R01-EB006841 
and NSF 2112455. CD, CR and RNN are supported by NIH RF1-MH133701 and P50-DC01466. TH is supported 
by core funding from the Wellcome Trust (203139/Z/16/Z and 203139/A/16/Z). Special thanks to Alex Fedorov, 
Mike Doan and Thu Le for helping with model training.

References

1. Nenning K-H & Langs G Machine learning in neuroimaging: from research to clinical practice. 
Radiologie (Heidelb) 62, 1–10 (2022). [PubMed: 36044070] 

2. Moore MJ, Demeyere N, Rorden C & Mattingley JB Lesion mapping in neuropsychological 
research: A practical and conceptual guide. Cortex 170, 38–52 (2024). [PubMed: 37940465] 

3. Monsour R, Dutta M, Mohamed A-Z, Borkowski A & Viswanadhan NA Neuroimaging in the Era of 
Artificial Intelligence: Current Applications. Fed. Pract 39, S14–S20 (2022). [PubMed: 35765692] 

4. Sui J, Jiang R, Bustillo J & Calhoun V Neuroimaging-based Individualized Prediction of Cognition 
and Behavior for Mental Disorders and Health: Methods and Promises. Biol. Psychiatry 88, 818–
828 (2020). [PubMed: 32336400] 

5. Tejavibulya L et al. Predicting the future of neuroimaging predictive models in mental health. Mol. 
Psychiatry 27, 3129–3137 (2022). [PubMed: 35697759] 

6. Plis SM et al. Deep learning for neuroimaging: a validation study. Front. Neurosci 8, 229 (2014). 
[PubMed: 25191215] 

7. Smith SM Fast robust automated brain extraction. Hum. Brain Mapp 17, 143–155 (2002). [PubMed: 
12391568] 

8. Cali RJ et al. The Influence of Brain MRI Defacing Algorithms on Brain-Age Predictions via 3D 
Convolutional Neural Networks. Conf. Proc. IEEE Eng. Med. Biol. Soc 2023, 1–6 (2023).

9. Harmouche A et al. WebMRI: Brain extraction and linear registration in the web browser. 
Bildgebung 15, 31–36 (2023).

10. Isensee F et al. Automated brain extraction of multisequence MRI using artificial neural networks. 
Hum. Brain Mapp 40, 4952–4964 (2019). [PubMed: 31403237] 

11. Hoopes A, Mora JS, Dalca AV, Fischl B & Hoffmann M SynthStrip: skull-stripping for any brain 
image. Neuroimage 260, 119474 (2022). [PubMed: 35842095] 

12. Dale AM, Fischl B & Sereno MI Cortical surface-based analysis. I. Segmentation and surface 
reconstruction. Neuroimage 9, 179–194 (1999). [PubMed: 9931268] 

13. Zhang Y, Brady M & Smith S Segmentation of brain MR images through a hidden Markov random 
field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 
(2001). [PubMed: 11293691] 

Plis et al. Page 14

Apert Neuro. Author manuscript; available in PMC 2024 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Ashburner J & Friston KJ Unified segmentation. Neuroimage 26, 839–851 (2005). [PubMed: 
15955494] 

15. Billot B et al. SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without 
retraining. Med. Image Anal 86, 102789 (2023). [PubMed: 36857946] 

16. Desikan RS et al. An automated labeling system for subdividing the human cerebral cortex on MRI 
scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006). [PubMed: 16530430] 

17. Fischl B FreeSurfer. Neuroimage 62, 774–781 (2012). [PubMed: 22248573] 

18. Fischl B et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the 
human brain. Neuron 33, 341–355 (2002). [PubMed: 11832223] 

19. Henschel L et al. FastSurfer - A fast and accurate deep learning based neuroimaging pipeline. 
Neuroimage 219, 117012 (2020). [PubMed: 32526386] 

20. Iglesias JE A ready-to-use machine learning tool for symmetric multi-modality registration of brain 
MRI. Sci. Rep 13, 6657 (2023). [PubMed: 37095168] 

21. Rorden C, Karnath H-O & Bonilha L Improving lesion-symptom mapping. J. Cogn. Neurosci 19, 
1081–1088 (2007). [PubMed: 17583985] 

22. Bates E et al. Voxel-based lesion-symptom mapping. Nat. Neurosci 6, 448–450 (2003). [PubMed: 
12704393] 

23. Sundaresan V, Zamboni G, Rothwell PM, Jenkinson M & Griffanti L Triplanar ensemble U-Net 
model for white matter hyperintensities segmentation on MR images. Med. Image Anal 73, 
102184 (2021). [PubMed: 34325148] 

24. Fan P et al. Cerebral Microbleed Automatic Detection System Based on the ‘Deep Learning’. 
Front. Med 9, 807443 (2022).

25. Boaro A et al. Deep neural networks allow expert-level brain meningioma segmentation and 
present potential for improvement of clinical practice. Sci. Rep 12, 15462 (2022). [PubMed: 
36104424] 

26. Liu C-F et al. Deep learning-based detection and segmentation of diffusion abnormalities in acute 
ischemic stroke. Commun. Med 1, 61 (2021). [PubMed: 35602200] 

27. Liew S-L et al. A large, curated, open-source stroke neuroimaging dataset to improve lesion 
segmentation algorithms. Sci Data 9, 320 (2022). [PubMed: 35710678] 

28. Rorden C & Karnath H-O Using human brain lesions to infer function: a relic from a past era in the 
fMRI age? Nat. Rev. Neurosci 5, 813–819 (2004). [PubMed: 15378041] 

29. de Haan B, Clas P, Juenger H, Wilke M & Karnath H-O Fast semi-automated lesion demarcation in 
stroke. Neuroimage Clin 9, 69–74 (2015). [PubMed: 26413473] 

30. Seghier ML, Ramlackhansingh A, Crinion J, Leff AP & Price CJ Lesion identification using 
unified segmentation-normalisation models and fuzzy clustering. Neuroimage 41, 1253–1266 
(2008). [PubMed: 18482850] 

31. Mah Y-H, Jager R, Kennard C, Husain M & Nachev P A new method for automated high-
dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital 
lobe. Cortex 56, 51–63 (2014). [PubMed: 23347558] 

32. Brett M, Leff AP, Rorden C & Ashburner J Spatial normalization of brain images with focal 
lesions using cost function masking. Neuroimage 14, 486–500 (2001). [PubMed: 11467921] 

33. Pustina D et al. Automated segmentation of chronic stroke lesions using LINDA: Lesion 
identification with neighborhood data analysis. Hum. Brain Mapp 37, 1405–1421 (2016). 
[PubMed: 26756101] 

34. Avants BB et al. A reproducible evaluation of ANTs similarity metric performance in brain image 
registration. Neuroimage 54, 2033–2044 (2011). [PubMed: 20851191] 

35. Hoffmann M et al. SynthMorph: Learning Contrast-Invariant Registration Without Acquired 
Images. IEEE Trans. Med. Imaging 41, 543–558 (2022). [PubMed: 34587005] 

36. Iglesias JE et al. SynthSR: A public AI tool to turn heterogeneous clinical brain scans into 
high-resolution T1-weighted images for 3D morphometry. Sci Adv 9, eadd3607 (2023).

37. McClure P et al. Knowing What You Know in Brain Segmentation Using Bayesian Deep Neural 
Networks. Front. Neuroinform 13, 479876 (2019).

Plis et al. Page 15

Apert Neuro. Author manuscript; available in PMC 2024 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



38. Cruz RS et al. DeepCSR: A 3D deep learning approach for cortical surface reconstruction. 
in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV) (IEEE, 2021). 
doi:10.1109/wacv48630.2021.00085.

39. Renton AI et al. Neurodesk: an accessible, flexible and portable data analysis environment for 
reproducible neuroimaging. Nat. Methods (2024) doi:10.1038/s41592-023-02145-x.

40. Hayashi S et al. brainlife.io: a decentralized and open-source cloud platform to support 
neuroscience research. Nat. Methods (2024) doi:10.1038/s41592-024-02237-2.

41. Markiewicz CJ et al. The OpenNeuro resource for sharing of neuroscience data. Elife 10, (2021).

42. Masoud M, Hu F, & Plis S (2023). Brainchop: In-browser MRI volumetric segmentation and 
rendering. Journal of Open Source Software, 8(83), 5098. 10.21105/joss.05098

43. Masoud M, Reddy P, Hu F, & Plis S (2023). Brainchop: Next Generation Web-Based 
Neuroimaging Application. arXiv preprint arXiv:2310.16162

44. Fedorov A et al. End-to-end learning of brain tissue segmentation from imperfect labeling 10.1109/
IJCNN.2017.7966333.

45. Developers T TensorFlow (Zenodo, 2024). doi:10.5281/ZENODO.4724125.

46. Thurfjell L, Bengtsson E & Nordin B A new three-dimensional connected components labeling 
algorithm with simultaneous object feature extraction capability. CVGIP Graph. Models Image 
Process 54, 357–364 (1992).

47. Andersson JLR, Skare S & Ashburner J How to correct susceptibility distortions in spin-echo 
echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870–888 (2003). 
[PubMed: 14568458] 

48. Papademetris X et al. BioImage Suite: An integrated medical image analysis suite: An update. 
Insight J 2006, 209 (2006). [PubMed: 25364771] 

49. Ziegler E et al. Open Health Imaging Foundation Viewer: An Extensible Open-Source Framework 
for Building Web-Based Imaging Applications to Support Cancer Research. JCO Clin Cancer 
Inform 4, 336–345 (2020). [PubMed: 32324447] 

50. Rorden C et al. niimath and fslmaths: replication as a method to enhance popular neuroimaging 
tools. Aperture Neuro 4, (2024).

51. Dao T, Ye X, Rorden C, Eckstein K, Haehn D, Varade S, & Bollmann S Developing a secure, 
browser-based, and interactive image segmentation system for medical images (2024).

52. Gaibor E et al. Boostlet.js: Image processing plugins for the web via JavaScript injection. arXiv 
[cs.CV] (2024).

Plis et al. Page 16

Apert Neuro. Author manuscript; available in PMC 2024 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Examples for each of the three model families currently supported by brainchop. The 

segmentation (top) identifies gray (red) and white (white) matter. The brain extraction 

(middle) creates a mask of the brain voxels (red). The parcellation classifies 104 cortical 

regions. The colors and regions come from the FreeSurfer Color Look Up Table.
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Figure 2: 
The brainchop web page (https://neuroneural.net/brainchop/) allows users to select between 

tissue segmentation, brain extraction and parcelation models from a drop down menu. Users 

can drag and drop their own images. The integrated visualization allows users to interact 

with the images. Note that the name of the region selected by the crosshairs is shown in 

the status bar in the bottom left. Users can save the resulting classification results as NIfTI 

images or edit them as required prior to saving them which allows for improved quality 

control.
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Figure 3: 
Acceleration of brainchop 4 (green) and brainchop 3 (red) relative to brainchop 2. This 

reflects the cumulative effect of all optimizations on the total time to apply different 

image processing steps. The MacOS computer (bright bars) used the Chrome browser and 

an integrated graphics card (Apple M2 Pro). The Linux computer (dark bars) used the 

Firefox browser with a discrete graphics card (AMD 7950X3D with Nvidia 4070 Ti). The 

acceleration is shown as percent, so a 100% speedup reflects half the time to complete 
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an operation. The asterisk notes that parcellation crashed with version 2 on the MacOS 

computer, and therefore the bright green bar illustrates the speedup of version 4 versus 3.
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