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A global dataset of gross nitrogen 
transformation rates across 
terrestrial ecosystems
Eunji Byun   1, Christoph Müller2,3,4, Barbara Parisse5, Rosario Napoli5,  
Jin-Bo Zhang4,6, Fereidoun Rezanezhad   7, Philippe Van Cappellen7, Gerald Moser2,4,  
Anne B. Jansen-Willems3,4, Wendy H. Yang   8, Rieko Urakawa   9, José Ignacio Arroyo10,11, 
Ulderico Neri5, Ahmed S. Elrys4,12,13 & Pierfrancesco Nardi4,5 ✉

Rates of nitrogen transformations support quantitative descriptions and predictive understanding 
of the complex nitrogen cycle, but measuring these rates is expensive and not readily available 
to researchers. Here, we compiled a dataset of gross nitrogen transformation rates (GNTR) of 
mineralization, nitrification, ammonium immobilization, nitrate immobilization, and dissimilatory 
nitrate reduction to ammonium in terrestrial ecosystems. Data were extracted from 331 studies 
published from 1984–2022, covering 581 sites. Globally, 1552 observations were appended with 
standardized soil, vegetation, and climate data (49 variables in total) potentially contributing to the 
observed variations of GNTR. We used machine learning-based data imputation to fill in partially 
missing GNTR, which improved statistical relationships between theoretically correlated processes. The 
dataset is currently the most comprehensive overview of terrestrial ecosystem GNTR and serves as a 
global synthesis of the extent and variability of GNTR across a wide range of environmental conditions. 
Future research can utilize the dataset to identify measurement gaps with respect to climate, soil, and 
ecosystem types, delineate GNTR for certain ecoregions, and help validate process-based models.

Background & Summary
The soil nitrogen (N) cycle includes several interconnected microbially mediated processes through which 
N is continuously transformed from one form to another form (Fig. 1). The balance between these processes 
regulates the availability of N in soil, therefore supporting plant growth, controlling N losses, and ecosystem 
functioning1.

Soil N transformations can be measured in terms of net and gross rates. Net rates characterise the overall 
pool size change as the sum of competing processes of a particular N species. For instance, net mineralization 
rate quantifies the balance between productive and consumptive ammonium (NH4

+) processes. On the other 
hand, measurements of gross rates provide us with unique process specific N rates as their determination allow 
the quantification of the unidirectional flux between two pools2. Gross N process rates are determined using 
15N isotope techniques such as the isotope dilution technique3 and, more recently, 15N tracing techniques based 
on dilution-enrichment principle4. Importantly, gross rates can be several orders of magnitude higher than 
net rates5. Compared to net rate measurements, the determination of gross rates is more expensive, requires 
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advanced laboratory equipment and specific technical skills. This is why in the scientific literature net rates 
predominate over gross rates. Still, quality data of gross N transformation rates are crucial to gain insigths into 
actual fluxes between N pools and to provide mechanistic insights on environmental factors influencing soil N 
cycling processes6–9. Therefore, the utilization of currently available data will help researchers in gaining funda-
mental understanding of the soil N cycle.

Here, building upon previous work on global scale synthesis of gross N transformation rates6–8,10, our global 
dataset has been updated by adding some global standardized environmental variables and by georeferencing 
every observation for its accurate soil sampling (or field measurement) location. Thus, enabling future studies to 
generate a summary of gross N rates for the target N transformation process for the region of interest, and clas-
sify them for a specific climate regime or by ecosystem type. For example, there are two sets of climate variables 
in our dataset in terms of representing the mean annual temperature (MAT) and mean annual total precipitation 
(MAP) of study site. The first set refers to the original study descriptions, and the second set is derived from 
the global climate dataset11 with standardized 30-year reference periods. Also, to allocate data to ecosystem 
types we prepared a separate biome variable in the current dataset for more standardized representation of the 
compiled terrestrial ecosystem types. Similarly, the descriptions of soil texture in the original studies varied 
depending on the reference system used. Therefore, in those cases where the weight percentages of sand, silt, 
and clay where available, we standardized the available information to conform to the USDA texture triangle 
terminology (https://www.nrcs.usda.gov/resources/education-and-teaching-materials/soil-texture-calculator). 
The aim of this dataset publication is to provide gross rates of various N transformation processes for the study 
locations (see site map in Fig. 2) but also to delineate global patterns of functional relationships of N transfor-
mations depending on environmental conditions (i.e., soil, climate, ecosystem/biome). For the second part, this 
dataset includes a data from a robust machine learning (ML) modelling-based data imputation by utilizing and 
identifying relationships between closely associated N processes.

Methods
Data acquisition.  To collect studies reporting measurements of soil gross N processes, Scopus and Web of 
Science (WoS) databases were searched in March 2022 using the following keywords: (TITLE-ABS-KEY (“gross 
N transformation*“ AND soil) OR TITLE-ABS-KEY (“15N isotope dilution” AND soil) OR TITLE-ABS-KEY 
(“15N tracing” AND soil) OR TITLE-ABS-KEY (Ntrace AND soil) OR TITLE-ABS-KEY (FLUAZ AND soil) OR 
TITLE-ABS-KEY (“gross nitrogen mineralization” AND soil) OR TITLE-ABS-KEY (“gross N immobilization” 

Fig. 1  Main processes of the N cycle. Biological N fixation is described here as the major pathway of N supply 
to soil environments, referring to the biological uptake and reduction of dinitrogen gas from the atmosphere 
to bioavailable ammonia (NH3, not shown) that is highly soluble in soil water as ammonium cation (NH4

+). 
Mineralization is another source of soil NH4

+ increase as it returs organically bound nitrogen (Norg) by 
microbial degradation, also known as ammonification. Nitrification refers to the microbial production of nitrate 
(NO3

−) with intermediates carried out by autotrophic and heterotrophic microbes. NH4
+ and Norg are the 

substrates for the autotrophic and heterotrophic pathways, respectively. During the nitrification process, NH4
+ 

is mainly oxidized to nitrite (NO2
-) and subsequently to nitrate (NO3

-), but also to a lesser extent to nitrous 
oxide (N2O), in which the autotrophic pathways are known to play an important role. As these processes are 
simultaneously occurring, NH4

+ and NO3
− are made available for plant root uptake and microbial biomass 

assimilation (to Norg), referred to here as immobilization (of NH4+ and of NO3
−, respectively). Dissimilatory 

NO3
− reduction to NH4

+ (DNRA) occurs in low oxygen availablity where NO3
- is used as the electron acceptor 

for anaerobic microbial decomposition of organic matter (thus, the microbial reduction of NO3
- via NO3

− to 
NH4

+), generally considered to maintain bioavailable N in the soil system. By contrast, in denitrification NO3
− 

is microbially reduced to gaseous forms (N2O, NO, and N2 depending on oxygen availability), which can escape 
to the atmosphere, hence, causing N loss from the soil.
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AND soil) OR TITLE-ABS-KEY (“gross NH4
+ immobilization” AND soil) OR TITLE-ABS-KEY (“gross NO3

− 
immobilization” AND soil) OR TITLE-ABS-KEY (“gross nitrification” AND soil) AND NOT TITLE-ABS-
KEY (ocean) AND NOT TITLE-ABS-KEY (marine) AND NOT TITLE-ABS-KEY (sea)) AND (LIMIT-TO 
(LANGUAGE, “English”)). One of the search keywords, Ntrace, is a parameter estimation method that quantifies 
gross N transformation rates based on 15N trace measurements and has been used in more than 200 peer-re-
viewed publications4. The search strategy returned 820 and 519 studies from Scopus and WoS respectively. 
Duplicate studies retrieved from the two databases were detected and removed based on Digital Object Identifier 
(DOI), or, in case of missing DOI, on title. After removing duplicates, we obtained a list of 820 studies that were 
screened by reading their abstracts and unsuitable papers were excluded.

The resulting 509 candidate studies were individually examined and included in the data compilation if, 1) 
soil N processes rates were estimated using 15N isotope techniques 2) the measured rates or means were clearly 
reported in the text or tables or 3) could be retrieved from a graphical representation. Finally, using these selec-
tion criteria, we compiled a dataset of 1552 observations extracted from the final selected 581 sites as reported in 
331 studies, of which 215 (65%) and 115 (35%) determined gross N process rates using the isotope dilution and 
N tracing approaches, respectively. Of the 331 studies, 291 (88%) carried out soil incubation in laboratory, while 
40 (12%) were from in situ observations. Furthermore, keyword analysis was carried out by natural language 
processing models for the final collected titles and abstracts. All the title and abstract letters were converted to 
lowercase for a consistent data input to the model functions in R ‘udpipe’ package12, which was aimed to exam-
ine the common goals of these gross rate measurements from wide geographic locations and diverse ecosystem 
types globally.

Data wrangling.  We extracted as many environmental variables as possible from the retrieved studies, 
directly from the text, tables or from supplementary materials. When authors referred to previous studies for 
soil chemical-physical characteristics or for other variables of interest (e.g., pH, organic matter percentage, car-
bon content, nitrogen content, carton to nitrogen ratio, moisture content) we searched for the cited studies and 
extracted data from primary source references. In some cases, the corresponding authors of the study were con-
tacted for data sharing request. To estimate the numerical means from data visualization and figures, we used the 
plot digitization tool WebPlotDigitizer (https://apps.automeris.io/wpd/).

Nitrogen process rates were expressed as mg N kg−1 soil day−1 but also as mg N g−1 carbon (C) day−1. When 
data in the texts were reported as mg N m−2 day−1, they were converted to mg N kg−1 day−1 using the soil bulk 
density and depth of soil sampling. If soil bulk density and sampling depth were not available in the text, data 
were not extracted. If the latitude and longitude information of original soil sampling was not clearly given in 
the original paper, the location coordinates of named sites were estimated from Google Earth map application. 
Measurements that represent different ecosystem types, plant species, and treatment levels within a single study 
were recorded as separate observations. The climate information of the study site, such as MAT (°C) and MAP 
(mm yr−1) was recorded as mentioned in the article, or, if not reported, was extracted from the global climate 
database11 using the location information (i.e. latitude and longitude) of the study site. When available, the 
measurement of ambient N deposition rates was extracted as well.

Values of soil water content during the experiment were extracted as well. However, for in-situ incubations 
soil water content was only occasionally reported. Moreover, soil water content was expressed using different 
metrics, that is gravimetric water content (GWC; g g−1), percent of water-holding capacity (%WHC) or percent 
of water-filled pore space capacity (%WFPS), the latter a proxy of water and oxygen availability to soil microbes. 

Fig. 2  Site map for the global scale dataset of gross N transformation rates.
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After the extraction of each metric, they were converted to %WFPS according to the information available in the 
studies. In some cases %WFPS was computed by dividing the volumetric water content (calculated as GWC*soil 
bulk density/water density) by total soil porosity, with the latter calculated according to soil porosity = 1 – (soil 
bulk density/2.65) assuming a soil particle density of 2.65 (g cm–3) according to Linn and Doran13. In other cases, 
%WFPS was obtained by dividing %WHC values reported in the studies by 1.415, following Franzluebbers14.

After the primary data extraction steps, standardized site information was appended taken into account dis-
crepancies in the terminology of soil and climate classification systems. For example, regional studies adopted dif-
ferent systems for the classification of the soil type. Therefore, after the initial extraction of soil type, all soil types 
were coherently coded following the World Reference Base for Soil Resources (WRB) system15. Harmonization of 
soil classification (WRB IUSS) was performed on both local and regional classifications, where applicable, missing 
soil types were added. Either by cross-referencing the point location against regional soil maps if available, or the 
“best fitting” Soil Typological Unit (STU) classification reported in the Soil Map Unit of the Harmonized World 
Soil Database ver.1.116. and ISRIC-WISE derived soil properties database17. Final soil classification was organized 
in the two main levels of WRB Reference Group (WRB_rsg code) and WRB First Qualifier (WRB_1qual code).

Similarly, we adopted the Köppen-Geiger systems for the climate classification of the study site location, includ-
ing the extraction of 30-year average climate values based on a recently published spatial reference11. For the eco-
system types, we manually standardized the terms by defining commonly identified biomes as grasslands, croplands, 
forests, shrublands, desert, wetlands, and tundra (including ‘polar’ and ‘alpine’ tundra). Moreover, forest biomes 
were primarily coded into tropical, temperate, and boreal types, and secondarily into needleleaf, broadleaf, mixed 
broadleaf-needleleaf forests for ‘leaf growth form’ factor and into deciduous and evergreen forests for ‘leaf longevity’ 
factor. Also, forests were either known as natural ‘Forest’ or artificial ‘Plantation’ if such information was available.

Data imputation.  Not all studies were designed to measure every type of N pathway known for the respec-
tive terrestrial ecosystem (see an example list of N pathway variables in Table 1). Among the N-related variables in 
Table 1, eight processes are representative of the gross N transformation rates measured in the studies, i.e., gross 
N mineralization (GNM), gross nitrification (GNR), gross autotrophic nitrification (GNRa), gross heterotrophic 
nitrification (GNRh), dissimilatory nitrate (NO3

–) reduction to NH4
+ (DNRA), immobilization of NH4

+ (INH4), 
immobilization of NO3

– (INO3), and immobilization of NO3
– and NH4

+ (INN).
Some N rate variables are not independent from each other, for example, INN (INH4 + INO3) which was some-

times reported instead of the two subrates INH4 and INO3. In general, most studies focused on a few or coupled N 
transformation pathways based on rate determining factors governed by the environment or by the experimental 
set ups. Consequently, the compiled dataset presents most of the gross rate variables but may include some rows 
where data are not reported. However, a significant number of complete data rows were available for the major 
variables (see Table 1), for example, about 50% of the total observations (774/1552) reported the gross rates of 
GNM, GNR, and INN, and this ratio went up to 75% for the cases with both GNM and GNR but not necessarily 
INN. More detailed diagnosis on the missing data is discussed in the technical validation section below.

In the compiled dataset, N related variables were analysed by correlating site environmental variables serv-
ing as possible predictors for the variability of gross N transformation rates. We used a machine learning data 
imputation on the original dataset. The imputation of the data was mainly aimed at more representative and 
commonly measured N pathways such as GNM and GNR, where a high probability of robust imputation was 
expected given the relatively low proportion of missing data rows compared to the other N rates. Caution 
is required for the direct use of imputation outcomes specifically for local scale interpretation of certain N 
pathways.

Name Unit Description

TN g N kg−1 soil Total soil nitrogen content in dry weight.

C_N Soil total organic carbon to nitrogen mass ratio.

Ammonium mg kg−1 soil Extractable NH4
+ concentration in the soil sample.

Nitrate mg kg−1 soil Extractable NO3
– concentration in the soil sample.

MBN mg kg−1 soil Microbial biomass nitrogen content.

MBC Microbial biomass carbon content.

MBC_N Microbial biomass carbon to nitrogen ratio.

NNM mg N kg−1 soil day−1 Net nitrogen mineralization rate.

NNR mg N kg−1 soil day−1 Net nitrification rate of the soil.

GNM mg N kg−1 soil day−1 Gross nitrogen mineralization rate.

GNR mg N kg−1 soil day−1 Gross total nitrification rate.

GNRa mg N kg−1 soil day−1 Gross autotrophic nitrification rate.

GNRh mg N kg−1 soil day−1 Gross heterotrophic nitrification rate.

DNRA mg N kg−1 soil day−1 Dissimilatory nitrate reduction to ammonium.

INH4 mg N kg−1 soil day−1 Gross NH4
+ immobilization rate.

INO3 mg N kg−1 soil day−1 Gross NO3
− immobilization rate.

INN mg N kg−1 soil day−1 Gross NH4
+ and NO3

− immobilization rate.

Table 1.  Nitrogen related variables in the dataset.

https://doi.org/10.1038/s41597-024-03871-3
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The R ‘missRanger’ package was used for the imputation18. Its main function fits data into a random forest 
(RF) algorithm and makes predictions on the missing values, available for both categorial and numerical. All 
existing values are potentially predictors for the missing value at a given data row, while the RF model is learning 
the relationships between variables. The function iterates the RF modelling while generating prediction of each 
missing value across all variables and evaluating the predicted values by the average of out-of-bag errors for each 
variable. The iteration stops when the error metrics on averages does not improve in the subsequent modelling, 
and the final model outcome includes the imputed values from the best iteration hitherto. The imputation results 
from ten independent missRanger runs were summarized by mean and standard deviation for each imputed 
value. The primary key (ID) is the same as the original dataset so that the imputed results can be associated with 
the original site variables.

Data Records
Original compilation.  The original compiled data and imputed version are deposited in the figshare repos-
itory19 under the creative commons license CC BY 4.0 (deposition in preparation). It includes 1552 observations 
with partially missing gross N process rates for most observations. The number of complete observations for the 
compiled eight individual N processes (i.e., GNM, GNR, GNRa, GNRh, INN, INH4, INO3, and DNRA) is 269 or for 
the three more commonly measured processes (i.e., GNM, GNR, and INN) is 774. The environmental variables 
that explain the site conditions for each observation vary depending on the site type (e.g., forest ecosystem has 
additional variables for the forest types), but complete for the standardized ecosystem types (biome) as in seven 
representative biomes, harmonized soil classes, and climate variables.

The dataset upload was done as a single Microsoft Excel file including five spreadsheets, and has a relational 
structure, i.e. they share a common column (the ID) so data can be connected among the tables. The first is a 
README file that contains comments. The second spreadsheet includes Metadata information with descrip-
tions of each compiled variable such as data type, acquisition process, and units if applicable. The third, contains 
Metadata of the imputed data. The fourth spreadsheet includes the compiled dataset of original records with 
completed location coordinates and additional environmental variables appended in this work (Table 2).

Imputation results.  The fifth spreadsheet in the excel file is a table from machine learning (ML) data impu-
tation outcomes19. Among the N process related variables (Table 1), the variables to be updated by the ML data 
imputation were determined based on the proportion of missing data rows (Table 2) less than 50%. However, 
GNRh and GNRa were included in the table expecting high dependence on the mostly available GNR data. The 
resulting values are the mean of the best iteration outcome from each independent missRanger model run after 
10 replicates, with standard deviations for those mean values19. The prediction of missing data was made by a RF 
algorithm with 1000 trees on the site environmental variables. Specifically, the imputation model excluded vari-
ables regarding the publication information and those descriptive non-categorical variables, such as original soil 
class descriptions from the publication (i.e., Soil_class) and dominant plant descriptions (i.e., Plant_dominant) as 
shown in Table 2 as variables in character type data with more than 100 unique counts.

While the data imputation was aimed at missing N rate values, the RF-based predictions were regardless 
performed on all the missing values of any input variables. Thus, the complete observations were used as pri-
mary explanations between the environmental variables, and then less complete observations were predicted by 
relatively more complete observations. The model performance metrics were suggested by out-of-bag errors of 
all the prediction results, regardless of environmental or gross N rate variables, and on average 0.83 for the ten 
best prediction models (selected each from ten random replicate missRanger() runs in this case), but we also 
report the individual R-squared value for the imputed N rates in the Metadata table in the dataset19. Note that ID 
are the same across the two spreadsheets so that the imputed results can be appended with other environmental 
variables in the original compilation.

Technical Validation
Data extraction.  While extracting data from the previous studies, we explored the research relevance of 
the final literature collection for the gross N rate and related environmental data extraction. Frequent keywords 
recognized from the titles were soil types and microbial related terms (Fig. 3), which shows the importance of 
soils in N transformation pathways and supports our aim to represent various terrestrial ecosystem types through 
this global dataset work. Interestingly, frequent keywords recognized from the abstract texts were related to the 
measurement techniques for gross rates, i.e. isotope dilution and dilution technique that, if merged, represent the 
most common term reported in the abstract keywords (i.e., isotope dilution technique). This probably highlights 
the research interest in clarifying the method used for the gross rates. Other common terms are related to soil 
organic matter, i.e. organic matter, organic C and organic layer, and greenhouse gas emissions, i.e. nitrous oxide 
(N2O). Yet, abstract keywords are also characterized by the presence of terms related to the microbial ecology 
of the N cycle, i.e. functional gene, microbial community, and community structure (Fig. 3). While these stud-
ies generally recognize the central role of microorganisms in the N transformation processes, actual bulk and 
molecular microbiology data or related measurements are not as commonly performed as we hoped for. As a 
result, a systematic inclusion of data related to the microbial components was deemed not possible at this stage. 
Where possible, we attempted to at least provide microbial biomass information, although even this information 
is largely missing from the final dataset (Table 2). We pursued a complete dataset with as many rate variables as 
possible for each observation for understanding gross N transformations in the terrestrial ecosystems.

Data imputation.  Originally, the data imputation was aimed to improve the global data coverage for various 
N transformation processes. For the ML model training, the input data included most of the site environmental 
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Variable Data type Missing count Missing (%) Unique count

ID numeric 0 0.0 1552

Authors* character 0 0.0 205

Year numeric 0 0.0 31

Publication character 0 0.0 331

Journal character 0 0.0 75

DOI character 17 1.1 326

LONDD numeric 0 0.0 581

LATDD numeric 0 0.0 603

Climate character 1067 68.8 58

Elevation numeric 1020 65.7 150

MAP numeric 376 24.2 286

MAT numeric 525 33.8 173

KC18_MAP numeric 0 0.0 491

KC18_MAT numeric 0 0.0 527

KC18_main character 0 0.0 5

KC18_sub character 0 0.0 23

Ecosystem character 6 0.4 8

Plant_dominant character 386 24.9 382

Biome character 0 0.0 9

Bio_leaf_grow character 861 55.5 16

Bio_leaf_long character 876 56.4 16

Leaf_grow character 861 55.5 6

Leaf_long character 876 56.4 6

Study_type character 0 0.0 2

Ambient_N numeric 1306 84.1 66

N_fertilized logical 0 0.0 2

Soil_class character 398 25.6 271

WRB_rsg character 16 1.0 30

WRB_1qual character 53 3.4 73

Soil_horiz character 0 0.0 3

Top_cm numeric 84 5.4 19

Bottom_cm numeric 84 5.4 40

Soil_layer character 82 5.3 3

Clay_orig numeric 899 57.9 54

Silt_orig numeric 945 60.9 75

Sand_orig numeric 937 60.4 88

Soil_texture_orig character 709 45.7 27

Clay_perc numeric 945 60.9 52

Silt_perc numeric 945 60.9 78

Sand_perc numeric 945 60.9 90

Soil_texture_class character 669 43.1 13

WHC numeric 898 57.9 35

WFPS numeric 362 23.3 87

Soil_pH numeric 0 0.0 67

Soil_pH_class character 0 0.0 9

TOC numeric 138 8.9 597

TN numeric 235 15.1 180

C_N numeric 213 13.7 259

Ammonium numeric 650 41.9 261

Nitrate numeric 651 41.9 305

MBC numeric 1201 77.4 297

MBN numeric 1150 74.1 229

MBC_N numeric 1286 82.9 134

NNM numeric 1171 75.5 287

NNR numeric 1204 77.6 248

GNM numeric 105 6.8 818

Continued
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variables as potential predictors for the targeted N process rates. Also, it included all the N process related var-
iables (Table 1), meaning that the imputation target variables served also as predictors while their missing val-
ues were predicted. As such, the reason why this ML modelling did not test or consider the independency of 
input variables was because the goal was to generate most robust imputed values based on available data and 
non-considered relationships between variables, rather than to examine the importance of environmental factors 
on specific N pathways. As a result, the predicted and filled N process rates followed similar distribution of the 
original values as shown in Fig. 4 for the three major processes. Overall, the filling was biased for the mid-range 
values, avoiding unrealistic values from outside of the original distribution but following the frequency of exist-
ing values, which further emphasizes the need for future data collection targeted at filling current missing values 
including detailed environmental parameters.

As such, some of the N related variables were expected to be dependent on each other, producing substrates 
in soil environments for the subsequent process by microbial activities, and thus their gross rates were expected 
to be correlated (Fig. 5, left). This correlation was deemed to help the ML model’s pattern learning, aimed for 
robust data-driven prediction performance. The predictor variable importance for a certain N pathway and 
gross rate variation can be explored by future data analysis studies. In this regard, any direct use of the imputed 
rate values for a specific study site was not intended here, but a comparison of different N pathways can refer 
to summary statistics for a regional or continental scale study or by ecosystem type (e.g., parameter inputs to a 
global biogeochemical cycle model).

Thus, our ML prediction-based imputation results suggest the need of future simultaneous gross rate 
measurements to provide an empirical basis of theoretically coupled N pathways by a substrate-product 
relationship. For example, INN is well correlated with the measured GNM, which agree with the 
mineralization-immobilization turnover (MIT) model according to which there is a continuous transfer of min-
eralised N into microbial biomass and vice versa. In such coupled pathways, GNM technically produces NH4

+ 

Variable Data type Missing count Missing (%) Unique count

GNR numeric 286 18.4 612

GNRa numeric 1191 76.7 260

GNRh numeric 1207 77.8 127

DNRA numeric 1157 74.5 100

INH4 numeric 658 42.4 522

INO3 numeric 744 47.9 286

INN numeric 755 48.6 533

Table 2.  Diagnosis of all variables with missing data in the global dataset. This summary table was created by a 
data diagnostic function in R ‘dlookr’ package26. *Variable was filled by the last name of the first author, followed 
by ‘et al.’ if more than or equal to three authors, or the last names of both authors for two author papers. Note 
that some last names are in the exact same spelling. Please refer to the metadata of the dataset for more variable 
descriptions19.

Fig. 3  Keyword analysis results for the study titles and abstracts. The analysis was performed by RAKE (Rapid 
Automatic Keyword Extraction) algorithm for natural language processing (NLP), the function offered by 
R ‘udpipe’ package. The study titles and abstracts were collected from the final literature selection for data 
extraction in this work. Converted all text to lowercase for consistency in the NLP keyword detection.
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and thus is better correlated with INH4, compared to that of INO3 as shown by the difference in correlation coef-
ficients. Another example of the paired N transformation pathways is that the GNRa that has been identified 
as the main pathway for GNR process20 results in high correlation coefficients in the original data compilation. 
In contrast, GNRh is likely a secondary player for the bioavailable N production in soils21. However, it should 
be noted that in studies where the 15N dilution technique has been applied, the measured total gross NO3

− pro-
duction includes both autotrophic and heterotrophic NO3

− production22. Furthermore, recent studies suggest 
that plants can stimulate heterotrophic nitrification, therefore the fact that heterotrophic nitrification does not 
seem to be an important process, may stem from the absence of plants during soil incubations23 (see also below).

The imputed results may correspond to the existing dependences between paired N pathways, but only up 
to a certain degree, which is theoretically supported as described above. The correlation coefficients for the 

Fig. 4  Frequency count for the ranges of gross N rates per representative three processes.

Fig. 5  Correlation matrix for the gross N rate variables with the values as compiled (left) or those imputed 
(right). Correlation coefficients by pairwise complete observations on each pair of variables (left) as default 
setting in the correlate function in R ‘dlookr’ package26. The correlation coefficients are shown for the 
imputation results not including the observed values (e.g., the case count for GNM_imp is 105 which is the 
same number of missing counts as in Table 2).
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imputed values were overall exaggerated (Fig. 4 right). Still, a relatively low initial dependence between GNM 
and GNR in the original dataset was preserved for the imputed values, in part attributable to the initially low 
fraction of the missing counts (Table 2). It also suggests that the imputation of both variables may have resulted 
from the predictions of other site environmental variables, although this aspect is not explored in detail which 
is not in the scope of this dataset work. Other weakly dependent gross N rates are recommended to be further 
explored in future studies, whether there could be an explanation based on environmental control or unrealized 
dependence due to a relative lack of measurement data. For example, the GNRh has been studied for potentially 
tight correlations with INO3 and GNM6–8, which was taken into account by the imputation of missing rates.

Usage Notes
The presented dataset has some limitations that warrant consideration. The addition of 15N can stimulate cer-
tain processes, and thus their measurements might be overestimated. Moreover, in soil incubations conducted 
under optimal conditions, such as laboratory studies, the determined rates could also be overestimated and then 
should be considered as potential rather than actual rates24. Soil N transformations are mediated by microor-
ganisms whose activity is influenced by plants either through the release of root exudates or through N uptake25. 
Nevertheless, measured gross rates presented in the dataset were obtained in the absence of plants, which sug-
gests that caution is needed in interpreting the presented data. However, despite these limitations, the present 
dataset offers a unique opportunity to enhance our mechanistic understanding of the global N cycle. Lastly, 
despite the experimental sites are globally distributed, some continents or regions of the world are less repre-
sented in our dataset. It is the case of Africa for which a future increase in the number of studies is desirable.

The dataset is available as an easy to access spreadsheet format, aiming to provide the scientific community 
with an overview of the global availability of existing measurements to date. For each data point included, we 
provide detailed source information, hence, researchers will be able to refer to the original article and apply 
filters specifically tailored to their analyses. Also, new data can easily be added by referring to the metadata 
records in the dataset as well as the method described in this paper. The imputation outcome is subjective to 
future updates as new records or variables are added. The annotated R code scripts to reproduce all the figures in 
this paper and to perform the machine learning data imputation as described in the above section are available 
and encouraged to be modified for the purpose of data analysis. The specific R packages used for the modelling 
and figure production are cited throughout this descriptor and should be installed as guided by the developers 
to properly run the provided R codes. Readers are encouraged to refer to the detailed specs for each package and 
functions through the package vignettes archived in CRAN network.

Code availability
The R code scripts, and source data tables are found together in the dataset upload in the figshare repository19. 
Please follow the instructions in the README text file for details.
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