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3D whole body preclinical micro-CT 
database of subcutaneous tumors 
in mice with annotations from  
3 annotators
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A pivotal animal model for development of anticancer molecules is mice with subcutaneous tumors, 
grown by injection of xenografted tumor cells, where micro-Computed Tomography (µCT) of the mice 
is used to analyze the efficacy of the anticancer molecule. Manual delineation of the tumor region 
is necessary for the analysis, which is time-consuming and inconsistent, highlighting the need for 
automatic segmentation (AS) tools. This study introduces a preclinical µCT database, comprising 452 
whole-body scans from 223 individual mice with subcutaneous tumors, spanning ten diverse µCT 
datasets conducted between 2014 and 2020 on a preclinical PET/CT scanner, making it the hitherto 
largest dataset of its kind. Each tumor is annotated manually by three expert annotators, allowing 
for robust model development. Inter-annotator agreement was analyzed, and we report an overall 
annotation agreement of 0.903 ± 0.046 (mean ± std) Fleiss’ Kappa and a mean deviation in volume 
estimation of 0.015 ± 0.010 cm3 (6.9% ± 4.7), which establishes a human baseline accuracy for 
delineation of subcutaneous tumors, while showing good inter-annotator agreement.

Background & Summary
One of the most commonly used imaging technologies in preclinical research is micro Computed Tomography 
(µCT)1,2, with over 22.000 entries on PubMed for the keyword “micro-CT” up to this date. It offers high reso-
lution, fast acquisition and well calibrated voxel intensities, giving detailed insights into volumes and internal 
structures of small animals3. It has high reproducibility and can be utilized both as a standalone image modality 
or combined with nuclear imaging such as Positron Emission Tomography (PET) or Single Photon Emission 
Computed Tomography (SPECT)4.

Longitudinal studies can be performed with µCT, as the radiation dose is low. This enables monitoring of 
disease and treatment progression in the same animal by performing multiple scans, thus extracting more infor-
mation per animal. This reduces the number of animals required to conduct studies, in accordance with the 
animal protection 3 R aims (Refinement, Replacement and Reduction)5.

µCT is often performed on a large scale for preclinical research, but the resulting images require further 
manual analysis to be useful. The current gold-standard is to perform manual delineation of regions of interest, 
which is both laborious and subject to high user-dependence6,7. This limits the reproducibility of preclinical 
studies, and the time needed for manual analysis can easily exceed that of the scanning procedure itself. Hence, 
there is an unmet need for automatic segmentation (AS) tools to mitigate the challenges of reproducibility and 
time consumption in preclinical imaging studies. Automatic segmentation models are machine learning models 
that once trained, can take in a new image and decide what label should be assigned to each pixel in the image 
without any human intervention needed.

Recently, with the introduction of machine learning algorithms, repetitive tasks that require human interac-
tion can be automated by training models on large datasets. The use of machine learning algorithms for AS offers 
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the prospect of improving reproducibility, consistency, and reliability in the analysis, and thus a possible solution 
to the aforementioned challenges in the analysis of preclinical images.

A widespread disease model in image-based preclinical research is immunosuppressed mice in which xeno-
grafted tumor cells from human cancers have been injected under the skin, which then develop into human-like 
subcutaneous tumors8–11. These models are a staple for human anti-cancer drug discovery, where the drug 
uptake in the tumor can be measured as well as the tumor growth rate and tumor metabolism. This model can 
further be utilized for personalized medicine by xenografting individual human tumor biopsies to assess the 
sensitivity to different anti-cancer agents in a patient-to-patient approach.

While several approaches to AS on medical images exist, there are no public AS models or datasets for sub-
cutaneous tumors in neither µCT scans12 or Magnetic Resonance Imaging (MRI) scans13. Research on AS for 
other types of tumors has been done for µCT14,15, as well as for MRI16–21, and cryogenic-imaging22. However, 
these were generally performed on small datasets, which limit their usefulness as a general tool. Also, they have 
not made their models publicly available.

Classically, the approaches to AS have often been atlas-based algorithms, where one or multiple anatomical 
atlases guide the AS23,24, or filter-based, where a large set of filters are used to extract features for a machine 
learning algorithm25. However, subcutaneous tumors differ significantly in anatomical placement and morphol-
ogy between each mouse, which makes them less suitable for atlas-based algorithms. The texture of the tumor 
and surrounding soft-tissue is quite similar, which also makes texture-based methods less suitable. Deep learn-
ing models excel in learning complex interactions between morphology and texture, but require large amounts 
of high-quality data to be trained successfully26. Our dataset is aimed at filling this data gap and enable deep 
learning models to be trained for this segmentation task.

We provide a preclinical µCT whole-body database of mice with subcutaneous tumors, publicly available. 
It consists of 452 whole-body µCT scans from 223 individual mice, retrospectively collected from ten different 
datasets at our institution spanning the years 2014 to 2020. All scans are annotated by three trained annotators, 
which gives our dataset the size and diversity needed for developing robust AS algorithms, as well as providing 
a human baseline for inter-annotator agreement.

The aim is that our database will serve as a resource to train and validate machine learning algorithms for AS, 
thus facilitating the development of fast, robust, and reproducible analysis tools for subcutaneous tumor models.

Methods
Datasets.  Ten µCT datasets from 2014 to 2020 were collected (Table 1 and Figure 1). All animal experi-
ments were approved by the Danish Animal Experiments Inspectorate (permit number 2012-15-2934-00064 and 
2016-15-0201-00920). The animals were housed in the core animal facilities at the University of Copenhagen, 
Denmark, where they were exposed to a 12:12 hours light/dark cycle, with a temperature of 21 ± 2 °C, and access 
to water and rodent food ad libitum. The animals were acclimatized for at least one week before being included in 
the experiments. The included µCT scans have not previously been published but were only used to anatomically 
guide the extraction of values from corresponding PET images.

The 10 datasets collectively contain 452 µCT scans of 223 individual mice. The mice were scanned longi-
tudinally at different time intervals on a preclinical µCT/PET scanner (Inveon, Siemens, USA). All scans were 
performed on athymic nude mice with human xenografted tumor cells, which had been allowed to develop into 
subcutaneous tumors prior to performing the scans. In 3 of the 10 datasets, each animal had two tumors: one on 
each flank. In the remainder of the 7 datasets, each animal had one tumor on the flank (Table 1 and Figure 1).  
In Dataset 8, the mice had the tumor inoculated behind the front legs instead of the flank. Mice with external 
necrosis on tumors and a total tumor burden of over 2000 µL were euthanized due to ethical concerns, and a 
typical humane endpoint would be 1500 µL. In Dataset 8 and 10, the mice were scanned in a small animal bed, 
and the remainder of the mice were scanned laying freely on the bed, which reflects different real world scanning 
scenarios.

The mice were all aged from 6–8 weeks at the time of enrolment into the experiments. During the µCT scan-
ning procedure, the mice were anesthetized with a continuous flow of 1–2% Sevoflurane, while being placed on 
a heated bed. All scans were reconstructed using either filtered back projection or the Feldkamp Cone Beam 
algorithm in the vendor-supplied software (Inveon Acquisition Workplace, Siemens, USA) with a voxel size of 

Dataset Scans, n Mice, n Tumors per mouse Volume (cm3 ± std) Minimum (cm3) Maximum (cm3) Year of scans

Dataset 1 43 15 2 0.330 ± 0.153 0.098 0.766 2014

Dataset 2 61 32 1 0.185 ± 0.127 0.044 0.551 2014

Dataset 3 24 18 1 0.329 ± 0.217 0.071 0.793 2014

Dataset 4 40 10 1 0.094 ± 0.065 0.014 0.240 2016

Dataset 5 54 28 1 0.932 ± 0.955 0.063 3.951 2016

Dataset 6 37 18 2 0.118 ± 0.051 0.025 0.310 2017

Dataset 7 12 4 1 0.796 ± 0.431 0.388 1.528 2017

Dataset 8 91 40 1 0.466 ± 0.329 0.056 1.947 2020

Dataset 9 28 18 1 0.460 ± 0.276 0.132 1.220 2020

Dataset 10 62 40 2 0.101 ± 0.054 0.020 0.353 2020

Table 1.  Details for each dataset. Std = Standard Deviation.
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0.210 × 0.210 × 0.210 mm and no spacing between slices. All scans were acquired at 500 µA, while the voltage 
and exposure times differed between datasets. All details can be seen in Table 2.

Data preprocessing and annotation.  Each µCT scan was performed with either two or four mice in the 
scanner at the same time, with each mouse being placed in a small animal bed. The µCT scans were preprocessed 
by cropping out the mice into 192 × 192 pixels in the x- and y-axis, while the full length along the z-axis was kept, 
and then clipping the dynamic range between −400 and 1,000 Hounsfield Units. Cropping out each mouse eases 
the process of training machine learning algorithms as well as reducing the space needed for storage, since the 
mice would be surrounded by air in the field of view of the µCT scan, which the cropping process would remove 
the majority of.

Fig. 1  Example of a µCT scan for each of the 10 datasets, with an axial slice containing the tumor with and 
without the tumor mask overlayed in red, and a 3D Maximum Intensity Projection of the entire scan shown 
below the axial slices.
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After the µCT scans were preprocessed, all tumors were then manually labeled by three independent annota-
tors, using the Napari Viewer27 in Python 3.8 (Python Software Foundation, Delaware, USA). The tumors were 
annotated by drawing on every 5th axial slice and then using linear interpolation to form the 3D annotation of 
the tumor. Annotations touching either air or bones were automatically removed by thresholding to speed up 
the annotation process, followed by inspection and potential correction by the annotator if needed. A threshold 
of under −300 HU for air and over 500 HU for bones was used. If any central necrosis was present in the tumor, 
it was included in the annotation mask, in accordance with the RECIST guidelines28, to ensure clinical relevance 
and translatability. All annotators were blinded from the dataset number and scan time of the mice during anno-
tation to avoid biasing the delineation of the tumors.

Annotation metrics & evaluation.  We used the following metrics to evaluate the annotations, which 
were all performed over the tumor in 3D (i.e. not slice-wise). The inter-annotator agreement was evaluated by 
calculating the Sørensen-Dice coefficient between annotators29. In our case, it was used to compare the agreement 
between the three pairs of annotators (A vs B, A vs C, and B vs C). The Sørensen-Dice coefficient was calculated 
with the following formula:

∩=
| |

| | + | |
SD

X Y
X Y

2

Where X and Y represent the set of segmented voxels by two different annotators. The Sørensen-Dice coefficient 
varies between 0 and 1, where a score of 1 denotes a perfect overlap between the segmentations and a score of 0 
denotes no overlap.

To assess the overall agreement between the three annotators, we used Fleiss’ Kappa30. This similarity coeffi-
cient is related to Cohen’s Kappa31 but extends to multiple annotators. In brief, Fleiss’ Kappa is calculated by the 
following formula:

κ =
−
−

P P
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The denominator − P1 e designates the degree of agreement, which is attainable above chance, while the 
numerator −P Pe designates the degree of agreement that was actually achieved above chance. If the annotators 
are in complete agreement, then κ = 1, while if there is no agreement between the annotators above what would 
be expected by chance, then 0κ ≤ . If the agreement is exactly the same as what is expected by chance, then κ = 0.

The agreement of volume estimation across the three annotators was estimated as the difference in esti-
mated volume between the pairs of annotators. If two tumors were present in the mouse, their volumes were 
calculated individually. For comparing the agreement of all annotators on volume estimation, the Root Mean 
Squared Error (RMSE) between the volume estimated from each annotator and the mean of the volume from 
all three annotators was used. The RMSE indicates the average volume deviation of each annotator from the 
mean volume estimated from all annotators. The RMSE was used rather than the mean difference of all pairs, 
as this would trivially be zero, given the annotators were subtracted in the right order, and hence not yield any 
information.

The annotation results are presented in Table 3, and a detailed evaluation on a dataset-level can be seen in 
Fig. 2 and in Table 4.

Dataset Voltage (kVp) Exposure time (ms) Scan time points Scans not present at time points

Dataset 1 80 270 0 h, 3 h, 22.5 h M11: 22.5 h; M12: 22.5 h

Dataset 2 70 350 0 h, 8d M13: 8d; M23: 8d

Dataset 3 70 350 0 h, 24 h M07-M18: 0 h

Dataset 4 70 280 0 h, 2 h, 6 h, 16 h

Dataset 5 65 430 0 h, 24 h M15: 0 h; M16: 0 h

Dataset 6 70 380 0 h, 7d, 13d, 20d
M01: 20d; M02: 20d, M03: 13d, 20d; M04: 13d, 20d; M05: 7d, 13d, 20d; M06: 20d; 
M07: 0d, 13d, 20d; M08: 7d; M10: 0d; M12: 13d; M11: 0d, 13d, 20d; M13: 7d, 13d, 
20d; M14: 0d, 7d, 13d; M15: 13d; M16: 13d, 20d; M17: 7d, 13d, 20d; M18: 7d, 13d, 
20d

Dataset 7 65 430 0 h, 3 h, 24 h

Dataset 8 65 430 0 h, 6d, 8d
M01: 8d; M02: 8d; M06: 8d; M08: 8d; M09: 6d; M10: 6d; M12: 8d; M14: 8d; M17: 
0d; M18: 0d, 8d; M19: 0d, 8d; M20: 0d; M25: 6d, 8d; M26: 6d, 8d; M27: 8d; M28: 8d; 
M29: 8d; M30: 8d; M31: 8d; M32: 8d; M34: 8d; M36: 8d; M39: 8d; M40: 0d, 8d;

Dataset 9 65 450 0 h, 18 h M01: 18 h; M02: 18 h; M09: 18 h; M10: 18 h; M15: 0 h; M16: 0 h; M17: 18 h; M18: 
18 h

Dataset 10 65 410 0 h, 3d M01: 0d; M02: 13d; M11: 13d; M15: 13d; M18: 13d; M19: 13d; M20: 13d; M24: 13d; 
M27: 13d; M28: 0d; M29: 0d; M31: 0d; M32: 13d; M33: 13d; M39: 13d; M40: 13d

Table 2.  Detailed scanning parameters for each dataset. All datasets had a voxel size of 
0.210 × 0.210 × 0.210 mm with no spacing between the slices.
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Annotator Sørensen-Dice coefficient Mean volume difference (cm3) Mean volume difference (%)

A vs. B 0.900 ± 0.056 −0.003 ± 0.030 −0.8% ± 16.5

A vs. C 0.907 ± 0.048 0.006 ± 0.029 2.2% ± 14.7

B vs. C 0.902 ± 0.046 0.009 ± 0.030 3.0% ± 15.1

Fleiss’ Kappa RMSE (cm3) RMSE (%)

All 0.903 ± 0.046 0.015 ± 0.010 6.9 ± 4.7

Table 3.  Comparison between pairs of annotators and all annotators across all datasets. The metrics were 
calculated over the 3D tumor volume. RMSE was performed between the volume of each annotator and the 
mean volume across all annotators.

Fig. 2  Sørensen-Dice coefficient across annotators on each dataset and difference in volume. Each dataset is 
color-coded, while the annotator pairs are indicated by the hatching: Annotator A vs. B, A vs. C and B vs. C is 
shown. The middle line is the median, box ends are quartiles, whiskers are 1.5 interquartile range and dots are 
outliers outside the 1.5 interquartile range. (a) depicts the Sørensen-Dice coefficient, (b) depicts the difference 
in volume estimation and (b) depicts the root mean squared error between the mean tumor volume estimated 
from all 3 annotators, and the volume each annotator has estimated. The metrics were calculated over the 3D 
tumor volumes.
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Data Records
The dataset is available at the University of Copenhagen Electronic Research Data Archive32. The data are organ-
ized into folders for each dataset, called Dataset 1 to 10. Each dataset folder contains subfolders with mice that 
were scanned together (either two or four in the same scan). Each of these folders again contains subfolders 
with the cropped out µCT scan for each mouse, as well as the annotations from each of the 3 annotators. The 
mice were named MXX, where XX is the number of each mouse in the dataset. Mouse numbers will occur 
multiple times if the same mouse was scanned at several time points in a dataset. The scan time points appear 
in the names as Xh or Xd, where X is the number of hours or days since the first scan of the mouse, respectively. 
An overview of the folder structure can be seen in Fig. 3. The data are saved in compressed Neuroimaging 
Informatics Technology Initiative (NIfTI) format33, which is compatible with most platforms for medical 
images. Detailed descriptions of the datasets can be found in Table 2. The xenograft tumor cell line information 
was not available or was of proprietary nature, and therefore, it is not included in this dataset.

Technical Validation
The presented dataset offers a basis for both development and evaluation of AS algorithms. It further estab-
lishes a baseline for human inter-annotator agreement. The overall agreement of the annotators was 0.903 Fleiss’ 
Kappa, and the Sørensen-Dice coefficient between pairs of annotators was around ~0.90 (Table 3). The anno-
tator agreement was slightly higher for datasets 5, 7, 8, and 9 compared to the rest of the datasets (Fig. 2 and 
Table 4), which was likely due to the tumors being larger in these datasets. The degree of agreement was similar 
to what other studies with manual segmentation of CT images have reported12,34–39. For example, in Rosenhain 
et al.12 the inter-annotator agreement was 0.810 Sørensen-Dice coefficient for tumors in contrast-enhanced 
µCT scans, and at most 0.879 Sørensen-Dice coefficient for the organs. As an clinical example, Patil et al.38 
obtained a Sørensen-Dice coefficient of 0.89-0.90 for lung tumors on human CT scans. Our finding of around 
0.90 Sørensen-Dice coefficient between the annotators was hence reasonable compared to similar datasets.

For the estimation of the tumor volume, each annotator pair had a mean disagreement close to zero mL 
across all datasets, with a standard deviation of about 0.030 mL. The RMSE from the mean volume was 0.015 mL 
across all datasets. In Dataset 4, 6, 9, and 10, the annotators had slightly lower variance on the agreement in 
volume, compared to the rest of the datasets (Fig. 3 and Table 3). This was most likely due to the image quality 
being slightly higher for these datasets. We note that these results are specific to human xenografts, and that 
other tumor models such as syngeneic models could elicit different results.

Dataset A vs. B A vs. C B vs. C Fleiss’ Kappa

Dataset 1 0.908 ± 0.035 0.911 ± 0.031 0.915 ± 0.028 0.911 ± 0.024

Dataset 2 0.874 ± 0.055 0.891 ± 0.038 0.881 ± 0.048 0.882 ± 0.040

Dataset 3 0.870 ± 0.056 0.884 ± 0.053 0.889 ± 0.038 0.881 ± 0.042

Dataset 4 0.887 ± 0.049 0.895 ± 0.050 0.900 ± 0.043 0.894 ± 0.042

Dataset 5 0.931 ± 0.053 0.933 ± 0.042 0.928 ± 0.044 0.931 ± 0.041

Dataset 6 0.841 ± 0.047 0.853 ± 0.048 0.872 ± 0.048 0.855 ± 0.041

Dataset 7 0.938 ± 0.029 0.938 ± 0.024 0.941 ± 0.031 0.939 ± 0.026

Dataset 8 0.934 ± 0.031 0.932 ± 0.031 0.921 ± 0.036 0.929 ± 0.029

Dataset 9 0.956 ± 0.019 0.958 ± 0.010 0.946 ± 0.023 0.953 ± 0.015

Dataset 10 0.868 ± 0.046 0.883 ± 0.042 0.858 ± 0.049 0.869 ± 0.040

Table 4.  Sørensen-Dice coefficient and Fleiss’ Kappa on a dataset level (mean ± std) for annotator A, B and C. 
The metrics were calculated over the 3D tumor volume.

Fig. 3  Overview of the folder structure for the datasets. MXX is the mouse number and Xh or Xd is the hours 
or days since the first scan of the mouse, respectively.
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Usage Notes
All interested researchers are highly encouraged to download the 3D µCT dataset and use it for their own exper-
iments and model development. It can be used to train AS algorithms and evaluate their accuracy against human 
annotators or be used as an external evaluation dataset for AS algorithms, which are trained on a different data-
set. Since the dataset is annotated by three individual researchers, all annotations can be utilized in the training 
of the AS algorithms to yield more general and de-biased models.

When evaluating AS algorithms on our dataset, we suggest that users test and report their performance on 
each individual annotator’s annotations, as well as the mean performance across all annotators. We have further 
supplied annotations that are merged from the three annotators by the STAPLE40 algorithm, which can be addi-
tionally used to report performance of an AI model.

Having multiple annotations can further be used to develop and evaluate uncertainty quantification algo-
rithms, as the uncertainty for each scan can be calculated through the three different annotations41. The dataset 
can further be used in training deep learning algorithms on other tasks than subcutaneous tumor segmenta-
tions, e.g. annotating new anatomical structures or for self-supervised pretraining. The NIfTI format ensures 
that the scans are compatible with a broad array of commercial and non-commercial software.

Code availability
No custom code was used for this paper.
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