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Abstract

In this work, we introduce a new deep learning approach based on diffusion posterior sampling 

(DPS) to perform material decomposition from spectral CT measurements. This approach 

combines sophisticated prior knowledge from unsupervised training with a rigorous physical 

model of the measurements. A faster and more stable variant is proposed that uses a “jumpstarted” 

process to reduce the number of time steps required in the reverse process and a gradient 

approximation to reduce the computational cost. Performance is investigated for two spectral CT 

systems: dual-kVp and dual-layer detector CT. On both systems, DPS achieves high Structure 

Similarity Index Metric Measure(SSIM) with only 10% of iterations as used in the model-

based material decomposition(MBMD). Jumpstarted DPS (JSDPS) further reduces computational 

time by over 85% and achieves the highest accuracy, the lowest uncertainty, and the lowest 

computational costs compared to classic DPS and MBMD. The results demonstrate the potential 

of JSDPS for providing relatively fast and accurate material decomposition based on spectral CT 

data.

I. INTRODUCTION

SPECTRAL CT has enabled a number of applications including density estimation, virtual 

monochromatic imaging, and contrast agent enhancement. Many of these applications rely 

on material decomposition, which reconstructs basis material density maps from the spectral 

projections[1]. Material decomposition is an ill-conditioned nonlinear inverse problem 

without an explicit solution. Existing material decomposition algorithms can be categorized 

into three main types: analytical decomposition[2], iterative/model-based decomposition[3], 

and learning-based decomposition[4].

Deep learning methods have been extensively used in medical image formation including 

spectral CT[4], [5], [6], [7], [8]. Such approaches leverage prior knowledge learned from 

large datasets and can generally surpass classic approaches in terms of image quality. 

However, many deep learning methods do not directly leverage a physical model of 

the measurements, raising concerns about robustness, network hallucinations, etc. Some 

methods integrate a physical model as part of network training to improve the data 

consistency[9], [10]. However, these trained networks are tailored to specific system models, 

requiring network retraining for system changes in protocol, technique, device, etc.
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Diffusion Posterior Sampling (DPS)[11] has established a new framework to integrate a 

learned prior and physics model. Specifically, DPS starts with unsupervised training of 

a score-based generative model (SGM) to capture the target domain distribution, then 

application of a reverse process to estimate image parameters - alternating between SGM 

reverse sampling to drive the image towards the target distribution and model-based 

updates to improve the data consistency with measurements. As a result, the final output 

adheres to both the prior distribution and the actual measurements. A major advantage 

of DPS is that its network training is not specific to any physical model, allowing for 

application across different imaging systems. Recently, we have applied DPS to nonlinear 

CT reconstruction[12], demonstrating its effectiveness for both low-mA and sparse-view 

single-energy CT reconstruction.

In this work, the original DPS framework is expanded to Spectral DPS (SDPS) specifically 

for material decomposition in spectral CT. To further enhance this method, we propose a 

“jumpstarted” sampling strategy with gradient approximation, which significantly stabilizes 

the sampling process and reduces computational costs. The performance of both SDPS and 

its jumpstarted variant (JSDPS) are demonstrated in dual-kVp[13] and dual-layer CT[14].

II. METHODOLOGY

A. Spectral Deep Posterior Sampling

1) Score-based Generative Model (SGM)for Inverse Problems: A SGM[15] 

defines a forward process which continuously perturbs the target-domain sample with time-

dependent noise. The corresponding reverse process generates new samples by inverting 

the perturbation process. Both forward and reverse processes are described by a stochastic 

differential equation (SDE). Specifically, the SDEs for a Denoising Diffusion Probabilistic 

Model (DDPM)[16] have the following form at time t:

Forward : dx = − βt
2 xdt + βtdw

(1a)

Reverse : dx = − βt
2 x − βt ∇xtlogpt(xt) dt + βtdw

(1b)

where βt is the time-dependent noise variance and dw is the standard Wiener process. The 

unknown score function ∇xtlogpt xt  is approximated by a deep neural network sθ xt, t . A 

SGM is also capable of posterior sampling from conditional distribution p(x ∣ y):

dx = − βt
2 x − βt ∇xtlogpt(xt ∣ y) dt + βtdw

(2)
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In the context of CT, y and x are the projection measurements and the image volume, 

respectively. Leveraging Bayes rule p(x ∣ y) ∝ p(x)p(y ∣ x), the reverse sampling (2) may be 

reformulated as:

dx = − βt
2 x − βt ∇xtlogpt(xt) dt + βtdw

−βt ∇xtlogpt(y ∣ xt)dt

(3)

The conditional distribution pt y ∣ xt  can be approximated[11] as

pt(y ∣ xt) ≈ pt(y ∣ x0), where x0 = 1
αt

(xt + (1 − αt))sθ(xt, t)

(4)

Based on this approximation, the deep posterior sampling process could be expressed as[12]:

dx = − βt
2 x − βt ∇xtlogpt(xt) dt + βtdw

−βt ∇x0logpt(y ∣ x0)∇xtx0dt

(5)

Note that the first two term is exactly same as the unconditional DDPM sampling (1b), and 

pt y ∣ x̂0  is the likelihood term for the measurements. Therefore, the reverse sampling (5) 

integrates the prior information captured by DDPM and the physical measurement model 

provided by the likelihood function.

The forward process is discretized into T  time steps [16]:

xt = αtx0 + 1 − αtϵ

where αt = ∏
i = 1

t
(1 − βt), ϵ ∼ N(0, I), t = 1, 2…T

(6)

Since ϵ = − 1 − α‾t logpt xt , DDPM trains a network ϵθ(x, t) to predict the noise ϵ. That is, 

network parameters, θ, are estimated

θ* = argmin Ex0Eϵ, t‖ ∈θ (Xt, t) − ϵ‖2
2

(7)

Using the trained network and physical model, the image x0 may be reconstructed by solving 

the reverse SDE[16], [17].

2) Diffusion Posterior Sampling for Material Decomposition: This work aims 

to apply the DPS for the material decomposition problem, which estimates basis material 
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densities from the spectral CT measurements[1]. We adopt a general spectral CT model[14] 

where measurements y are assumed to follow a multi-variate Gaussian distribution with 

covariance K: y ∼ N(y, K) and mean:

y = BS exp( − QAx)

(8)

where x are densities for each basis volume, Q are mass attenuation coefficients for each 

basis, A represents (channel-specific) projection matrices, S are channel-specific spectral 

response, and B captures overall gain effects. Substituting Eq.(8) into Eq.(5), we have the 

spectral DPS (SDPS) for material decomposition:

dx = − βt
2 x − βt ∇xtlogpt(xt) dt + βtdw

− βt ∇x0‖BS exp(−QAx0) − y‖K−1
2 ∇xtx0dt

(9)

The SDPS pseudo-code is shown below and illustrated in Fig. 1.

Algorithm 1

Spectral Diffusion Posterior Sampling (SPDS)

 1: T: diffusion steps

 2: ηt: step size

 3: y: spectral CT measurement

 4: xT ∼ N(0, I)
 5: fort = T  to 1 do:

 6:    z ∼ N(0, I)

 7:    x0 = 1
αt

(xt − 1 − αtϵθ(xt, t))

 8:    xt − 1
′ = αt(1 − αt − 1)

1 − αt
xt + αt − 1βt

1 − αt
x0 + σtz

 9:    xt − 1 = xt − 1
′ − ηt ∇xt‖BS exp(−QAx0) − y‖K−1

2 ∇xtx0

10: end for

B. Strategies for fast and stable SPDS

1) Instability of SDPS: The SDPS framework has the advantage of combining a learned 

prior and a physics model. However, we have observed that the stability of SDPS is highly 

dependent on the step size, ηt, and that even with careful tuning, decompositions present 

large variations over posterior samples and hallucinations. Careful design of a step size 

scheduler is required to balance the prior information and measurements, particularly for the 

earlier steps in the reverse process. In early steps, xt is far from the solution. While large step 

sizes may be favorable to enhance data consistency, this risks disrupting diffusion updates - 

making it challenging to pick optimal step sizes.

Jiang et al. Page 4

Conf Proc Int Conf Image Form Xray Comput Tomogr. Author manuscript; available in PMC 2024 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) Jumpstarted Sampling: For many imaging problems, an initial estimate is 

readily available through fast computation. For example, in spectral CT, projection-

domain or image-domain material decomposition [18], [19] can be used as the first-pass 

estimate, which we denote as x̂0
f. Forward diffusion can be directly performed on x̂0

f as 

x̂t
f = α‾tx̂0

f + 1 − α‾t ϵ. The difference between the distribution of x̂t and x̂t
f can be quantified 

by the KL divergence:

DKL(p(xt ∣ x0)‖p(xt
f ∣ x0

f)) = αt
2(1 − αt)‖x0

f − x0‖2
2 .

(10)

In forward diffusion, α‾t/ 1 − α‾t  progressively diminishes, ultimately converging towards 

zero. Consequently, Eq.(10) implies that we can expect for sufficiently large t, the difference 

between the distribution of xt and x̂t
f is small enough to be ignored, then the reverse sampling 

can start from x̂0
f instead of pure noise. In effect, we can skip early time steps by using an 

approximate solution to which an appropriate amount of noise has been added - yielding 

a more stabilized decomposition by using an initialization closer the solution as well as a 

faster solution having “jumpstarted” over many early time steps.

3) Gradient Approximation: SDPS computes the data fidelity gradient term via chain 

rule: ∇xtlogpt y ∣ x̂0 = ∇x̂0logpt y ∣ x̂0 ∇xtx̂0. The ∇xtx̂0 term may be expanded as:

∇xtx0 = 1
αt

(1 − 1 − αt ∇xtϵθ(xt, t))

(11)

The computation of the Jacobian ∇xtϵθ xt, t  is both time- and memory-intensive, particularly 

for high dimensional images and deep neural networks. We have experimentally observed 

that the Jacobian is well-approximated by a diagonal matrix for each time step, and 

the diagonal elements are of limited range. Therefore, we approximate the Jacobian by 

a constant (which could be further absorbed into the step size). Incorporating both the 

jumpstarted sampling and the gradient approximation, we propose the jumpstarted spectral 

DPS (JSDPS), which is outlined in Algorithm 2 below.

Algorithm 2

Jumpstarted Spectral DPS (JSDPS)

 1: T , T ′: training steps, sampling steps, T ′ ≪ T
 2: ηt: step size

 3: y: spectral CT measurement

 4: x0
f
: image-domain decomposition

 5: ϵ ∼ N(0, I)

 6: xT ′ = x0
T ′ = αT ′x0 + 1 − αT ′ϵ
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 7: fort = T ′ to 1 do:

 8:    z ∼ N(0, I)

 9:    x0 = 1
αt

(xt − 1 − αtϵθ(xt, t))

10:    xt − 1
′ = αt(1 − αt − 1)

1 − αt
xt + αt − 1βt

1 − αt
x0 + σtz

11:    xt − 1 = xt − 1
′ − ηt ∇x0 ‖BS exp(−QAx0) − y‖K−1

2

12: end for

C. Unconditional Multi-Material Generation

1) Dataset Generation: This work focuses on two material decomposition with water 

and calcium as bases. To build spectral CT and material density dataset, we collected 

32000 clinical chest CT slices from the CT Lymph Nodes dataset[20]. Those images are 

pre-processed to convert Hounsfield Units to attenuation coefficients and remove patient 

beds. An upper bound value (2000HU) was also applied to remove large attenuation values 

from metal. Two soft threshold functions were applied to approximate water and calcium 

densities (unit: /ml):

ρw(μ) =
kwμ, if μ ≤ μw

kwμw − kwc(μ − μw), if μw < μ < μc

0, otℎerwise

(12a)

ρc(μ) =
kc(μ − μc) + kcw(μc − μw), if μ ≥ μc

kcw(μ − μw), if μw < μ < μc

0, otℎerwise

(12b)

In this work, kw, kwc, kcw, kc were empirically set to 5.18, − 8.77, 5.69, 2.12 g/cm2, while μw and 

μc were 0.22 cm−1 and 0.35 cm−1. The water and calcium densities were used as ground truth 

to simulate spectral measurements according to Eq.8.

2) Network Training: DDPM[16] is employed as the SGM framework, with the 

Residual Unet[21] as the backbone network. Paired water and calcium images are 

concatenated to form the 2 channel image x0. The discretized diffusion process uses T = 1000
time steps with a linear variance scheduler from β1 = 1e−4 to β1000 = 0.02. Training and 

validation datasets contain 25000 slices and 5000 slices, respectively. The loss function (7) 

is minimized by the Adam optimizer with a batch size of 16 and a learning rate of 10−4. 

Training terminated after 200 epochs.
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D. Conditional Posterior Sampling for Different Spectral Systems

The unconditional DDPM training captures the material bases distribution without 

specification of the spectral CT device. The trained model can be used in material 

decomposition for arbitrary spectral CT systems. Here we investigate the SDPS/JSDPS 

performance on a simulated dual-layer CT [14] and dual-kVp CT system [13]. The dual-

layer CT uses a detector with 300μm CsI and 600μm CsI scintillators in the top and bottom 

layers, respectively (with a 5mm gap between layers). The x-ray tube operates at 120 kVp. 

The dual-kVp system uses single-layer detector with 600μm CsI. The tube voltage alternates 

between 80 kVp and 120 kVp every other view. For both systems, 800 projections were 

simulated with Poisson noise equivalent to an exposure of 0.05 mAs/view. Voxel size and 

detector pixel size were set to 0.8 mm and 1.0 mm, respectively.

E. Evaluation

We first evaluated the performance of JSDPS with and without gradient approximation. 

A standard image-domain decomposition from filtered backprojection reconstructions, i.e., 

the initialization of the JSDPS algorithm, was also shown for comparison. Second, we 

compared the performance of several material decomposition algorithms including model-

based material decomposition (MBMD) [3], SDPS, and JSDPS. MBMD was formulated as 

the following optimization problem:

x = argmin‖BS exp( − QAx) − y‖K−1
2 + λwR(xw) + λcR(xc)

(13)

where R is a quadratic gradient roughness penalty. Regularization strengths, λw, λc, for 

water and calcium were set to 10−4 and 4 × 10−4, respectively. We used 10000 iterations 

of separable paraboloidal surrogates updates, and final change in loss is ∼ 0.01% from 

the previous iteration. SDPS was implemented according to Algorithm 1, and the step 

size scheduler follows [11]: ηt = η/‖BS exp( − QAx) − y‖K−1. We swept η from 0.1 to 10, 

and the optimal η was determined as the one with minimal MSE from ground truth. 

JSDPS used a constant step scheduler with T ′ = 150, ηt = 0.02. Performance was evaluated 

for computation time (calculated for eight parallel decompositions), and image quality - 

quantified by Structural Similarity Index Measure(SSIM) and Peak Signal-to-Noise Ratio 

(PSNR). Additionally, to compare variability and biases in the posterior samples provided by 

SDPS and JSDPS, we compute sample bias and standard deviation over an ensemble of 16 

outputs:

Bias = ‖E{x} − x‖2 Std = ‖E{(x − E{x})2}‖2

(14)
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III. RESULTS

A. Illustration of JSDPS variants

Fig.2 displays JSDPS results as compared with standard image-domain decomposition 

(initialization) and the ground truth. Image-domain decomposition shows significant image 

noise and streaking. JSDPS without gradient approximation effectively captures most of 

the high-contrast structures, including smaller pulmonary vessels. However, as seen in the 

zoomed-in ROIs, low-contrast soft tissue hallucinations are present. In the contrast enhanced 

areas of the calcium image, such as the aorta, deformations are also observed. By using the 

gradient approximation, the reverse sampling achieves 20.2% and 29.3% computation time 

decrease for the dual-layer and dual-kVp system, respectively. Gradient approximation also 

effectively mitigates the hallucinations and enhances the consistency with ground truth for 

vascular structures.

B. Comparison of SDPS, JSDPS, and MBMD

1) Image Quality: Figure 3 compares the performance of SDPS, JSDPS, and MBMD 

in water and calcium bases for the dual layer and dual kV systems. Four zoomed in 

areas are shown in the (1) lung, (2) heart (iodine-filled aorta in the calcium basis), (3) 

low-contrast soft tissue, and (4) spine. Comparing across all three algorithms, MBMD 

produces images with the highest noise (evident in ROIs 2 and 3) at the lowest spatial 

resolution (evident in ROI 1). The SDPS results have low noise and high spatial resolution, 

but are prone to hallucinations observed as erroneous anatomy in all four ROIs. While SDPS 

produces results that are more closely aligned with the prior distribution, the instability of 

the algorithm is problematic for the low fidelity (low dose) data simulated in this work. 

The JSDPS algorithm outperforms both MBMD and SDPS from both visual observations 

of anatomical structures faithful to the ground truth and according to SSIM and PSNR. 

Good decomposition results were obtained for both the dual layer and dual kV system, 

demonstrating generalizability to different spectral systems.

Figure 4 shows the bias and standard deviation maps computed from an ensemble of 16 

individual output samples. SDPS exhibits large variability and bias around edge features, 

suggesting substantial image uncertainty. In contrast, JSDPS displays markedly reduced bias 

and standard deviation, demonstrating the capability to effectively stabilize the sampling 

process.

2) Computational Cost: Table I summarizes the computational cost of different 

material decomposition algorithms for eight output estimates. MBMD is the slowest due to 

the large number of iterations (10000) required for convergence. SDPS substantially reduces 

the number of iterations (1000), thereby shortening the computation time. Leveraging the 

jumpstarted sampling strategy and the gradient approximation, JSDPS requires only 150 

iterations, which results in an additional 86.83% and 88.07% reduction in computation time 

for dual-layer and dual kVp CT, respectively. Furthermore, a 23.16% and 42.54% memory 

saving was also achieved compared to SDPS for the two spectral systems due to the absence 

of Jacobian computation.
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IV. CONCLUSION AND DISCUSSION

Spectral CT material decomposition is a challenging and ill-conditioned problem, often 

exhibiting excessive noise and slow convergence. The novel SDPS framework is designed 

to tackle these issues - combining a sophisticated learned SGM prior and a physical 

model, to achieve low image noise while enhancing image quality. We additionally adopted 

jumpstarted sampling and gradient approximation strategies which were found to be 

effective in stabilizing performance as well as reducing computation time and memory 

consumption. in evaluations on both dual-layer and dual-kVp systems, JSDPS achieves the 

highest accuracy, the lowest uncertainty, and the lowest computational costs compared to 

SDPS and MBMD. This work demonstrated that JSDPS is a promising approach for spectral 

CT decomposition.
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Fig. 1. 
SDPS Workflow: Basis material images are concatenated to form x0. The forward process 

progressively perturbs images with noise, and a noise prediction network is trained. The 

reverse process uses DDPM sampling to progressively denoise the image and uses a 

likelihood-based update to enforce data consistency.
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Fig. 2. 
Decomposed water (top, W/L: 1.2/0.6 g/ml) and Calcium (bottom, W/L: 0.05/0.1 g/ml) 
images. Left to right: Image-domain decomposition, JSDPS without gradient approximation, 

JSDPS with gradient approximation, ground truth. Computational time for eight outputs is 

provided in the bottom left corner.
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Fig. 3. 
Decomposed water (top, W/L: 1.2/0.6 g/ml) and Calcium (bottom, W/L: 0.05/0.1 g/ml) for 

(left to right): MBMD, SDPS, JSDPS, ground truth.
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Fig. 4. 
Bias and standard deviation map for SDPS and JSDPS. Here we only show the results of 

dual-kVp system, which is similar to that of the dual-layer system.
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TABLE I

COMPUTATIONAL COST OF MATERIAL DECOMPOSITION ALGORITHMS

Dual layer Dual kVp

Time(s) Memory(GB) Time(s) Memory(GB)

MBMD 6406.3 11.3 2802.5 4.8

SDPS 728.2 17.7 478.6 13.4

JSDPS 95.9 13.6 57.1 7.7
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