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Abstract
Increasing seawater influence in coastal areas is an ongoing environmental issue. Gardening is a widespread activity 
mainly in touristic areas such as the Mediterranean coasts. However, the use of exotic species well adapted to salinity 
encompasses the risk of invasive species introduction. This study aimed to evaluate salinity tolerance of native geophytes, 
Pancratium maritimum L. and Eryngium maritimum L., to assess their use as ornamental species in salt affected coastal areas. 
Experiments were conducted using cultivated plants for flowering response and physiological and enzymatic antioxidant 
response. Six treatments were applied for two months, exposing plants to seawater (SW) dilutions (Tap-Water, 6.25%SW, 
12.5%SW, 25%SW, 50%SW and 100%SW). Taxa decreased inflorescence production being this effect more architectonical 
in E. maritimum and affecting all inflorescence integrity in P. maritimum. Flowering time was strongly delayed and reduced 
in P. maritimum, while E. maritimum showed smaller effects among treatments. Physiological and biochemical response 
showed at moderate salinity levels (1/4SW) variation concomitant with late stress response and senescence in P. maritimum, 
with decreased water use efficiency, NPQ values, and enzymatic activity, and increased malondialdehyde (MDA) levels. In 
contrast, E. maritimum showed early stress response with steady gas exchange response, increasing NPQ values and catalase 
(CAT) and superoxide dimutase (SOD) activity, and decreasing MDA levels with salinity. Glutathione enzymes showed 
limited participation in both species. The results of this study suggest that neither species can be classified as halophytes, 
but they exhibit tolerance to low and moderate salinity levels, making them suitable for ornamental use.
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Introduction

Coastal areas face escalating salinity from storms and 
flooding (Maun 2009; Cozzolino et al. 2017; Du and Hesp 
2020), expected to worsen with rising sea levels, seawater 
intrusion, and higher storm frequency (IPCC 2014; Rizzetto 
2020). These factors entail important threats to vegetation 
particularly in densely populated coastal destinations 
worldwide (González-Baheza and Arizpe 2018; Pulido-
Bosch et al. 2019; Rizzetto 2020). In the Mediterranean, 
urban growth and gardening enhance landscapes for tourism 
(Heywood 2017), with re-vegetation efforts being dual for 
coastal protection against seawater and erosion while also for 
touristic appeal (Semeoshenkova & Newton 2015).

Salinity greatly influences coastal plant selection 
for thriving growth and appealing flowering (Ferrante 
et al. 2011). Stress factors like salinity compromise plant 
development (Cassaniti et al. 2012; 2013; García-Caparrós 
& Lao 2018), often showing negative correlations between 
soil salinity and flowering vigor (Cassaniti et al. 2013). 
Salt deleterious effects are mainly derived from two major 
processes which are the osmotic effect -capacity to absorb 
water- and the ionic effect -toxicity derived from Na+ and 
Cl− absorption- (Munns and Tester 2008). Both processes 
lead to stress conditions defined by a context of water 
deficits, impaired photosynthesis, reactive oxygen species 
(ROS) production, and photochemical damage (Flexas 
et al. 2004, 2006; Arora et al. 2016). Plants respond with 
physiological (stomatal regulation, metabolic adjustments), 
morphological (growth cycle, leaf structure changes), and 
biochemical mechanisms (antioxidants like SOD, CAT, 
GPx, AsA-GSH cycle) (Galmés et al. 2007; Sharma et al. 
2012; Gupta et al. 2016).

For coastal gardening, selecting species resilient to 
salinity and drought is crucial (Yasheshwar et al. 2017; 
Atzori et  al. 2019). Many species show ornamental 
potential under saline conditions (Cassaniti et al. 2012; 
2013; García-Caparrós and Lao 2018; Guo et al. 2022; 
Piccolo et al. 2023), but careful trait selection is needed to 
prevent invasive species introduction (Pyšek et al. 2011; 
van Kleunen et al. 2018), especially in the Mediterranean 
(Cerrato et al. 2023). Native taxa have been suggested as an 
alternative for modern landscape gardening, and specifically, 
for the Mediterranean regions this idea has gained support 
considering the varied and well adapted flora (Fascetti et al. 
2014; Krigas et al. 2021; Leotta et al. 2023). Among these 
taxa, geophytes (plants with bulbs or rhizomes) have been 
of special interest since they combine desirable traits such as 
abundant flowering, ease of transportation and cultivation, 
and resilience to stress conditions (Fascetti et al. 2014; 
Vicedo et al. 2021).

Studies on salinity's effect on native ornamentals are 
limited, with a focus on ecological rather than reproductive 
traits. Pancratium maritimum L. and Eryngium maritimum 
L. are potential ornamentals, known for vegetative 
reproduction, attractive inflorescence (Cassaniti et al. 2013; 
Paradiso et al. 2009), and an extensive distribution covering 
Mediterranean and Atlantic coast (Medrano et al. 1999; De 
Castro et al. 2020; Isermann & Rooney 2014). Both species 
tolerate high salinity (Meot-Duros et al. 2008; Ivanova et al. 
2015; Mohamed et al. 2018). However, specific response to 
soil salinity has only been partially assessed on vegetative 
traits for P. maritimum (Khedr et al. 2003; Carfagna et al. 
2021) and reproductive response in E. maritimum (Cortés-
Fernández et al. 2022a, b).

Promoting these species aids in conserving declining 
native populations due to habitat loss (Grassi et al. 2005; 
Necajeva and Ievinsh 2013), supporting local ecosystems 
and pollinators (Garbuzov et al. 2017). Researching their 
potential as conservation tools and alternatives to invasive 
species is vital.

This study evaluates salinity’s impact on P. maritimum 
L. and E. maritimum L., exploring their potential as 
ornamentals in saline coastal areas. Objectives include:

1.Assessing physiological and antioxidant responses to 
salinity stress.

2.Evaluating reproductive responses to salinity stress.
3.Examining implications for their development and 

ornamental use under salinity stress.

Material and methods

Plant material and experimental design

For plant production in both experiments (physiological-
antioxidant response and reproductive response) seeds 
were collected from Son Serra de Marina (Blinded). For 
reproductive response, 60 bulbs of P. maritimum were 
collected near the urban area of Son Serra de Marina 
(Blinded) in August 2019 (Permit: Blinded). Criteria of 
the collection were size and ease of collection to minimize 
damage to the bulb and impact on the surrounding area. Size 
selection followed the procedure described by Gil (1994) 
where minimum bulb volume is established for flowering. 
Since there is a high relation between diameter and volume 
(Fig. 1) bulbs were selected and evenly distributed among 
treatments according to diameter. Two experiments were 
conducted using plant material as follows.

•	 Experiment 1 (Physiological-Antioxidant response): 
Plant production using seeds germinated at 20 °C with 
the seed of E. maritimum undergoing cold stratification, 
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as indicated by Cortés-Fernández et al. (2021), prior to 
germination essay. The growth period of P. maritimum 
plantlets was grown for 1 year and 5 months to ensure 
sufficient leaf development for gas exchange and 
antioxidant measurements, due to their slower growth 
rate. E. maritimum plantlets were grown for 5 months 
prior to the experiment trial. Pot size for both species 
was 3-L pots throughout the experiment. Treatment 
application was applied in March 2021. Measurement 
timing was taken two months after treatment application, 
in May 2021. Measurements: Gas exchange and 
fluorescence measurements and leaf collection for 
antioxidant and MDA levels analysis.

•	 Experiment 2 (Reproductive Response): Plant 
production using bulbs collected from Son Serra and 
randomly allocated to different treatments. Plants were 
reallocated based on measurements to avoid size bias. 
For E. maritimum two-year-old plants grown from seed 
under equal conditions as Experiment 1 plants (Cortés-
Fernández et  al. 2022a, b). The growth period of P. 
maritimum comprised the bulbs collected and cultivated 
in same conditions for 5  months prior to  treatment 
application, while E. maritimum comprised plant 
from seeds maintained during 2 years in 3 L-pots until 
5 months prior to treatment application (transplanted to 5 
L-pots). Pot size for both species was 5-L pots throughout 
the experiment. Treatment application was applied in 
March 2020 for P. maritimum before leaf senescence in 
June, and mid-May for E. maritimum (two months prior 

to flowering). Measurement timing occurred when plants 
flowered in July. Measurements were flowering traits.

Growing conditions and treatment application

For each experiment, 60 plants per species (a total of 120 
plants per species) were allocated to six seawater treatments 
based on electric conductivity (EC in dS/m): Control-Tap 
Water (1.05), 6.25% SW (5.07), 12.5% SW (9.30), 25% 
SW (16.34), 50% SW (30.30), and 100% SW (55.69). Each 
treatment was applied as described in Cerrato et al. (2022) 
and Cortés-Fernández et al. (2022a, b), with one month of 
pre-treatment followed by two months of full treatment.

Considering plant size and limited pot volume, a culture 
substrate was selected to ensure plant growth and proper 
reproductive development. To avoid cultivation limitations 
as observed in similar studies (Pujenwoeck et al. 2017) we 
opted for the following media. The substrate was composed 
of 61.50% coconut fiber, 33.00% white peat moss, and 
5.50% expanded perlite, with fertilization using 4.40 mg/ l 
of Osmocote NPK 19–10-19, a slow-release fertilizer. The 
experiments took place outdoors under a shade cloth that 
excluded 50% of the light. Seawater was collected from Sa 
Ràpita locality and stored for its use at the beginning of 
the experiment following the storage recommendation by 
Hanley et al. (2020). Treatments were applied by combining 
the proportion of seawater with tap-water of the University 
facility to fulfill each of the six treatments (including 
control) mentioned above. Watering was done until field 
capacity with variable frequency depending on soil moisture 

Fig. 1   Bulb diameter relation to 
bulb volume
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(based on pot weight relative to maximum weight) ranging 
from weekly to three times per week. Soil conductivity 
was periodically measured (XS Instruments Cond 51 +) 
to avoid excess salinity (higher conductivity values than 
the corresponding treatment, see above) accumulating in 
the substrate. Soil conductivity was assessed according to 
Shahid et al. (2018). Soil samples were diluted in distilled 
water at a 1:5 ratio and mixed with a magnetic shaker for 
2 h. After filtration, conductivity was measured using an XS 
Instruments Cond 51 + device. If any variation was detected, 
a watering event with tap water was conducted accompanied 
with subsequent treatment application.

Reproductive measurements

Reproductive traits measured in E. maritimum are described 
in Cortés-Fernández et  al. (2022a, b). In short, traits 
measured in the present study were inflorescence length 
and diameter, number of capitula of each scapus, length 
and width of first and second whorls, and fruit and seedset. 
Further details can be found in the previous reference.

For P. maritimum inflorescence measurements were 
conducted using the total length and diameter of flowers 
and the stem. Each flower produced per plant was counted 
and measured both in length and width using external tepals. 
Additionally, further specific measurements were conducted 
but provided as supplementary data (Supplementary data 
Table S1). Fruit set was determined by calculating the ratio 
of the number of fruits produced to the number of flowers 
per plant. Seed set was calculated based on the number 
of seeds produced per fruit, using the average number of 
seminal primordia determined from randomly selected and 
dissected flowers in each treatment.

Phenological data was recorded in both species. In E. 
maritimum the number of whorls in the flowering stage was 
recorded each week. For P. maritimum, since the flowering 
time of each of the flower lasts just one day (Gil 1994), 
the number of flowers per plant was recorded each day. The 
sum of flowers per plant each week was used for joined 
analysis with E. maritimum.

Gas exchange and fluorescence measurements

Two months after subjecting the plants to full salinity 
treatments, gas-exchange measurements were conducted 
for each species. Each treatment group (N = 10 plants) 
underwent measurements using an open gas-exchange 
system equipped with a 2 cm2 fluorescence chamber (Li-
6400, Li-cor Inc., Lincoln, USA). To prevent bias from 
the time of day, species and treatments were randomly 
selected for measurement between 10:00 and 14:00, 
with adjustments made for humidity and temperature 
based on environmental conditions. Light saturation was 

maintained at approximately 1500 µmol  m−2 s−1, with a 
CO2 concentration of 400 µmol mol−1 and a flow rate of 
300  µmol  s−1. For E. maritimum, leaf area correction 
was unnecessary as the leaves adequately covered the 
chamber. For P. maritimum, digital images were captured 
and analyzed using Fiji software (Schindelin et al. 2012) to 
correct for leaf area variations. The parameters measured 
included net assimilation rate (An), stomatal conductance 
(gs), intercellular CO2 concentration (Ci), and transpiration 
rate (E).

Fluorescence-related parameters were assessed following 
the methodology outlined by Flexas et  al. (2002). PSII 
photochemical efficiency (PhiPS2) and electron transport 
rate (ETR) were measured concurrently with gas exchange 
measurements. Maximum quantum efficiency of PSII (Fv/
Fm) was determined after a 4-h dark adaptation period. Non-
photochemical quenching (NPQ) was computed as described 
by Flexas et al. (2002). To ensure the equipment's proper 
functioning and confirm the optimal photosynthetic status of 
control plants at the experiment’s outset, the ratio of electron 
transport rate to assimilation rate (ETR/An) was monitored, 
following Flexas et al. (2002) and Perera-Castro and Flexas 
(2023).

Antioxidant measurements

After two months of salinity exposure and subsequent 
physiological measurements, leaf samples were collected 
from each treatment group (N = 10) for both species. Samples 
were immediately immersed in liquid nitrogen for rapid cold 
storage and later maintained at − 80 °C until biochemical 
analysis. Leaf samples were homogenized in 50 mM Tris 
HCl buffer containing 1 mM ethylenediaminetetraacetic acid 
(EDTA) at pH 7.5, using a weight-to-volume ratio of 1:5. 
Homogenization was carried out under cold conditions using 
an ULTRA-TURRAX® Disperser (IKA). The homogenized 
samples were then centrifuged at 10,000 × g and 4 °C for 
10 min to remove cell debris from the supernatant, which 
was subsequently re-stored at − 80 °C until biochemical 
assays were performed. Enzyme activities were determined 
using a Shimadzu UV-2100 spectrophotometer at 25 °C, 
while lipid peroxidation was assessed using a Bio-Tek 
PowerWave XS microplate spectrophotometer. Total 
protein content per sample was measured by the Biorad® 
colorimetric kit, using bovine serum albumin (BSA) 
as a standard, and all biochemical measurements were 
normalised to per mg protein.

Catalase (CAT) (EC 1.11.1.6) activity was determined 
following the method described by Aebi (1984). This 
involved monitoring the decomposition of H2O2 in a 50 mM 
phosphate buffer at pH 7.0 by measuring the decrease 
in absorbance at 240 nm. CAT activity is expressed as 
mK(s−1)/mg protein. Superoxide dismutase (SOD) (EC 
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1.15.1.1) activity was assessed based on the inhibition of 
cytochrome C reduction by the superoxide anion generated 
via the xanthine oxidase/hypoxanthine system, according 
to Flohé and Otting (1984). The reaction was conducted in 
a 50 mM potassium phosphate buffer containing 0.1 mM 
EDTA at pH 7.8, and the absorbance was measured at 
550 nm using an absorption coefficient of 28.1 mM−1 cm−1. 
SOD activity is reported as pKat/mg protein. Glutathione 
reductase (GRd) (EC 1.8.1.7) activity was determined by 
monitoring the oxidation of NADPH (9.6 mM) at 340 nm 
using oxidized glutathione as the substrate, following the 
method of Goldberg and Spooner (1984). An absorption 
coefficient of 6.22 nM−1 cm−1 was used, and GRd activity is 
presented as nKat/mg protein. Glutathione peroxidase (GPx) 
(EC 1.11.1.9) activity was measured using a modification of 
the Flohé and Gunzler (1984) method. The reaction utilized 
H2O2 as the substrate, with GRd as the enzymatic indicator 
and NADPH as the non-enzymatic indicator, supplemented 
with NaN3 to inhibit catalase. An absorption coefficient of 
6.22 nM−1 cm−1 was applied. GPx activity was measured at 
340 nm and is expressed as nKat/mg protein.

Lipid peroxidation assay

Malondialdehyde (MDA) levels were utilized as an 
indicator of lipid peroxidation and oxidative damage, 
following the methodology described by Capó et al. (2020). 
MDA concentration was measured using a colorimetric 
assay, where MDA reacts with a reagent to form a stable 
chromophore with maximum absorbance at 586 nm. To 
conduct the assay, samples were treated with N-methyl-
2-phenindole (10.3  mM) in acetonitrile:methanol (3:1) 
solution. Subsequently, 12  N  HCl was added, and the 
samples were incubated at 45 °C for 1 h. MDA of known 
concentration (MAK085-1KT, Sigma-Aldrich) was used as 
a standard for calibration, and measurements were taken at 
586 nm. Results are expressed in nmols/mg protein.

Statistical analysis

Reproductive traits of both species were compared among 
treatments to evaluate the effect of seawater concentration. 
The effect of salinity exposure on phenology was evaluated, 
in the case of P. maritimum, modeling the number of 
flowers in anthesis against the date of the beginning of the 
experiment using Generalized Linear models (Binomial 
family, link logit). Similarly, in E. maritimum the effect 
of seawater concentration and date was modeled against 
the number of capitula in anthesis using Linear models 
(Gaussian family, link identity). In all the analysis, model 
selection was carried out using the Akaike Information 
Criterion (AIC). At inflorescence level, length, width, and 
the number of reproductive units were modeled against 

seawater concentration and species, considering the 
potential interaction among variables. For length and width, 
Generalized Linear models (family Gaussian, link inverse; 
Amin et  al., 2016) were used, while for the number of 
reproductive units GLMs (family Poisson, link inverse) were 
used. At the reproductive unit level, length and width were 
modelled against seawater concentration and species using 
GLMs (family Gaussian, link = 1/mu^2; Kinat et al., 2020). 
Finally, the effect of seawater concentration on Fruit Set 
and Seed Set was modeled using GLMs (Family binomial, 
link logit). To evaluate, the effect of seawater watering 
on photosynthetic parameters, stomatal conductance 
(gs), intercellular CO2 (Ci), assimilation rate (An), and 
electron transport rate (ETR) were modeled considering 
the seawater concentration and the species as explanatory 
variables. For this purpose, GLMs (family Gaussian, link 
log) and Generalized Linear Mixed models (GLMMs) were 
used, using in this last case the plant as a random factor. 
On the other hand, fluorescence metrics (NPQ and Fv-Fm) 
were also considered and modeled similarly using LM and 
LMM (family Gaussian, link log). Finally, the variation in 
biochemical indicators was evaluated considering the levels 
of CAT, SOD, GPX, GRd and MDA in the different seawater 
treatments in both species and were modeled using LMs and 
LMMs (Family Gaussian, link identity).

All the analyses were carried out in R (R Core Team, 
2022). Statistical significance of models was evaluated 
using anova against null models. Statistical significance 
of factors was evaluated using Analysis of variance in 
LMs and Analysis of deviance in GLMs. When applicable, 
differences were assessed using the Kruskal–Wallis 
test (McKight and Najab, 2010). Differences among 
treatments were analyzed using the Tukey Honest 
Significant Difference (HSD) test (Abdi and Williams, 
2010) or the Dunn test (Dinno, 2017) when necessary. 
Explained variance/deviance was evaluated calculating the 
proportion of variance explained by the models compared 
with de variance-deviance of null models. Final models 
were plotted against observed data using ggplot2.

Results

Reproductive measurements

Phenology response to seawater treatments was significantly 
altered in E. maritimum being flowering slightly delayed 
between treatments. P. maritimum showed shorter flowering 
time with flowering being strongly delayed for high salinity 
treatment (25%SW onwards) (Fig. 2). For the latter, flower-
ing period was reduced almost by 50% compared to low 
salinity treatments.
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Seawater influence on inflorescence traits showed nega-
tive effects on both species, with decreased size (Diameter 
and Length) and number of reproductive units (Flowers for 
P. maritimum and Whorls in E. maritimum; Fig. 3). E. mar-
itimum displayed higher decrease at 12.5%SW but showed 
steady response at moderate-high salinity levels (25%SW) 
decreasing in size but maintaining high inflorescence pro-
duction. P. maritimum showed similar size until 12.5%SW 

decreasing abruptly both in number of flowers and size at 
25%SW and further levels. Both species showed strong 
effect at 50%SW, and null flowering in E. maritimum and 
anecdotic flower production in P. maritimum at 100%SW.

Seawater effect on reproductive units showed size con-
striction mainly at 25%SW for both species, being barely 
affected at lower salinity treatments (Fig. 4). Fertility related 

Fig. 2   Effect of salinity concentration on the cumulative number of 
flowers (P. maritimum) and whorls (E. maritimum) during the experi-
ment. The dashed line indicates the prediction of the model, while 
colored area indicates the model standard error. Different colors 

are used to indicate the different sea-water concentrations. Analysis 
of deviance results are indicated below each species. In caption the 
model p-value, the explained deviance and the family of the model 
are indicated

Fig. 3   Effect of salinity concentration on inflorescence related traits. 
Boxplots are used to indicate the median and first to fourth quartiles. 
The solid line indicates the prediction of the model, while grey area 
indicates the model standard error. Different colors are used to ease 
species comparison (blue for E. maritimum and yellow for P. mar-

itimum). Analysis of deviance results are indicated below each plot. 
For each response variable (Diameter, Length and Number of repro-
ductive structures) the model p-value, the explained deviance and the 
family of the model are indicated
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Fig. 4   Effect of salinity concentration on flower (P. maritimum) and 
capitulum (E. maritimum) size. Boxplots are used to indicate the 
median and first to fourth quartiles. The solid line indicates the pre-
diction of the model, while grey area indicates the model standard 
error. Different colors are used to ease species comparison (blue for 

E. maritimum and yellow for P. maritimum). Analysis of deviance 
results are indicated below each plot. For each response variable 
(Diameter, Length and Number of reproductive structures) the model 
p-value, the explained deviance and the family of the model are indi-
cated

Fig. 5   Effect of salinity concentration on fruit and seed production. 
Boxplots are used to indicate the median and first to fourth quartiles. 
The solid line indicates the prediction of the model, while grey area 
indicates the model standard error. Different colors are used to ease 
species comparison (blue for E. maritimum and yellow for P. mariti-

mum). Analysis of deviance results are indicated below each plot. For 
each response variable (Fruit and Seed Set) the model p-value, the 
explained deviance and the family of the model are indicated
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traits showed strong decrease with seawater treatment but 
with differing intensity depending on the species (Fig. 5). 
Fruit-set remained similar until 12.5%SW for E. mariti-
mum while P. maritimum already decreased. Fruit setting 
at further levels was strongly reduced in E. maritimum and 
became null in P maritimum. Seed-set shows similar pattern 
for both species, with steady values until 12.5%SW and fur-
ther strong decrease in the remaining treatments.

Gas exchange and fluorescence measurements

Seawater effect on gas exchange measurements shows 
similar response for both species being only noticeable 
differences in the Ci pattern of response (Fig. 6). Both 
taxa displayed small variations on stomatal and assimila-
tion rate until 1/4SW. Strong decrease was appreciated 
mainly at high salinity levels (50%SW and full SW). Ci 
showed a steady pattern with a small increase at full-
SW for E. maritimum, while P. maritimum showed sig-
nificant increase starting at 50%SW level. P. maritimum 
shows small increase at 12.5%SW and abruptly decreased 
for the following treatments. ETR/An ratio increased in 
both species starting at 50%SW and being maximum at 
100%SW treatment in E. maritimum. For P. maritimum 

similar pattern can be argued, but negative assimilation 
rate values prevented to include 100%SW treatment.

Fluorescence related parameters showed contrasting 
response for NPQ levels between both species and slight 
effect of salinity concentration for Fv/Fm (Fig. 7). Fv/Fm 
levels maintained stable values being slightly decreased with 
salinity. NPQ increased with salinity in E. maritimum start-
ing at 12.5%SW and remained high and stable at further 
levels. In contrast P. maritimum showed stable values at low 
salinity levels decreasing at higher salinity levels.

Antioxidant enzyme activities and lipid 
peroxidation assay

Antioxidant response showed variable patterns depending 
on the species and the antioxidant enzyme (Fig. 8). E. mar-
itimum showed active response for SOD and CAT enzyme 
activity, starting at 12.5%SW and 25%SW onwards. Glu-
tathione relates enzymes were less responsive with activa-
tion at 12.5%SW and further steady activity for GPx, and 
activation only at 100%SW for GRd. P. maritimum main-
tained high activity restricted to low-stress related treatments 
(C—12.5%SW) for SOD, CAT and GPx, and activation 

Fig. 6   Effect of salinity concentration on photosynthetic plant 
response. Boxplots are used to indicate the median and first to fourth 
quartiles. The dashed line indicates the prediction of the model, while 
grey area indicates the model standard error. Different colors are 

used to ease species comparison (blue for E. maritimum and yellow 
for P. maritimum). Analysis of deviance results are indicated below 
each plot. For each photosynthetic indicator the model p-value, the 
explained deviance and the family of the model are indicated
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extended to 25%SW in GRd. Null changes in the activities 
were observed at further levels.

MDA displayed contrasting patterns of variation between 
both taxa however no significant interaction was observed 
(Fig. 9). E. maritimum showed small non-significant increase 
at low levels, and decreased levels at further moderate to 
high salinity treatments (25%SW onwards). P. maritimum 
displayed steady levels being MDA unrelated to salinity 
stress treatment. However, MDA levels without consider-
ing protein content showed increasing values with salinity 
for the latter. Protein content in P. maritimum also increased 
with treatment.

Discussion

Salinity is considered among the main stress sources for 
coastal species (Cozzolino et al. 2017). Among coastal taxa, 
geophytes have been regarded of interest since they colonize 
different plant communities and represent examples of cycle 
adjustment to the harsh conditions (Juan-Vicedo et al. 2021). 
The aim of this study was to approach the salinity response 
of two geophytes of Mediterranean and Atlantic coasts 
which have been indicated as strong halotolerant, and if their 
use could be suitable as gardening species in coastal areas. 
Overall, our data supports response in agreement with some 
degree of salinity tolerance but discards further tolerance 

definitions such as halophyte for both taxa. Inflorescence 
production is resilient regarding salinity which enables to 
consider both species for ornamental purposes.

Physiological and antioxidant response

Physiological response shows overall small effects on gas 
exchange parameters with low (12.5%SW) and moderate 
(25%SW) salinity, followed by a noticeable depleting effect 
at further levels. Steady physiological response to maintain 
assimilation rate under field conditions has been previously 
indicated in both species by Bouchemal et  al (2022). 
However, steady gas exchange at moderate salinity levels 
(25%SW) concurs with the starting point of antioxidant and 
fluorescence response to salinity. Only for P. maritimum, 
small increased Ci values at moderate salinity levels imply 
adjustments affecting water relations. Stomatal adjustment is 
known to be tidily regulated and highly responsive to water 
status (Munns et al., 2011; Koyro et al. 2013). E. maritimum 
is known to display leaf micromorphological traits which 
allow maintaining high assimilation rates with relatively low 
water loss (Ivanova et al. 2015). In the case of P. maritimum, 
similar traits associated with enlarged leaf thickness allow 
to maintain a high WUE (Perrone et al. 2015). Our results 
seem to support slight but higher WUE for E. maritimum 

Fig. 7   Effect of salinity concentration on fluorescence measurements. 
Boxplots are used to indicate the median and first to fourth quartiles. 
The dashed line indicates the prediction of the model, while grey area 
indicates the model standard error. Different colors are used to ease 
species comparison (blue for E. maritimum and yellow for P. mar-

itimum). Analysis of deviance results are indicated below each plot. 
For each response variable (Diameter, Length and Number of repro-
ductive structures) the model p-value, the explained deviance and the 
family of the model are indicated
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at moderate salinity. In contrast, P. maritimum seems to 
deal with earlier stomatal and metabolic limitations. Water 
relations stability may also relate to specific mechanisms 
countering osmotic stress. Use of osmoptroectants, such 
as proline, has been indicated for P. maritimum under salt 
stress (Kedhr et al. 2003), while for E. maritimum stomatal 
and morphological adjustments have been considered more 
relevant (Boucehmal et al., 2022). Carfagna et al. (2021) 
found increased micronutrients (Zn and Mn) and stable 
K and Ca levels in leaves of P. maritimum exposed to 
salinity. Considering the competitive nature of sodium with 
potassium, the stable levels of potassium indicate active 
absorption and translocation by the root system (So et al. 
2022), a process that could also occur in E. maritimum.

Salinity significantly affects both E. maritimum 
and P. maritimum, particularly at 50% and 100%SW 

concentrations, as evidenced by reduced fluorescence 
parameters Fv/Fm and increased ETR/An ratio. These 
changes indicate potential damage to PSII from ROS 
overproduction (Geissler et  al. 2015; Arora et  al. 
2016). E. maritimum responds with increased NPQ, 
suggesting active thermal dissipation to mitigate 
ROS production (Galmés et  al. 2007). In contrast, P. 
maritimum shows reduced heat dissipation under stress, 
indicating a divergent response mechanism. Antioxidant 
enzyme activities also exhibit contrasting patterns. E. 
maritimum displays increased superoxide dismutase 
(SOD) and catalase (CAT) activities, consistent with 
effective ROS scavenging as described in other saline-
tolerant species (Bose et al. 2014; Leung et al., 2018). 
Despite contradicting previous data reported under field 
conditions which possibly relate to unstressed plants 

Fig. 8   Effect of salinity concentration on key oxidate stress enzymes. 
Boxplots are used to indicate the median and first to fourth quartiles. 
The dashed line indicates the prediction of the model, while grey area 
indicates the model standard error. Different colors are used to ease 

species comparison (blue for E. maritimum and yellow for P. mariti-
mum). Analysis of deviance results are indicated below each plot. For 
each enzyme the model p-value, the explained deviance and the fam-
ily of the model are indicated
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(Bouchemal et al. 2022), recent studies highlight active 
antioxidant capacity and ROS scavenging compounds 
in E. maritimum rhizome extracts (Cortés-Fernández 
et al. 2023). Activation of the glutathione system further 
supports E. maritimum response long term salinity stress 
(Hasanuzzaman et al. 2012). In contrast, P. maritimum 
exhibits peak enzymatic activity at lower stress levels 
(notably at 6.25% SW), declining with increased salinity. 
This contrasts with expected findings and previous reports 
of active antioxidant responses in similar conditions 
(Abogadallah 2011; Burcu et al., 2013; Carfagna et al. 
2021; Khedr et al. 2003). Previous studies highlighted 
interference by secondary metabolites like phenolic 
compounds on enzymatic antioxidant measurements, such 
as catalase (Khataee et al. 2022). However, the consistent 
activity patterns observed during our measurements 
suggest minimal interference, making this explanation less 
likely. Another explanation for antioxidant enzyme activity 
loss has been related to leaf senescence due to stress 
(Trivellini et al. 2017). This idea seems to gain support if 
NPQ decrease is considered, which has also been related 
to leaf senescence (Juvany et al. 2013). Previous studies in 
P. maritimum on enzymatic response have mainly focused 
on short term salinity stress on juvenile stages being long-
term exposure less comprehended. Long-term response has 
been indicated both for E. maritimum and P. maritimum to 

be less related to enzymatic mechanism (Bouchemal et al. 
2022) but rather with other non-enzymatic antioxidant 
mechanism rich in both species (Elmas et al., 2017). The 
present results may represent two stages of salt response, 
being E. maritimum response concomitant to early stages 
of stress while P. maritimum response with late senescent 
stages.

The salinity response in both species shows strong 
tolerance and reduced cell damage, likely explaining their 
steady physiological performance at moderate salinity 
levels. MDA, an indicator of cell membrane damage, is 
commonly used to assess salinity stress (Hernández and 
Almansa 2002; Gil et al. 2020). Previous studies showed 
increased MDA levels in P. maritimum under drought 
and salt stress (Abogadallah 2011; Burcu et al., 2013) 
and in senescent leaves (Djanaguiraman and Prasad 
2010). However, our results show steady MDA content 
with salinity. Increased protein content in salt-affected P. 
maritimum has been linked to stress conditions (Burcu 
et  al. 2013), possibly being the cause of distort MDA 
levels in this study. For E. maritimum, MDA levels 
decrease from 25%SW towards higher salinity. A similar 
negative correlation with salinity has been described 
by Kumar et al. (2021) and related to activation of PSII 
core proteins and Rubisco. Comparable responses are 
seen in halophytes like Cakile maritima (Ksouri et al. 

Fig. 9   Effect of salinity concentration on Malondialdehyde (MDA) 
expression and Total protein content. Boxplots are used to indicate 
the median and first to fourth quartiles. The dashed line indicates the 
prediction of the model, while grey area indicates the model stand-
ard error. Different colors are used to ease species comparison (blue 

for E. maritimum and yellow for P. maritimum). Analysis of deviance 
results are indicated below each plot. For each response variable the 
model p-value, the explained deviance and the family of the model 
are indicated
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2007; Ellouzi et al. 2011; Amor et al. 2006), Crithmum 
maritimum (Amor et al., 2005), and Salicornia europaea 
(Ghanem et al. 2021). MDA reduction over time suggests 
mechanisms like chlorophyll loss (Tounketi et al., 2011) 
or physiological adjustments (Ozturk et al. 2012). Overall 
Boucehmal et al. (2022) already indicates the presence 
of large amounts of fatty acids which provide decreased 
membrane permeability and higher resistance to salinity.

Physiological and biochemical studies highlight the 
complexity of plant tolerance to salinity in both taxa, 
with an enzymatic antioxidant response in E. maritimum 
and a presumed higher relevance of non-enzymatic 
antioxidants in P. maritimum (de Felice et  al., 2013; 
Cortés-Fernández et al. 2023). Both taxa exhibit a stasis 
period before and during flowering, suggesting the need 
to identify key genes involved in salinity stress response 
across different phenological stages. Gene expression 
research has been limited for P. maritimum (de Felice 
et al., 2013) and E. maritimum (Cortés-Fernández et al. 
2023). Further studies should deepen in the expression of 
genes encoding for the synthesis of metabolites associated 
with osmotic adjustments, such as proline (Cerrato et al. 
2022). Low salt accumulation in the rhizome and bulb 
is likely due to active ion transporters in the roots and 
salt compartmentalization within these organs (So et al. 
2022). Research should focus on gene expression related to 
ion and sugar transporters in the root system and examine 
phytohormones with regulatory functions produced during 
stress, along with ROS scavenging enzymes and non-
enzymatic antioxidants in the bulb, rhizome, and leaves.

Reproductive response and ornamental interest

Reproductive biology has been previously studied for 
E. maritimum (Cortés-Fernández et  al. 2022a) and P. 
maritimum (Medrano, 1999), but salinity response has 
been examined only in E. maritimum (Cortés-Fernández 
et  al. 2022a, b). Both species exhibit nutrient shortage 
patterns where inflorescence size, reproductive units 
(capitula or flowers), and fruit and seed production are 
compromised. Reproductive decline begins at 12.5% 
SW and is significantly affected at 25% SW and higher 
salinity levels. These results align with physiological and 
biochemical responses, indicating high resilience to salinity. 
As previously discussed, both species cannot be considered 
halophytic since their reproductive cycle is severely 
compromised under high salinity stress (Yuan et al. 2019; 
Cortés-Fernández et al. 2022a, b). For ornamental purposes, 
flowering appeal is maintained at 12.5%SW (9 dS/m) water 
irrigation and remains relevant at 25%SW (16  dS/m). 
Cassaniti et al. (2013) classify 8–15 dS/m as saline and 
15–45 dS/m as highly saline water. Atzori et al. (2019) define 
species tolerating 10–30% seawater irrigation (8–18 dS/m) 

as suitable for medium saline conditions. Previous studies 
consider species displaying low damage at 7–11 dS/m as 
salt-tolerant (Shillo et al. 2002; Niu and Rodriguez 2006; 
Cassaniti et al. 2013; García-Caparrós et al. 2016). Both 
species respond favorably under salinity levels exceeding 
coastal field conductivity values (Cortés-Fernández et al. 
2022a, b), fitting them among tolerant ornamental taxa.

Both species display differences on reproductive 
response to salinity. Our results show contrasting response 
for flowering, with strong delay in P. maritimum and slight 
to almost synchrony flowering in E. maritimum regardless 
salinity stress. Van Zandt et al. (2002) indicated flowering 
delay in Iris hexagona due to possible hormonal alterations 
under salinity stress. Moreover, flowering initiation has 
been indicated to depend on temperature and water stored 
in the bulb, while vegetative growth is controlled by 
external water supply (Dafni, 1981; Al-tardeh et al. 2008). 
Since salinity decreases root development and accelerates 
leave senescence, flowering would be delayed due to lower 
nutrient and water storage in the bulb (Van Zandt et al., 
2002; Cassaniti et  al. 2013). For E. maritimum, almost 
synchronic flowering suggests probable genetic related 
causes for flowering timing which are probably determined 
by temperature and photoperiod (Cho et al. 2016). However, 
field studies have pointed out phenological shifts regarding 
sea distance arguing microclimatic conditions interfering 
in flowering initiation (Cortés-Fernández et  al. 2022b). 
E. maritimum flowering time variation appears unrelated 
to salt stress, with other factors playing a more significant 
role, which remain to be studied. For both taxa, gene 
expression related to flowering initiation seems influenced 
by environmental factors. Further studies on E. maritimum 
should investigate gene expression related to photoperiod 
and temperature, as occurs with Crithmum maritimum 
(Ventura et  al. 2014), since salinity affects resource 
allocation rather than flowering control. In P. maritimum, 
salinity may disrupt key gene expression pathways through 
water relations and specific metabolite expression. Prolonged 
synthesis of soluble protein under stress to protect the bulb 
may delay flowering (Alipanah et  al. 2023). Studying 
genetic screening, such as the examination of the NF-YB3 
transcription factor in Lilium pumilum, offers potential 
insights into the connection between flowering and salinity 
stress (So et al. 2022).

Flowering display in P. maritimum and E. maritimum is 
nutrient-dependent, with both species showing decreased 
inflorescence and flower production over time (Medrano 
et  al. 2000; Cortés-Fernández et  al. 2022b). Salinity 
exacerbates this decline by reducing assimilation rates 
and water uptake, thus disrupting resource acquisition 
and allocation (García-Caparrós et al. 2016). Research on 
species with varying salt tolerance indicates that salt stress 
reduces inflorescence size and quality (Boscaiu et al. 2005; 
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Ma et al. 2020). For the studied taxa, salt stress similarly 
reduces the number of reproductive units (capitula in E. 
maritimum and flowers in P. maritimum) and overall size. 
However, the impact on ornamental value differs due to 
variations in inflorescence structure and flowering dynamics. 
E. maritimum inflorescence integrity is more resilient, 
with size reduction occurring through the depletion of 
tertiary and further capitula, resulting in simpler but intact 
inflorescences. In contrast, P. maritimum inflorescence size 
remains steadier, but the number of flowers decreases. Since 
each flower lasts only one day, this reduction shortens the 
flowering display period, diminishing ornamental value (van 
Kleunen et al. 2018). Fruit production also shows contrasting 
responses to salinity. P. maritimum fruit production 
decreases at 12.5%SW levels, while E. maritimum maintains 
steady fruit production. Despite this, seed-setting efficiency 
remains similar in both species. The differences in fruiting 
responses are likely due to contrasting pollination strategies, 
while seed setting relates to resource allocation.

Restoration purposes and social interest

While P. maritimum shows variable pollination visits and 
relies on hawkmoths for pollination (Eisikowitch and Galil 
1971; Medrano et al. 1999), E. maritimum is a generalist 
species attracting a diverse range of pollinators (Cortés-
Fernández et al. 2022b). Pollinator visits are a valuable 
service provided by gardens (Salisbury et al. 2017) and can 
be enhanced by promoting native species assemblies (Fukase 
and Simon, 2016; Salisbury et  al. 2017). Both species 
offer unique pollination services, adding to the aesthetic 
and ecological value of gardens. The use of these species 
contributes to ecological services, including providing 
resources for native pollination communities, especially 
E. maritimum. Additionally, they support the structural 
development of dune systems. Restoration projects using 
these species have shown positive effects with high plant 
survival and development (Romano et al. 2022). Dune-
adapted species facilitate sand accretion, preventing soil 
erosion and promoting deeper sandy soils (Miller et al. 
2003; van Puijenbroek et al. 2017). These processes are 
crucial for reducing seawater influence, particularly under 
future climate change scenarios. Deeper sandy soils decrease 
salt accumulation at the surface, benefiting plant rooting 
systems (Olmo et al. 2019), and soil accretion creates natural 
barriers against storms (van Puijenbroek et al. 2017). Active 
restoration of Mediterranean dune systems is essential to 
address anthropogenic threats like coastal massification 
(Della Bella et al. 2021) and mitigate climate change effects 
through carbon sequestration (Bonito et al. 2017).

Conclusions

P. maritimum and E. maritimum show high resilience to 
moderate salinity. E. maritimum displays a more prolonged 
response both physiologically and regarding antioxidant 
response which is combined with predictable cycle 
flowering. P. maritimum shows earlier leave senescence 
patterns which prompts leaf loss and flowering cycle 
disruption. The latter translates into delayed flowering with 
salinity. Both species show steady reproductive response at 
moderate salinity levels which allows them to be considered 
as ornamental species. However, morphological, and 
architecturally inflorescences differences amplify effects 
on P. maritimum flowering in time, while E. maritimum 
maintains prolonged flowering. Richer pollinator assemblies 
in E. maritimum add further interest of the latter as 
ornamental species. However, both taxa seem fitted to be 
used as a native ornamental alternative for Mediterranean 
and Atlantic coastal areas.
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