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Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs).
This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn’s disease, ulcerative colitis,
psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms,
disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug
development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing
the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination
antagonists of TNF/TNFR signaling.

Introduction
Immune-mediated inflammatory diseases (IMIDs) are a collec-
tion of disorders characterized by an exaggerated and dysregu-
lated immune response that causes chronic inflammation and
tissue damage. These debilitating ailments significantly com-
promise the quality of life and cause substantial morbidity
(Kwon et al., 2023). Recent scientific endeavors have diligently
focused on elucidating the intricate molecular pathways un-
derlying these pathological states and addressing them with
novel therapeutics. Notably, the tumor necrosis factor (TNF) and
tumor necrosis factor receptor (TNFR) superfamilies (summa-
rized in Table S1), comprising 18 ligands and 29 receptors, re-
spectively, play pivotal roles as mediators of proinflammatory
and apoptotic signaling within diverse immune cell populations
(van Loo and Bertrand, 2023).

Several TNF superfamily ligands and receptors are upregu-
lated in immune cells in the presence of proinflammatory cues.
TNF superfamily ligands binding to their respective receptors on
target cells initiate intracellular signaling cascades that activate
pivotal transcription factors, including nuclear factor-κB (NF-
κB) and activator protein (AP-1) (Shi and Sun, 2018). This
orchestrates transcription that facilitates inflammation and
immune effector functions (Fig. 1). TNF family receptors signal
through intracellular recruitment of mediator complexes
through their tumor necrosis factor receptor–associated factor
(TRAF) binding motif, or death domain. Dysregulated TNF/
TNFR signaling has been implicated in the progression of IMIDs,
driving perpetual inflammation and consequential tissue dam-
age. Furthermore, TNF/TNFR members play crucial roles in
regulating T cell responses by providing costimulatory and
coinhibitory signals originating from antigen-presenting cells

(APCs) (So and Ishii, 2019). Signaling from the various TNF/
TNFR interactions facilitates immune homeostasis and attenu-
ates autoimmune responses by modulating the intensity and
duration of T cell responses. T cell activation mediated by cos-
timulatory signals promotes their expansion, survival, and dif-
ferentiation into memory cells. Certain TNF/TNFR interactions
may also induce reverse signaling within APCs and B cells, re-
sulting in their enhanced activation, proliferation, and matura-
tion (So and Ishii, 2019). Accordingly, therapeutic interventions
aimed at antagonizing TNF/TNFR signaling have gained con-
siderable attention in managing several inflammatory con-
ditions. Of note are biologics that help manage disease symptoms
and improve patient prognosis.

Despite substantial strides in comprehending the roles of
TNF/TNFR members in IMIDs, numerous aspects of their pre-
cise molecular mechanisms remain to be elucidated. Under-
standing the intricate interplay between TNF family ligands,
their cognate receptors, and downstream signaling pathways is
crucial for developing novel therapeutic strategies to combat
IMIDs. In this review, we outline the roles of five pivotal TNF/
TNFR targets, namely TNF, TL1A, CD40/CD40L, OX40/OX40L,
and BAFF-R/BAFF axes. These proteins have been intensely in-
vestigated in preclinical and clinical studies as therapeutic tar-
gets for a variety of IMIDs, including atopic dermatitis (AD),
asthma, inflammatory bowel diseases (IBD) such as Crohn’s
disease (CD) and ulcerative colitis (UC), psoriasis, systemic lupus
erythematosus (SLE), and rheumatoid arthritis (RA) (Table 1).
This assortment of chronic inflammatory diseases manifests with
multifactorial pathogenesis arising from genetic, environmental,
and immunological influences and forms the bulk of the focus of
this review. Multiple TNF/TNFR members are significantly
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Figure 1. Molecular signaling mechanisms of the focus TNF/TNFR molecules and the anti-inflammatory benefits of their antagonism. TNF: TNF is
produced mainly by DAMP/PAMP-activated myeloid cells. Myeloid cells respond to soluble TNF/TNFR1 signaling by recruiting the proinflammatory complex I,
orchestrating the release of inflammatory cytokines. Under conditions of loss of cell death checkpoints, TNF/TNFR1 signaling causes the formation of the
cytotoxic complex II that precipitates cellular death, fueling chronic inflammation. TNFR2 agonism on Tregs stimulates their proliferation, resulting in im-
munotolerance via suppression of effector T cells. TL1A: Myeloid activation through inflammatory signals such as TNF induces TL1A expression. This drives
T cell effector function, memory cell formation, and IFN production through a Th1/Th17 response. Along with IL-33, TL1A catalyzes the ILC2-mediated Th2
response, and the consequent IL-13 production triggers matrix metalloproteinase production, tissue remodeling, and fibrosis. CD40/CD40L: CD40 signaling
results in DC maturation and licensing, causing them to secrete inflammatory cytokines and type I IFN directly and indirectly through CD8+ T cell activation and
proliferation. CD40 signaling in B cells drives B cell proliferation and differentiation into memory cells and plasma cells that are responsible for autoantibody
production. OX40/OX40L: OX40 signaling in T cells drive effector and memory T cell formation and inflammatory cytokine production. In Tregs, OX40 signaling
downregulates Foxp3 expression, impairing Treg-mediated effector T cell suppression. BAFF/BAFF-R: Activated myeloid cells produce BAFF that oligomerizes
and induces T cell activation and proliferation. BAFF also plays a leading role in costimulating B cells to drive proliferation, differentiation, and autoantibody
production. MHC II, major histocompatibility complex II; PAMP, pathogen-associated molecular patterns; TGF-β, transforming growth factor-β.
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upregulated in IMID diseases. In parallel, genome-wide associa-
tion studies (GWAS) also shed light on the involvement of several
TNF/TNFR genes in our focus IMIDs (Table 2). Taken together,
these data reveal the extensive involvement of TNF and TNFR
superfamilies in inflammatory diseases.

In this review, we will elucidate the causes and downstream
consequences of activation of these five TNF/TNFR molecular
axes of interest, their roles in specific immune cell subsets,
contributions to the focus IMIDs, and the significant therapeutic
development efforts against them. We will also sum up the op-
portunities and challenges existing in the therapeutic landscape
involving the use of TNF/TNFR-targeted drugs in inflammatory
diseases.

Promising TNF/TNFR targets in inflammatory diseases
TNF

Signaling mechanism. Originally described in 1975 when sci-
entists discovered it as a macrophage-secreted factor inducing

Table 1. Drugs in various stages of development targeting TNF/TNFR
for the focus IMIDs (phase 2 and above)

Drug (Trade
name)

Target and
action

Form Stage and
indications

TNF axis

ABBV-3373 TNF antagonism,
glucocorticoid
receptor
modulation

Adalimumab-GRM
steroid conjugate
(ADC)

Phase 2: RA

Adalimumab
(Humira)

TNF antagonism Human IgG1 κ mAb Launched: CD,
psoriasis, RA,
UC

Certolizumab
pegol (Cimzia)

TNF antagonism PEGylated anti-TNF
F(ab) fragment of
humanized IgG1 κ
mAb

Launched: CD,
psoriasis, RA;
Phase 2: UC

Etanercept
(Enbrel)

TNF antagonism Fusion of
extracellular
domain of human
TNFR2 and the Fc
portion of human
IgG1 Ab

Launched:
psoriasis, RA

Golimumab
(Simponi)

TNF antagonism Human IgG1 κ mAb Launched: UC,
RA; Phase 2:
CD

Infliximab
(Remicade)

TNF antagonism Humanized IgG1 κ
mAb

Launched: CD,
psoriasis, RA,
UC

Ozoralizumab
(Nanozora)

TNF antagonism Humanized
trivalent, bispecific
nanobody made of
two anti–TNFα
VHHs and an
anti–HSA VHH

Launched: RA
(Japan)

SAR441566 TNF antagonism Small molecule Phase 2: RA,
psoriasis

TL1A axis

RG6631 TL1A antagonism Human IgG1 mAb Phase 2: UC,
CD

TEV-48574 TL1A antagonism Human IgG1 mAb Phase 2: UC,
CD

Tulisokibart TL1A antagonism Humanized IgG1
mAb

Phase 2: UC,
CD

CD40/CD40L axis

Abiprubart CD40 antagonism Humanized Fc-
silenced IgG4 mAb

Phase 2: RA

Dapirolizumab
pegol

CD40L antagonism PEGylated anti-
CD40L F(ab’)
fragment of
humanized mAb

Phase 3: SLE

Dazodalibep CD40L antagonism Fusion of two
tenascin-3 Fnlll
domains (Tn3) with
human serum
albumin

Phase 2: RA

Frexalimab CD40L antagonism Humanized mAb Phase 2: SLE

Iscalimab CD40 antagonism Human Fc-silenced
IgG1 mAb

Phase 2: SLE

Table 1. Drugs in various stages of development targeting TNF/TNFR
for the focus IMIDs (phase 2 and above) (Continued)

Drug (Trade
name)

Target and
action

Form Stage and
indications

Ravagalimab CD40 antagonism Humanized IgG1
mAb

Phase 2: UC

OX40/OX40L axis

Amlitelimab OX40L
antagonism

Human IgG4 mAb Phase 3: AD,
Phase 2:
Asthma

IMG-007 OX40 antagonism Humanized Fc
modulated IgG1
mAb

Phase 1/2: AD

Rocatinlimab OX40 antagonism Human IgG1 mAb Phase 3: AD

Telazorlimab OX40 antagonism Humanized IgG1
mAb

Phase 2: AD

BAFF/BAFF-R axis

Belimumab
(Benlysta)

BAFF antagonism Human IgG1 λ mAb Launched: SLE

Ianalumab BAFF-R
antagonism

Human IgG1 κ mAb Phase 3: SLE

Povetacicept BAFF and APRIL
neutralization

Fusion of
engineered TACI
receptor and the Fc
portion of human
IgG Ab

Phase 2: SLE

Rozibafusp alfa BAFF and ICOSL
antagonism

Bispecific IgG2 Ab-
peptide conjugate
that targets BAFF
and ICOSL

Phase 2: SLE

Telitacicept BAFF and APRIL
neutralization

Fusion of the TACI
receptor and the Fc
portion of human
IgG Ab

Phase 3: RA,
SLE. Launched:
SLE (China)

ICOSL, inducible T cell costimulator ligand; VHH, variable region of heavy-
chain-only antibody.
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Table 2. Representative GWAS associations for TNF/TNFR superfamilies’ genes in focus inflammatory diseases

Variant P value Mapped TNF gene(s) Disease trait(s) Study

Ligands

rs755023315 3 × 10−9 CD70 Asthma Han et al. (2020)

rs78037977 6 × 10−13 FASLG Asthma (child onset) Ferreira et al. (2019)

rs12118303 3 × 10−10 FASLG Psoriasis Tsoi et al. (2017)

rs12068671 7 × 10−8 FASLG SLE Langefeld et al. (2017)

rs2844482 1 × 10−9 LTA Asthma Zhu et al. (2019)

rs11811788 2 × 10−39 TNFSF4 AD Budu-Aggrey et al. (2023)

rs10158467 8 × 10−29 TNFSF4 Asthma (child onset) Ferreira et al. (2019)

rs6681482 4 × 10−12 TNFSF4 RA Ishigaki et al. (2022)

rs2205960 3 × 10−90 TNFSF4 SLE Yin et al. (2021)

rs7848647 1 × 10−25 TNFSF15 Psoriasis, UC, CD, ankylosing spondylitis, sclerosing cholangitis Ellinghaus et al. (2016)

rs34187268 3 × 10−9 TNFSF15 Asthma Han et al. (2020)

rs4246905 1 × 10−8 TNFSF15 SLE, psoriasis, UC, CD, juvenile idiopathic arthritis, type 1 diabetes mellitus Li et al. (2015)

rs6478106 5 × 10−46 TNFSF15 CD Yamazaki et al. (2013)

rs10817678 6 × 10−88 TNFSF15 CD, leprosy Jung et al. (2022)

rs2006996 4 × 10−13 TNFSF15 UC, CD Okada et al. (2011)

rs9286879 6 × 10−22 TNFSF18 CD Jostins et al. (2012)

rs1799964 1 × 10−11 TNF, LTA Asthma (childhood onset) Zhu et al. (2020)

rs1799964 4 × 10−11 TNF, LTA CD Franke et al. (2010)

rs1800630 3 × 10−14 TNF, LTA RA, COVID-19 Yao et al. (2023)

Receptors

rs1883832 4 × 10−12 CD40 Psoriasis, UC, CD, ankylosing spondylitis, sclerosing cholangitis Ellinghaus et al. (2016)

rs6074022 3 × 10−12 CD40 CD Liu et al. (2015)

rs1883832 4 × 10−21 CD40 RA Ishigaki et al. (2022)

rs4810485 1 × 10−8 CD40 SLE Langefeld et al. (2017)

rs11616188 3 × 10−14 LTBR Psoriasis, UC, CD, ankylosing spondylitis, sclerosing cholangitis Ellinghaus et al. (2016)

rs7954567 5 × 10−9 LTBR CD de Lange et al. (2017)

rs1860545 3 × 10−17 TNFRSF1A Psoriasis, UC, CD, ankylosing spondylitis, sclerosing cholangitis Ellinghaus et al. (2016)

rs6010620 5 × 10−18 TNFRSF6B AD Sakaue et al. (2021)

rs6062496 2 × 10−30 TNFRSF6B Psoriasis, UC, CD, ankylosing spondylitis, sclerosing cholangitis Ellinghaus et al. (2016)

rs6011033 1 × 10−12 TNFRSF6B Asthma Han et al. (2020)

rs2230624 8 × 10−13 TNFRSF8 Asthma Olafsdottir et al. (2020)

rs1201113 7 × 10−11 TNFRSF8 Eczema Kichaev et al. (2019)

rs227163 3 × 10−9 TNFRSF9 RA Okada et al. (2014)

rs7014637 2 × 10−8 TNFRSF10D Asthma Chang et al. (2023)

rs4574025 7 × 10−10 TNFRSF11A AD Budu-Aggrey et al. (2023)

rs4574025 2 × 10−10 TNFRSF11A Asthma Pividori et al. (2019)

rs8086340 3 × 10−10 TNFRSF11A Eczema Kichaev et al. (2019)

rs371734407 4 × 10−8 TNFRSF11A RA Ishigaki et al. (2022)

rs35966917 5 × 10−9 TNFRSF13B SLE Yin et al. (2021)

rs2234161 2 × 10−11 TNFRSF14 Psoriasis, UC, CD, ankylosing spondylitis, sclerosing cholangitis Ellinghaus et al. (2016)

rs10910095 4 × 10−13 TNFRSF14 Asthma, eczema, allergic rhinitis Johansson et al. (2019)

rs2258734 2 × 10−24 TNFRSF14 RA Ishigaki et al. (2022)

rs10910092 1 × 10−11 TNFRSF14 UC Liu et al. (2015)

Data from GWAS Catalog (Sollis et al., 2023).
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necrotic cell death in certain tumors, TNF has since been rec-
ognized as a cardinal proinflammatory cytokine with context-
dependent effects, including inflammatory response, survival,
and apoptosis in its target cells (Carswell et al., 1975). TNF is
produced by macrophages, T cells, B cells, neutrophils, natural
killer (NK) cells, endothelial cells, and fibroblasts under in-
flammatory conditions. Both membrane-bound TNF and its
soluble form produced by TNF-α-converting enzyme (TACE)
proteolysis can induce pathological inflammation in various
chronic inflammatory and autoimmune conditions. TNF acts
through its two receptors, tumor necrosis factor receptor
1 (TNFR1, encoded by TNFRSF1A) and tumor necrosis factor re-
ceptor 2 (TNFR2, encoded by TNFRSF1B). TNFR1 is expressed
ubiquitously, while TNFR2 is restricted to regulatory T cells
(Tregs), NK cells, CD4+ and CD8+ T cells, and endothelial cells
(Naserian et al., 2020). Lymphotoxin alpha (LT-α, encoded by
LTA), a paralog of TNF, is a cytokine released by activated
lymphocytes that binds to TNFR1, TNFR2, and HVEM as a ho-
motrimer, and to LTβR as a heterotrimer with lymphotoxin beta
(LT-β, encoded by LTB). While some studies show LT-α to be less
efficient than TNF in activating TNFR1 and inducing cell death
and inflammatory transcription through NF-κB (Andrews et al.,
1990; Chaturvedi et al., 1994), others show no differences in
TNFR1 stimulation potency between TNF and LT-α (Etemadi
et al., 2013). In inflammatory diseases, TNFR1 activation by
soluble and membrane-bound forms of TNF induces cell death,
immune cell activation, and the expression of cytokines (such as
IL-1, IL-6), chemokines (such as IL-8, RANTES), matrix metal-
loproteinases (such as MMP9), and adhesion molecules (such as
ICAM-1, E-selectin). TNFR1 can also indirectly contribute to in-
flammation by causing lytic cell death, such as apoptosis-
driven necrosis, pyroptosis, and necroptosis, consequently
releasing damage-associated molecular patterns (DAMPs),
and activating pattern-recognition receptors in neighboring
bystander cells (Annibaldi and Meier, 2018; van Loo and
Bertrand, 2023). Notably, TNFR1 signaling-associated cell
death disrupting the dermal or intestinal epithelial barrier may
lead to microbial invasion, thereby perpetuating inflammation.
Taken together, TNF/TNFR1 signaling can induce inflammation
directly through inflammatory transcription and indirectly via
cell death.

TNFR2 signaling triggered by membrane-bound TNF leads
to TRAF-2 recruitment and non-canonical NF-κB and MAPK
pathways initiation, culminating in the proliferation, survival,
and differentiation of T and B lymphocytes. In CD4+ T helper
and CD8+ T effector cells, TNF/TNFR2 interactions act as co-
stimulatory signals mediating proliferation and effector func-
tions including the production of TNF, IFN-γ, and IL-2 following
T cell receptor (TCR) activation (Kim et al., 2006). In Tregs,
TNFR2 stimulation is tied to IL-2 production and proliferation
via activation of the NF-κB and MAPK pathways (He et al., 2018;
Wang et al., 2018). Importantly, Treg expression of TNFR2 is
among the highest in all cell types and correlates with immu-
notolerance and anti-inflammatory functions, suggesting that
TNFR2 agonism and consequent Treg proliferation may be
therapeutic in autoimmune and chronic inflammatory con-
ditions (Faustman and Davis, 2010).

Disease relevance. Knockout studies have demonstrated that
TNF plays pivotal roles in innate and humoral immune re-
sponses, including pathogen defense, inflammation resolution,
and tissue repair, and is necessary for proper lymphoid-organ
and germinal center development (Marino et al., 1997;
Pasparakis et al., 1996). Chronic inflammation induced by ab-
errant expression of TNF is a pathological hallmark of several
IMIDs. Elevated levels of TNF seen in the serum and diseased
tissue of patients with inflammatory diseases, including RA and
IBD, correlate with disease severity (Maeda et al., 1992; Robak
et al., 1998). In addition, polymorphisms in TNFRSF1A are asso-
ciated with psoriasis, UC, and CD (Table 2).

Drug development. TNF antagonistic biologics have been in
development for three decades and are approved for inflam-
matory conditions, including CD, psoriasis, RA, and UC (Elliott
et al., 1993). Adalimumab, a human anti-TNF monoclonal anti-
body (mAb), is approved for CD, psoriasis, RA, and UC. Certo-
lizumab pegol is a pegylated anti-TNF F(ab’) fragment of a
humanized mAb that has been launched for CD, psoriasis, and
RA treatment. Golimumab is a human anti-TNF mAb that is
approved for UC and RA treatments. Infliximab is a humanized
anti-TNF mAb that is indicated for CD, psoriasis, RA, and UC.
Whereas the other approved anti-TNF biologics are mAbs, eta-
nercept is a fusion product of two extracellular domains of
TNFR2 and the Fc region of human IgG1 Ab that is indicated for
psoriasis and RA. Pivotal studies that led to the approval of these
anti-TNF biologics are summarized in Table S2. Novel TNF an-
tagonists that are currently being studied in the clinic are
highlighted below.

Ozoralizumab (ATN-103) is a humanized trivalent, bispecific
biologic comprising of two anti-TNF nanobody (single-domain
antibody) fragments in addition to an anti-human serum albu-
min (HSA) nanobody that extends its half-life. In 2010, it un-
derwent a phase 2 evaluation in 266 RA patients where it was
found that subcutaneous monthly ozoralizumab was safe and
induced clinical remission in 38% of patients (NCT01063803)
(Fleischmann et al., 2012). After successful phase 3 trials in Ja-
pan, the drug has been approved for treating RA in Japan. In a
study comprising 381 patients who were non-responders to
methotrexate (JapicCTI-184029), 30 or 80 mg ozoralizumab was
administered subcutaneously monthly and a clinical response
was achieved in significantly more subjects (79.6% and 75.3% of
subjects, P < 0.001) compared with placebo (37.3%) at week 16
(Takeuchi et al., 2022). Another open-label phase 3 trial in RA
patients also established that both doses of ozoralizumab were
safe and efficacious even without methotrexate administration,
and clinical improvements were maintained through 52 wk
(JapicCTI-184031) (Tanaka et al., 2023).

Antibody–drug conjugates (ADCs) are innovative therapeu-
tics that permit targeted delivery of drug payloads. Systemic
glucocorticoid treatments broadly used for inflammation man-
agement raise risks of serious adverse events (SAEs) that may be
avoided by its selective delivery to inflamed tissues with ele-
vated TNF levels. The first ADC being developed for IMIDs,
ABBV-3373, is composed of adalimumab conjugated with a glu-
cocorticoid receptor modulator (GRM) steroid. A recently com-
pleted phase 2a study in 47 active RA patients on methotrexate
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treatment evaluated the effects of either 100 mg intravenous
ABBV-3373 or 80 mg subcutaneous adalimumab every 2 wk
(NCT03823391). ABBV-3373 significantly reduced disease activ-
ity at week 12 when compared with historical adalimumab
treatment (−2.65 versus −2.13, P = 0.022) but performed only
marginally better than in-trial adalimumab treatment (−2.51,
non-significant) (Buttgereit et al., 2023). ABBV-3373 was found
to possess a similar safety profile to in-trial adalimumab
(Buttgereit et al., 2023). However, no further development of
ABBV-3373 has since been reported and the clinical develop-
ment of a more stable derivative, ABBV-154, has ceased. ABBV-
154 was in phase 2b trials for CD (NCT05068284) and RA
(NCT04888585) when the trials were strategically terminated
after it was determined through risk-benefit analyses that the
ADC did not outperform adalimumab.

SAR441566 is a novel small molecule TNF inhibitor that sta-
bilizes an asymmetric conformation of soluble TNF trimer
causing it to bind to only two out of three possible TNFR1 re-
ceptor binding sites, consequently limiting receptor clustering
and signaling (McMillan et al., 2021; Vugler et al., 2022). In a
preclinical murine model of collagen-induced arthritis (CIA),
SAR441566 exhibited dose-dependent suppression of disease
symptoms. Oral doses of 10 and 30 mg/kg of SAR441566 elicited
a reduction of 68% and 84%, respectively, in the disease score,
compared with a placebo (Vugler et al., 2022). The drug became
the first small molecule TNF inhibitor to enter clinical trials with
the ongoing recruitment for phase 2 trials in an estimated 240
patients with RA (NCT06073093) and in an estimated 207 pa-
tients with plaque psoriasis (NCT06073119). Improvements in
hit-finding techniques have led to the recent discovery of several
small molecule inhibitors of TNF, as discussed in Opportunities
and challenges in TNF/TNFR drug therapy for inflammatory
diseases section.

Since its first approval over 25 years back, TNF inhibition has
remained one of the most widely used and successful anti-
inflammatory therapeutics to control RA, IBD, and psoriasis.
Efforts focused on refining treatment strategies using approved
TNF antagonists, as well as ongoing development of novel TNF
therapeutics attest to the importance of TNF as a pre-eminent
target in several IMIDs.

TL1A
Signaling mechanism. TNF-like ligand 1A (TL1A, encoded by

TNFSF15) is an inflammatory cytokine expressed primarily by
APCs such as dendritic cells (DCs) and macrophages upon in-
flammatory stimulation through Toll-like receptor (TLR) li-
gands, IFN-γ, and FcγR activation (Cassatella et al., 2007). It is
also expressed to a lesser degree by vascular endothelial cells
(Al-Lamki et al., 2008). Membrane-bound TL1A undergoes
proteolytic cleavage, ectodomain shedding, and solubilization in
a process thought to be primarily TACE-dependent. TL1A signals
through death receptor 3 (DR3, encoded by TNFRSF25) expressed
on activated lymphocytes, NK cells, NKT cells, innate lymphoid
cells (ILCs), fibroblasts, and epithelial cells (Tougaard et al.,
2016). In resting T cells, the death domain (DD) of DR3 is sup-
pressed by SODD (Jiang et al., 1999). In activated T cells, TL1A
ligation triggers rapid NF-κB, PI3K, and c-Jun N-terminal kinase

pathway-mediated inflammation via TNFR-associated DD sig-
naling. Subsequently, a delayed-onset Fas-associated DD re-
cruitment causes caspase signaling and apoptotic cell death
(Wang et al., 2014). Interestingly, NF-κB activation may activate
cIAP, a negative regulator of TL1A-mediated apoptosis, prefer-
entially in lymphocytes (Xu et al., 2022). TL1A also has a decoy
receptor, the soluble DcR3, which neutralizes TL1A and antag-
onizes its effects. Taken together, TL1A signaling plays a mul-
tifaceted role in inflammatory activation.

Disease relevance. TL1A-DR3 interaction acts as a potent
costimulation signal in T cells, amplifying effector T cell path-
ways (Tougaard et al., 2016). TL1A induces the secretion of
proinflammatory cytokines such as TNF, contributing to ag-
gravated inflammation. TL1A signaling is associated with the
pathogenesis of T-cell-mediated autoimmune diseases, such as
RA, SLE, and psoriasis. Genetic variants of the TNFSF15 gene
are associated with psoriasis, UC, CD, SLE, asthma, and ju-
venile idiopathic arthritis (Table 2). Serum levels of soluble
TL1A and intestinal levels of membrane-bound TL1A and DR3
are elevated in both UC and CD patients (Bamias et al., 2010,
2012; Prehn et al., 2004). Specifically, TL1A upregulation was
seen in macrophages and lamina propria lymphocytes in colon
tissue from CD patients and correlated to disease activity
(Bamias et al., 2003). TL1A also enhanced IFN-γ secretion by
phytohemagglutinin-activated lamina propria mononuclear
cells isolated from lesional CD tissue in comparison with non-
diseased and non-lesional diseased controls, suggesting a role for
TL1A in maintaining IFN-γ–dependent Th1 responses seen in
patient colons (Bamias et al., 2003). TL1A drives inflammation
by inducing TNF production and synergizing with IL-12 and IL-
18 to enhance IFN-γ production in T cells and NK cells
(Papadakis et al., 2004). TL1A signaling is also believed to con-
tribute to mucosal barrier disruption, as seen in its ability to
increase the barrier permeability of TNF-treated Caco-2 cells
and mucosa of dextran sulfate sodium–induced colitis mice by
affecting tight junction proteins (Yang et al., 2019). While TL1A
enhances Treg proliferation, it attenuates the ability of Treg to
suppress conventional T cells (Taraban et al., 2011). TL1A has
also been reported to induce fibrosis by inducing collagen syn-
thesis in fibroblasts, potentially through TGF-β/Smad3 signaling
(Jacob et al., 2020; Li et al., 2018). Together with mesenchyme-
derived IL-33, TL1A induces IL-13 secretion by ILC type 2 (ILC2)
and Th2 cells (Hassan-Zahraee et al., 2022). This catalyzes fi-
brosis and tissue remodeling by driving macrophage production
of TGF-β and matrix metalloproteinase (MMP) (Hassan-Zahraee
et al., 2022). The strong association of TL1A with IBD im-
munopathogenesis has paved the way for clinical studies as-
sessing TL1A antagonism for UC and CD treatment.

Drug development. RG6631 (PF-06480605/RVT-3101) is a
human IgG1mAb antagonist for TL1A under investigation for UC
and CD treatment. In a phase 2a study involving 50 UC patients
(NCT02840721), intravenous administration of 500 mg RG6631
resulted in endoscopic improvement at week 14 in 38.2% of
participants, a significantly better response than the historical
placebo groups (6%, P < 0.001) based on two phase 3 induction
studies of tofacitinib (Danese et al., 2021). The drug was well
tolerated, with an acceptable short-term safety profile (Danese
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et al., 2021). Anti-TL1A therapy reduced free intestinal TL1A
levels in both responders and non-responders and down-
regulated Th1, Th2, and IL-23 pathways in responders (Hassan-
Zahraee et al., 2022). Additionally, fibrosis and extracellular
remodeling genes were downregulated with RG6631 treatment,
highlighting the relevance of TL1A signaling-induced fibrosis in
UC (Hassan-Zahraee et al., 2022). A recently concluded 56-wk-
long phase 2b evaluation of RG6631 involving 246 participants
with UC demonstrated that the drug was well tolerated and
showed a favorable safety profile at all tested dosages
(NCT04090411). At week 14, 32% of the subjects achieved clinical
remission compared with 12% in placebo group (P = 0.01), and
40% achieved endoscopic improvement compared with 19% in
the placebo group (P = 0.01) in the pooled drug cohort (Roivant
Sciences Ltd., 2023a). Clinical remission was maintained in the
treatment group by week 56 of study, and no patient receiving
the expected phase 3 dose developed neutralizing antibodies
(Roivant Sciences Ltd., 2023b). RG6631 is also being investi-
gated in a phase 2 trial involving 105 participants with CD
(NCT05910528).

Tulisokibart (MK-7240/PRA-023) is a humanized IgG1 anti-
TL1A mAb evaluated in UC and CD phase 2 studies. In a phase 2a
non-placebo-controlled study involving 55 subjects with CD
(NCT05013905), patients received 1,000 mg of the drug intra-
venously on day 1, followed by 500 mg at weeks 2, 6, and 10.
Tulisokibart treatment resulted in 26% endoscopic response and
49% clinical remission (Feagan et al., 2023a). No SAEs were
considered treatment related. In a phase 2 study in 135 UC pa-
tients (NCT04996797), 1,000 mg tulisokibart was administered
intravenously on day 1, followed by 500mg at weeks 2, 6, and 10.
At week 12, drug treatment achieved significantly higher clinical
remission and endoscopic improvement at 26.5% and 36.8%,
respectively, compared with placebo group rates of 1.5% and
6%, respectively (Sands et al., 2023). Rates of treatment-
emergent AEs were comparable between the drug and pla-
cebo treatments, indicating that the drug was well-tolerated.
A phase 3 study involving 1020 UC subjects has been an-
nounced (NCT06052059).

TEV-48574 is a human IgG1 anti-TL1A mAb that recently
started recruiting for phase 2 trials in UC and CD (NCT05668013
and NCT05499130). Notably, TEV-48574 was the subject of a
phase 2 study in asthma that was terminated after failing tomeet
primary objectives at interim analysis (NCT04545385).

In summary, TL1A antagonism can address IBD by mini-
mizing Th1, Th2, and Th17 responses, IFN production, and im-
mune recruitment, consequently reducing inflammation and
fibrosis. The three anti-TL1A drug development programs that
target UC and CD display immense potential and it is highly
likely that anti-TL1A therapeutics may soon emerge as strong
alternatives to anti-TNF medications.

CD40/CD40L
Signaling mechanism. The interaction between CD40 and its

cognate ligand CD40L serves as a crucial costimulatory immune
checkpoint. Membrane-bound CD40 is expressed in B cells
constitutively. CD40 expression in myeloid APCs such as mon-
ocytes, macrophages, and DCs is induced by activating signals

such as bacterial lipopolysaccharides (LPS), advanced glyca-
tion end-products (AGEs), and high mobility group protein
1 (HMGB1), and enhanced by cytokines such as interleukin-18
(IL-18), granulocyte/macrophage colony-stimulating factor
(GM-CSF), interleukin-3 (IL-3), and interferon-γ (IFN-γ)
(Takahashi et al., 2013; Tang et al., 2021). CD40L is expressed in
activated CD4+ T cells but not in resting cells. Signals such as
TCR engagement, co-stimulation, and interleukin-12 (IL-12)
enhance CD40L expression in Th1, Th2, Th17, and T follicular
helper (TFH) cells, as well as in CD8+ T cells and Tregs to a lesser
extent (Tang et al., 2021; Tay et al., 2017). The ligation of CD40
with CD40L activates the non-canonical NF-κB, MAPK, and
PI3K/AKT pathways by recruiting TRAF-1, -2, -3, -5 and -6,
thereby initiating proinflammatory action through NF-κB and
AP-1 transcription factors (Seibold and Ehrenschwender, 2015).
CD40 signaling in B cells is implicated in driving proliferation,
activation, Ab class switching, affinity maturation through so-
matic hypermutation, and differentiation into plasma and
memory cells (Koike et al., 2019). CD40 activation in APCs such
as DCs, monocytes, and macrophages is important for effective
antigen presentation, inflammatory cytokine production, and
T cell stimulation. Notably, CD40L–CD40 interactions between
CD4+ T cells and DCs are imperative for DC licensing, which
drives the priming and proliferation of CD8+ T cells for a robust
T cell response in a CD40-dependent manner (Tay et al., 2017).
Activated T cells also express CD40 with increased frequency
and expression that correlates with the presence of autoimmune
disease. CD40 signaling serves as a costimulatory cue for TCR-
mediated CD4+ T cell activation and cytokine production
(Munroe and Bishop, 2007) and mediates the generation of CD8+

T cell memory (Bourgeois et al., 2002).
Disease relevance. Polymorphisms in CD40 are associated

with psoriasis, UC, CD, RA, and SLE (Table 2), and CD40 is more
abundant in UC colon and AD dermal samples compared to
healthy controls (Dharmasiri et al., 2021). CD40/CD40L signal-
ing is strongly implicated in SLE, RA, and IBD pathogenesis
(Seibold and Ehrenschwender, 2015). In RA, both CD40L and
CD40 are upregulated in diseased synovium from patients (Liu
et al., 2001). Treatment of PBMC-derived macrophages from RA
patients with anti-TNF agents resulted in lower CD40 expres-
sion (Degboé et al., 2019). Interestingly, synovial fibroblasts
isolated from RA subjects display reduced TNF production when
pretreated with anti-CD40 prior to coculture with synovial fluid
mononuclear cells, suggesting a complementary relationship
between TNF and CD40/CD40L signaling in inflammation and
disease propagation (Liu et al., 2001). In murine models of CIA,
CD40 antagonism attenuates inflammation, immune infiltra-
tion, cartilage, and bone erosion, and reduces serum Ab titers to
collagen (Durie et al., 1993).

In SLE patients, serum levels of soluble CD40L are elevated,
correlating strongly with disease activity (Goules et al., 2006).
Membrane-bound CD40L is also more abundant in resting and
activated T cells derived from SLE patients compared with
healthy controls (Daoussis et al., 2007). Interestingly, B cells
isolated from SLE patients spontaneously produce antibodies in
a CD40L-dependent manner, suggesting a role for CD40L in
autoimmunity (Grammer et al., 2003). In mouse models of
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chronic colitis, CD40L antagonism blocks IL-12 production,
pathogenic Th1 response, and consequent inflammation, high-
lighting the promise of CD40/CD40L blockade in IBD (De Jong
et al., 2000; Stuber et al., 1996).

Drug development. Elevated levels of circulating immune
complexes composed of autoantibodies and self-antigens are
observed in autoimmune conditions such as SLE. Platelets
binding such immune complexes get activated, express CD40L,
and induce differentiation, maturation, and type I IFN release in
DCs, and consequently promote further autoantibody secretion
by plasma cells (Duffau et al., 2010). While anti-CD40L showed
promise in murine models of inflammatory conditions, notable
past clinical trials involving anti-CD40L Ab therapies for auto-
immune disorders have encountered thromboembolic compli-
cations stemming from platelet activation in response to the Fc
domain on anti-CD40L drugs (Boumpas et al., 2003; Kawai et al.,
2000; Langer et al., 2005). Mouse platelets lack FcγRIIa and are
less susceptible to activation and aggregation by traditional anti-
CD40L Ab treatment. Since autoimmune patients have elevated
serum levels of soluble CD40L, treatment with Fc-domain intact
anti-CD40L could form immune complexes consisting of soluble
CD40L and anti-CD40L antibodies, which then activate platelets
in an FcγRIIa (CD32)-dependent manner and trigger thrombo-
embolic events (Langer et al., 2005; Robles-Carrillo et al., 2010).
This discovery has prompted the development of safer anti-
CD40/CD40L biologics with silenced Fc domains.

Given its immense potential, the inhibition of CD40/CD40L
interaction is a focal point in multiple immunotherapies in de-
velopment for conditions such as RA, SLE, and UC. Dapir-
olizumab pegol (BIIB133), a PEGylated F(ab’) fragment that
targets CD40L, was assessed in a phase 2b study (NCT02804763)
involving 182 SLE patients, where they received standard of care
(SOC), along with either intravenous dapirolizumab adminis-
tered every 4 wk at three doses (6, 24, and 45mg/kg), or placebo.
Dapirolizumab showed an acceptable safety profile and was well
tolerated (Furie et al., 2021). While the trial failed to meet one of
its primary objectives of establishing a relationship between
drug dose and disease response, several disease activity scores
and immune biomarkers showed improvements over placebo
treatment at week 24 (Furie et al., 2021). During a post-
treatment observational period, several disease activity scores
remained unchanged. However, flares increased, and the levels
of anti-dsDNA (double-stranded DNA), complement C3, and
complement C4 returned to pathogenic levels seen at the start of
the study, evidence of the inefficacy of SOC (Furie et al., 2021).
These indications of a biological effect have spurred an ongoing
phase 3 trial involving 321 patients (NCT04294667).

Frexalimab (SAR-441344) is a non-depleting anti-CD40LmAb
with a modified Fc region that improves its safety by impairing
binding to FcγRIIa and C1q, consequently attenuating platelet
and complement activation, respectively. It is being investi-
gated in a phase 2 trial recruiting 116 active SLE patients
(NCT05039840). Iscalimab (CFZ533) is a human anti-CD40mAb
that is Fc-silent and therefore non-depleting. It is being inves-
tigated in a phase 2 study comprising 107 SLE patients
(NCT03656562) and another recently completed phase 2 study
involving 57 lupus nephritis (LN) patients whose results are yet

to be posted (NCT03610516). It was previously determined to be
safe in a phase 1 trial with 56 healthy volunteers and 20 RA
patients with no thromboembolic events reported (Espié et al.,
2020) (NCT02089087).

Dazodalibep (VIB4920/MEDI4920) is a non-antibody biologic
formed as a fusion of human serum albumin with two fibro-
nectin type III domains of tenascin-C (Tn3), a protein that can
bind CD40L. It was evaluated in a phase 2 trial involving 78 adult
participants with RA, with dosing on days 1, 15, 29, and 57
(NCT04163991). All four doses of dazodalibep elicited a signifi-
cantly greater reduction in the disease activity relative to the
placebo group (P < 0.05) at day 113, and the response was sus-
tained until day 309 (Kivitz et al., 2023). AEs were comparable
between the treatment and placebo groups, suggesting an ac-
ceptable tolerability profile. The absence of thromboembolic
events in clinical trials is attributed to the lack of the Fc domain
in this biologic (Kivitz et al., 2023). Additionally, an ongoing
phase 2a study assesses the efficacy of dazodalibep combined
withmycophenolate mofetil and prednisone in achieving a renal
response in 74 participants with active LN (NCT05201469).

Abiprubart (KPL-404) is a CD40 antagonizing mAb that
blocks CD40–CD40L interaction-mediated activation of B cells
(Marken et al., 2021). Interim analysis of a phase 2 trial
(NCT05198310) in 145 RA subjects with inadequate response or
intolerance to at least one biologic disease-modifying antirheu-
matic drug (DMARD) or a Janus kinase inhibitor indicated that
its primary endpoints were met (Kiniksa Pharmaceuticals,
2024). Ravagalimab (ABBV-323) is a CD40 antagonist mAb
tested in a recently completed phase 2 trial in 42 UC patients
(NCT03695185). The study was not placebo-controlled and only
18% of patients receiving the drug showed improvement in the
Mayo endoscopic subscore at week 12.

Taken together, CD40/CD40L antagonism is intended to re-
duce type I IFN secretion, inhibit inflammatory cytokine pro-
duction by myeloid cells, and mitigate autoantibody production
by suppressing B cell activation and memory response, and may
emerge as a therapeutic strategy for RA and SLE.

OX40/OX40L
Signaling mechanism. OX40 (CD134, encoded by TNFRSF4)

and its cognate ligand OX40L (CD252, encoded by TNFSF4) are
well-studied costimulatory molecules facilitating T cell effector
functions. OX40 is expressed on activated CD4+ and CD8+ T cells
but not in näıve or resting memory T cells (Alves Costa Silva
et al., 2020). OX40 expression in T cells is driven by TCR acti-
vation and is augmented by cytokines, including IL-1β, IL-2, and
TNF, in addition to costimulatory interactions such as CD28with
B7 ligands and CD40L with CD40 (Webb et al., 2016). OX40/
OX40L interactions are believed to occur in two stages and
promote T cell effector functions (Fu et al., 2020). T cell cos-
timulation through OX40 is initially mediated by OX40L ex-
pressed on APCs, including activated DCs and macrophages, in
response to IFN-γ, prostaglandin E2, thymic stromal lympho-
poietin (TSLP), and IL-18 exposure (Webb et al., 2016). Subse-
quent interactions between OX40+ T cells and OX40L expressed
by activated B cells, NK cells, mast cells, and inflamed endo-
thelial cells further promote T cell activation, expansion, and
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survival (Webb et al., 2016). Upon ligation by OX40L, the cyto-
plasmic tail of OX40 binds TRAF-2, -3, and -5 and causes acti-
vation of NF-κB and NFAT pathways and subsequent effector
cytokine production (Alves Costa Silva et al., 2020). In human
Tregs, OX40 signaling impairs suppressive functions (Jacquemin
et al., 2018; Voo et al., 2013). Notably, in vivo experiments show
that the activation of the OX40 pathway preferentially expands
the antigen-specific T cell pool, and subsequently, these cells are
resistant to immune suppression by Treg (Webb et al., 2016). In
agreement, OX40 blockade using the antagonizing mAb amli-
telimab significantly extended graft-versus-host disease
(GvHD)-free survival and delayed clinical signs of acute GvHD in
a nonhuman primate model by restraining CD4 T cell expansion
and preserving Treg reconstitution following hematopoietic
stem cell transplantation (Tkachev et al., 2017). Taken together,
OX40 antagonism can be anti-inflammatory by inducing im-
mune tolerance through Treg preservation and suppressing
T cell memory differentiation and effector functions.

Disease relevance. GWAS studies have shown that TNFSF4 is
associated with AD, asthma, SLE, and RA (Table 2). Considering
that IMIDs such as RA and UC are characterized byOX40/OX40L
interactions occurring primarily between activated T cells and
APCs within inflamed tissue (but not in peripheral blood cells),
the antagonism of OX40 and OX40L represents a promising
strategy for targeting areas of immune activity (Webb et al.,
2016). Circulating Tregs from SLE patients exhibit elevated ex-
pression of OX40 and display impaired suppressive functions
compared with healthy donors in an OX40L-dependent manner
(Jacquemin et al., 2018). Further, Tregs colocalized with OX40L-
expressing cells in active SLE skin lesions, implicating OX40
signaling for Treg suppression (Jacquemin et al., 2018). Simi-
larly, there exist elevated soluble OX40L in psoriatic patient
serum (Guo et al., 2019), increased number of OX40+ cells in
psoriatic and AD lesions (Fujita et al., 2011; Guo et al., 2019), and
strong correlations between AD disease activity scores and
dermal OX40L abundance (Elsner et al., 2020).

While disruption of OX40/OX40L signaling holds promise for
various IMIDs, substantial drug development efforts revolve
around disorders such as AD and asthma that involve pathogenic
type 2 immune responses (Nakahara et al., 2021). A positive
feedback loop exists within the Th2 immune response and epi-
dermal barrier dysfunction in AD. Th2-associated IL-4/IL-13
secretion decreases barrier proteins such as filaggrin and lor-
icrin, leading to barrier disruption. Conversely, a compromised
barrier promotes IL-25, IL-33, and TSLP secretions, which acti-
vate DCs and induce OX40L expression, consequently acceler-
ating the Th2 response (Furue and Furue, 2021). In asthma,
allergens induce epithelial cells and mast cells to secrete TSLP,
triggering DC maturation and OX40L expression, consequently
driving inflammation and Th2 response (Parnes et al., 2022). In
murine models of skin and lung inflammation induced by in-
tradermal and intranasal administration of TSLP and in an
ovalbumin-induced allergic airway inflammation model, treat-
ment with anti-OX40 Ab has consistently resulted in reduced
inflammation (Seshasayee et al., 2007). Similarly, OX40
knockout mice display attenuated airway hyperreactivity, im-
paired Th2 response, 80–90% reduction in eosinophilia and

mucus production, and lower goblet cell hyperplasia when
primed with ovalbumin and challenged with intranasal ad-
ministration of aerosolized antigen (Jember et al., 2001).

Drug development. Four recent drug development efforts are
underway targeting OX40/OX40L in AD and asthma. Roca-
tinlimab (KHK4083/AMG451) is a fully human afucosylated
anti-OX40 mAb that works by depleting OX40+ T cells. It is
undergoing phase 3 trials in AD (NCT05398445 andNCT05651711
main studies), assessing monotherapy and combination therapy
with topical corticosteroid and calcineurin inhibitors in adults
and adolescents. The drug showed promising tolerance and ef-
ficacy data in a phase 2b study involving 274 patients with AD
who displayed inadequate symptom relief with corticosteroids.
Compared with the placebo at week 16 of the study that showed a
−15% change in mean eczema area and severity index (EASI), a
low dose treatment of 150 mg every 4 wk caused a −48.3%
change, while a higher dose of 600 mg administered every 2 wk
changed EASI by −57.4% (Guttman-Yassky et al., 2023). The
study also reported sustained improvement in most patients
after discontinuation of treatment. Notably, the drug showed
good safety but not efficacy against psoriasis in a phase 1 study
(Papp et al., 2017). These divergent results of rocatinlimab in AD
and psoriasis may be explained by lower OX40L in psoriatic skin
lesions compared with AD samples (Fujita et al., 2011).

Telazorlimab (ISB 830/GBR 830) is a humanized anti-OX40
mAb that underwent a phase 2b evaluation in 462 subjects with
AD (NCT03568162). Subcutaneous administration of telazorlimab
at 300 mg every 2 wk (following a loading dose of 600 mg) and at
600mg every 2wk (following a loading dose of 1,200mg) resulted
in significant improvement in EASI at 16 wk (−54.4% versus
−34.2% placebo, P = 0.008 and −59.0% versus −41.8% placebo, P =
0.008, respectively) (Rewerska et al., 2023). Significant clinical
improvement was maintained through 66 wk of follow-up, and
the treatment was safe and well-tolerated (Rewerska et al., 2023).

Amlitelimab (KY1005/SAR445229) is a non-depleting human
anti-OX40L mAb that blocks OX40L on APCs instead. In AD
patients, it causes a decrease in the serum levels of IL-22 and IL-
13, cytokines associated with Th22 and Th2 responses, respec-
tively, in the underlying AD immunopathogenesis (Weidinger
et al., 2022, 2023b). Interim results from an ongoing phase 2b
trial with 390 AD patients (NCT05131477) showed that while all
four dosage regimens of amlitelimab tested produced significant
improvements in EASI from baseline to week 16 from placebo,
the group that received 250 mg subcutaneously every 4 wk
following a 500 mg loading dose showed the best improvement
in EASI (61.5%) compared with placebo (29.4%, P < 0.0001)
(Weidinger et al., 2023a). EASI-75 response achieved by week 24
of treatment was maintained in 69.2% and 58.5% of patients who
continued treatment or withdrew from treatment for a further
28 wk, respectively (Sanofi, 2024). Recruitment for several
phase 3 trials in AD patients are ongoing (NCT06130566,
NCT06181435, NCT06241118, and NCT06224348). Additionally,
a phase 2 dose-ranging study of amlitelimab is currently un-
derway in asthma (NCT05421598).

IMG-007 is a humanized anti-OX40 IgG1 mAb featuring an
engineered Fc region that extends its half-life and reduces Ab-
dependent cellular cytotoxicity (ADCC) (Shen et al., 2023). Its
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safety and efficacy are being assessed in a phase 1b/2a study
involving 55 patients with AD (NCT05984784).

In summary, OX40/OX40L blockade can regulate effector
and memory T cell expansion and downregulate inflammation
caused by Th1, Th2, Th17, and Th22 cells. It can also lower cy-
tokine production and restore homeostasis between proin-
flammatory and anti-inflammatory T cells. Data from clinical
studies strongly indicate OX40/OX40L inhibition as a potent and
safe option for treating type 2 inflammatory diseases such as AD
and asthma.

BAFF/BAFF-R
Signaling mechanism. B cell activating factor (BAFF, encoded

by TNFSF13B), alternatively B lymphocyte stimulator, is a cos-
timulatory cytokine governing B cell survival, maturation, and
IgG class switching and production (Batten et al., 2000; Castigli
et al., 2005; Litinskiy et al., 2002). It binds to three receptors:
BAFF receptor (BAFF-R, encoded by TNFRSF13C), transmem-
brane activator and CAML interactor (TACI), and B-cell matu-
ration antigen (BCMA). BAFF is expressed by innate immune
cells, such as monocytes, macrophages, neutrophils, and DCs
when induced by TLR agonists and type I and II IFN (Manetta
et al., 2014). BAFF is also produced by germinal center resi-
dent TFH and follicular DCs, where both cell types play
essential roles in stimulating B cell proliferation and differ-
entiation (Zhang et al., 2005, 2015). BAFF-R, the dominant
BAFF receptor in naı̈ve B cells exiting the bone marrow, in-
creases in abundance initially as B cells differentiate. BAFF-R
expression subsequently decreases in B cells during differ-
entiation to plasma cells, corresponding to the induction
of TACI and BCMA expression (Zhang et al., 2005). The
membrane-bound form of BAFF gets proteolytically cleaved
by Furin, forming soluble active homotrimers that can acti-
vate BAFF-R, or the more potent but lowly abundant 60-mer
complexes that are necessary for TACI activation (Bossen
et al., 2008; Manetta et al., 2014). Ligation of BAFF-R by
BAFF results in TRAF-2, -3, and -6 recruitment, and subse-
quent non-canonical NF-κB signaling (Hildebrand et al., 2010;
Thompson et al., 2016). BAFF-R expression is primarily re-
stricted to the B-cell lineage where its activation by BAFF li-
gation drives B cell maturation and proliferation.

Disease relevance. BAFF/BAFF-R signaling plays a key role in
pathogenesis and disease progression of autoimmune diseases
like RA and SLE. While RA patients exhibit elevated BAFF-R
expression in synovial tissue (Woo et al., 2011), BAFF is upre-
gulated in several IMIDs including, IBD (Zhang et al., 2016), RA
(Ohata et al., 2005; Woo et al., 2011), and SLE (Stohl et al., 2003).
The elevated levels of serum BAFF in SLE patients are associated
with increased anti-dsDNA levels (Zhang et al., 2001) and SLE
disease activity (Petri et al., 2008), and may be driven by
TNFSF13B variants associated with SLE risks (Steri et al., 2017;
Theodorou et al., 2018). Pathological inflammation in SLE is
mediated by increased IFN-γ production by T cells, which in-
duces BAFF production in monocytes/macrophages and the
ensuing B cell activation and maturation through BAFF/BAFF-R
signaling (Harigai et al., 2008). In RA patients, synovial ex-
pression of BAFF is elevated (Tan et al., 2003). Serum BAFF

levels in RA patients positively correlate with bone destruction
and other classic marks of RA, such as C-reactive protein (CRP),
rheumatoid factor, disease activity score, swollen joint inci-
dence, and X-ray scores (Zhang et al., 2021a). Therefore, an-
tagonizing the BAFF/BAFF-R axis is an attractive therapeutic
approach to autoimmune inflammatory diseases.

Drug development. Belimumab is a human IgG1 anti-BAFF
mAb that, in 2011, became the first biologic drug approved by
the United States Food and Drug Administration (FDA) for use in
SLE patients with active, autoantibody-positive disease already
on standard therapy (Dubey et al., 2011). It works by inhibiting
the survival of B cells, including autoreactive B cells, and ham-
pering their differentiation to plasma cells. In two phase 3 trials,
concomitant SOC and Belimumab treatment met their primary
efficacy endpoints of significantly higher SLE responder index
(SRI) at week 52 (43.2% versus 33.5% in placebo, P = 0.017)
(Furie et al., 2011; Navarra et al., 2011) (NCT00424476,
NCT00410384). In these studies, belimumab administration
reduced patient serum levels of IgG and autoantibodies, in-
cluding anti-dsDNA, and normalized (increased) complement
C3/C4 levels (Stohl et al., 2012). The drug also led to lower
numbers of naı̈ve, activated, and plasma B cells without affecting
memory B cells or T cell populations (Stohl et al., 2012). In 2020,
belimumab also became the first FDA-approved treatment for
adult patients with active LN, following a pivotal phase 3 study
(NCT01639339) that demonstrated its safety and efficacy. At
week 104, patients receiving 10 mg/kg of belimumab intrave-
nously in addition to the SOC achieved primary renal response
(43% versus 32%, P = 0.03) and complete renal response (30%
versus 20%, P = 0.02) at significantly higher rates than the
placebo group (Furie et al., 2020). Interestingly, BAFF homeo-
stasis disturbed by B cell depletion with rituximab (α-CD20)
treatment results in the relapse of SLE with increased flares and
anti-dsDNA in a manner that can be countered with combined
belimumab treatment to prevent repopulation by autoreactive
B cells (Atisha-Fregoso et al., 2021; Carter et al., 2013; Ehrenstein
and Wing, 2016; Kraaij et al., 2021). These highlight the signif-
icance of disrupting BAFF signaling in lupus therapy. It is worth
noting that belimumab failed to clearly demonstrate efficacy in a
phase 2 evaluation involving 283 RA patients (NCT00071812).
Clinical response was significantly higher with 1 mg/kg beli-
mumab than placebo (34.7% versus 15.9%, P = 0.010), but not in
patients administered 4 mg/kg (P = 0.068) or 10 mg/kg (P =
0.080) of the drug (Stohl et al., 2013).

Ianalumab (VAY736) is a BAFF-R antagonizing human IgG1
mAb that works by causing lysis of B cells through ADCC and the
blockade of BAFF-R (Bowman et al., 2022). In a phase 2 study
(NCT03656562) involving 67 SLE patients who received 300 mg
subcutaneous ianalumab every 4 wk for 28 wk, interim results
show that the drug was well tolerated, and the study met its
primary endpoint on clinical response. Ianalumab treatment
lowered flares and autoantibody titers, depleted CD19+ B cells
and normalized C3/C4 levels (Cuker et al., 2023; Dörner et al.,
2024) (Shen, N., A. Gordienko, J.C. Hernández, N. Agmon-
Levin, P. Narongroeknawin, K. Romanowska-Prochnicka, H.
Ciferska, M. Kodera, J. Wei, and P. Leszczynski. 2023. Arthritis
Rheumatol. Abstr. 2487). Two phase 3 studies in SLE patients
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(NCT05639114, NCT05624749) and one phase 3 study in LN
subjects (NCT05126277) have been initiated.

Rozibafusp alfa (AMG570) is a bispecific Ab that works by
concurrently antagonizing BAFF to reduce circulating naı̈ve
B cells and ICOSL to reduce APC (DC and B cell)-mediated T cell
activation and proliferation (Lei et al., 2020). A phase 2b study
in 244 participants with active SLE assessing the efficacy of
three different doses of rozibafusp alfa at week 52 has been
completed and results are awaited (NCT04058028).

Telitacicept (RC18) is an Fc fusion of the extracellular domain
of TACI capable of neutralizing two ligands of the TACI receptor,
BAFF, and a proliferation-inducing ligand (APRIL). In a phase 3
trial in 335 SLE patients (NCT04082416), weekly administration
of 160 mg of telitacicept plus SOC for 52 wk achieved a signifi-
cantly higher SRI-4 response rate (82.6%, P < 0.001) than the
placebo plus SOC treatment group (38.1%) (Wang et al., 2023;
Wu et al., 2022). The drug had a safety profile similar to that of
the placebo group and evoked a sustained increase in C3/C4
levels and a decrease in IgM, IgG, IgA, and CD19+ B cells (Wang
et al., 2023). It received conditional marketing approval for
treating active, autoantibody-positive, adult SLE patients in 2021
in China, and a fast-track designation from the FDA in 2020 for
SLE treatment (Fan et al., 2022). A recent global follow-up
phase 3 study of telitacicept efficacy in SLE was initiated
(NCT05306574). In addition, telitacicept is being evaluated in a
phase 3 trial in 480 participants with RAwho exhibit inadequate
response to methotrexate therapy (NCT03016013). A molecule
that also neutralizes BAFF and APRIL, povetacicept (ALPN-303),
is a Fc fusion with TACI that is engineered for enhanced affinity
to its targets. It entered a phase 1b/2a study in 56 patients with
autoimmune kidney diseases including LN (NCT05732402) and
is destined for a phase 2 SLE study (Alpine Immune Sciences,
2024; Evans et al., 2023).

Together, BAFF/BAFF-R antagonism moderates plasma
B cells, lowers autoreactive antibodies and immune complexes
in circulation, and effectively combats systemic inflammation
and tissue damage in SLE (including LN). Despite the promise
of BAFF/BAFF-R inhibition in other rheumatic diseases in-
cluding RA, clear benefits have not yet been established.

Opportunities and challenges in TNF/TNFR drug therapy for
inflammatory diseases
In this section, we highlight the various limitations of current
approved medications and the opportunity for novel therapeutics
including small molecule inhibitors and combination treatments.
We also summarize promising drug development activities that
may result in a wider array of IMID medications.

Limitations of the approved anti-TNF biologics necessitate drug
development
The TNF antagonist biologics that are currently approved for use
in various IMIDs improve clinical outcomes and quality of life
for patients. Despite this, these drugs suffer from high primary
non-response rates (PNR). In CD patients, the initial induction
with anti-TNF treatment results in a PNR ranging from 20% to
40% during trials, a further loss of response (LOR) in 23–46% of
patients over the 12 mo post-anti-TNF initiation, and treatment

discontinuation in 7–25% of patients (Ben-Horin et al., 2014).
Factors that affect response to TNF antagonism in IBD include
duration of disease, small bowel involvement, CRP levels,
smoking status, and incidence of mutation in apoptosis genes
such as FASLG and CASP9 (Siegel and Melmed, 2009). In the
various clinical trials involving RA patients, anti-TNF biologics
administered along with methotrexate have achieved ACR50
response (50% improvement in a standard set of measures of
disease) in only 18–48% of participants by 6 mo (Johnson et al.,
2019). The variability in the effectiveness of biologics in RA
treatment can be attributed to the differences in the baseline
characteristics of patients and their prior drug experience. For
instance, in the various clinical trials of RA patients with anti-
TNF agents, ACR20 response rates are generally higher in
methotrexate-naı̈ve subjects than in methotrexate-experienced
or TNF inhibitor-experienced subjects (Smolen and Aletaha,
2015). LOR to anti-TNF therapy is usually addressed by dose
escalation, anti-TNF drug substitution, or switch to a different
class of drug. Other drawbacks of anti-TNF biologics include
increased risk for the development of opportunistic infections
(for instance, latent tuberculosis reactivation), immunogenicity
that may result in anti-drug antibody (ADA) formation and
progressive efficacy loss, induction of autoantibodies (including
antinuclear antibodies and anti-dsDNA) that may trigger auto-
immune conditions in rare cases, and potentially higher risk for
specific malignancies (such as lymphomas) (Atzeni et al., 2013;
Kalliolias and Ivashkiv, 2016). Overall, these highlight the limi-
tations of the current anti-TNF therapeutics and the need for
new and better medications.

Biologics possess high affinity and specificity toward their
targets, but their molecular size limits oral bioavailability. Oral
biologics represent an attractive prospect that allows for non-
invasive delivery, non-immunogenicity, and lower production
costs, but efforts thus far have been unsuccessful. One recent
example is V-565, a protease-resistant biologic based on an anti-
TNF immunoglobulin chain variable domain that was in devel-
opment for CD treatment. Preclinical trials demonstrated its
survival in the intestinal tract of cynomolgus monkeys, and its
TNF-neutralizing potency and cytokine inhibitory capabilities
match that of adalimumab and infliximab, respectively (Crowe
et al., 2018, 2019). In a phase 2 study involving 125 participants
with active CD, V-565 administered thrice daily for 6 wk was
found to be safe and well-tolerated (NCT02976129). However, it
did not cause clinical remission at a greater rate than placebo.

Small-molecule inhibitors of TNF-TNFR interactions hold promise
as novel therapeutics
Small molecules are simpler to manufacture and carry lower
risks from immunogenicity compared to biologics. Their oral
bioavailability also makes them an attractive therapeutic mo-
dality, especially for chronic conditions. One of the first de-
scribed small molecule TNF inhibitors, SPD-304, destabilizes the
TNF trimer by displacing one of the subunits, causing its dis-
sociation into TNF dimers, and thereby restricting TNF/TNFR1
binding and signaling (He et al., 2005). Despite SPD-304 suf-
fering frommetabolic instability, toxicity, non-selective binding
to TNF, and poor solubility, hampering further development
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(Mascret et al., 2021), there have been several efforts to identify
moremolecules that work through the samemodality (Sun et al.,
2020; Wang et al., 2022). JNJ525 is one such molecule that ag-
gregates into assemblies, competes for, and displaces a subunit
of the TNF trimer, causing a change in its quaternary struc-
ture, consequently forming dimers of TNF dimers, and hin-
dering receptor engagement (Blevitt et al., 2017). TIM1 is
another lead compound discovered by applying in silico
screening, based on the crystal structure of SPD304-bound
TNF (Javaid et al., 2022). TIM1 and its analog TIM1c disrupt
TNF homotrimerization by binding to the central hydrophobic
cavity of the monomeric form, enabling them to disrupt TNF
signaling, and attenuate inflammation and apoptosis. In a
murine CIA model, TIM1c reduced arthritis index, paw swelling,
histological indicators of pathology, and immune infiltration,
exhibiting efficacy comparable to etanercept administration
(Javaid et al., 2022).

UCB-9260 is a novel small molecule discovered through
fragment-based screening and crystallography-guided optimi-
zation that compromises TNF/TNFR1 interactions and signaling
(O’Connell et al., 2019). Allosteric binding by this small molecule
does not cause conformational changes. Instead, it binds entirely
within the core of the TNF trimer and stabilizes it in an asym-
metric naturally occurring open conformation through confor-
mational selection, resulting in distortion at one of the TNFR1
binding sites (McMillan et al., 2021). Interestingly, it is believed
that this asymmetric trimer conformation would hold stable
without a bound inhibitor, owing to a significant free-energy
barrier to return to the more stable symmetric closed confor-
mation (O’Connell et al., 2019). This novel inhibitory mechanism
has spurred efforts to discover more small molecules that sta-
bilize the asymmetric conformation of the TNF trimer through
allostery. Applying scaffold hopping and structure-based drug
design principles to the benzimidazole-based scaffold of the
UCB-9260 molecule led to the development of compound 42
(Xiao et al., 2020). Efficacy testing of compound 42 in a murine
collagen antibody-induced arthritis model revealed that it ach-
ieves a dose-dependent reduction in clinical scores, inflamma-
tory cytokine levels, and leukocyte cell surface receptor
expression that was comparable to treatment with etanercept
(Xiao et al., 2020). Compound 12 is another small molecule that
causes the allosteric desymmetrization of the TNF trimer that
was identified by fragment-based drug discovery (Dietrich et al.,
2021). In a murine glucose-6-phosphate isomerase-induced ar-
thritis model, compound 12 administration led to significantly
lower paw swelling, and the efficacywas comparable to anti-TNF
treatment (Dietrich et al., 2021). SAR441566 is the most prom-
ising small molecule inhibitor of TNF and a derivative of UCB-
9260. As described in the previous section, its anti-inflammatory
properties stem from its ability to stabilize an asymmetric con-
formation of the TNF trimer, and it is under phase 2 inves-
tigations for the treatment of RA and plaque psoriasis (McMillan
et al., 2021; Vugler et al., 2022).

Small molecules inhibiting other TNF/TNFR targets are also
of potential interest. BIO8898 is a synthetic inhibitor of CD40L
that intercalates between two subunits of the homotrimer
form of CD40L, breaking its symmetry and causing allosteric

disruption at two out of three of its receptor binding sites
(Silvian et al., 2011). BIO8898 limited CD40L/CD40 signaling and
apoptosis in preclinical studies (Silvian et al., 2011). A few other
studies have also reported small molecules capable of disrupting
CD40/CD40L interactions (Bojadzic et al., 2018; Chen et al.,
2017), indicative of the abundant interest in developing an op-
timized CD40/CD40L inhibitor. While TNF/TNFR inhibitors that
disrupt protein–protein interactions are challenging to design,
such molecules represent excellent promise and opportunity for
IMID therapy. It is to be noted that small molecule inhibitors of
TNF/TNFR proteins may still suffer from some of the same
limitations plaguing biologic therapeutics, i.e., low responder
rates, and opportunistic infection and malignancy risks.

TNF/TNFR superfamily members show promise as
combinatorial targets
To overcome the limitations of current IMID therapies, combi-
nations are commonly employed in the clinic, particularly to
treat refractory patients. Generally, they take the form of
anti-TNF biologics paired with other traditional systemic
drugs to expedite response (e.g., with glucocorticoids) or to
improve efficacy (e.g., immunogenicity deterrence with im-
munosuppressants). Drug development efforts are ongoing to
test if combinations of two biologics with distinctive mecha-
nisms of action can act with added efficacy and robustness. A
recent phase 2a trial evaluated the combined efficacy of two
approved biologics (JNJ-78934804): the anti-TNF drug golimu-
mab and the anti-IL-23mAb guselkumab in 214 patients with UC
(NCT03662542). While guselkumab is indicated for psoriasis
and psoriatic arthritis, it has demonstrated efficacy in phase
2 studies for UC (Dignass et al., 2022) (NCT04033445) and CD
(Sandborn et al., 2022) (NCT03466411) treatment. At week 12, a
greater proportion of patients receiving the combination agents
(83%) achieved clinical response compared with golimumab
(61%, P = 0.0032) and guselkumab (75%, P = 0.2155) mono-
therapy, necessitating validation through larger trials (Feagan
et al., 2023b). The combination of these biologics (JNJ-78934804)
is also being evaluated in more extensive phase 2b trials for the
treatment of CD (NCT05242471) and UC (NCT05242484). The
combination of nipocalimab and certolizumab is another in-
stance of two biologics being tested in combination. Nipocalimab
is a neonatal Fc receptor (FcRn) antagonist that can lower cir-
culating IgG levels, including that of pathogenic autoantibodies
responsible for autoimmune disease. It is being tested as a
monotherapy in phase 2 clinical trials for RA (NCT04991753) and
SLE (NCT04882878), and in combination with the anti-TNF
drug certolizumab for RA (NCT06028438). α-TNF treatment
has also been tested in combination with IL-17 neutralization
with mixed results. Bimekizumab, a dual inhibitor of IL-17A/IL-
17F approved for psoriasis, was efficacious when combined with
certolizumab in RA patients who initially (8 wk) displayed in-
adequate response to certolizumab alone in a phase 2a trial
(NCT02430909) and reduced disease activity levels on-par with
responders on certolizumab alone by week 44 (Glatt et al., 2019).
In contrast, ABT-122, a TNF/IL-17 bispecific neutralizer, failed to
show superiority to adalimumab treatment in α-TNF-naı̈ve RA
patients (Genovese et al., 2018).
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Combination therapies may also drill down on two targets
that share pathways to perturb signaling crosstalk and restrain
pathological axes spanning multiple cell types. Additionally, the
modulation of two molecules belonging to the same signaling
cascade, where one is downstream of the other, bestows benefits
from additive efficacy and reduced failure rates. An example is
tibulizumab (ZB-106/LY-3090106), an anti-BAFF and anti-IL-
17A bispecific antibody (Benschop et al., 2019). In addition to
activating B cells, BAFF can also promote the expansion of Th17
cells which are a major source of the pro-inflammatory cytokine
IL-17. Tibulizumab showed promise in preclinical studies by
demonstrating potent neutralization of BAFF and IL-17
(Benschop et al., 2019) and was previously considered for the
treatment of RA (NCT01925157). Phase 2 studies are being
planned for other inflammatory diseases including hidradenitis
suppurativa (Zura Bio Ltd., 2023). SAR-443726 is a novel anti-
OX40 and anti-IL-13 bispecific nanobody that was under de-
velopment to mitigate type 2 immunity underlying conditions
such as AD. Here, the rationale is to curb signaling through
OX40 that promotes the generation and maintenance of Th2
cells and by IL-13 secreted by Th2 cells that can trigger activation
of ILC2 cells. PF-07261271 is an α-TL1A and α-IL-12p40 bispecific
antibody that is under development for IBD treatment
(NCT05536440). A combined blockade of TL1A and IL-12/IL-23
signaling is hypothesized to limit their synergy, consequently
downregulating IFN-γ and IL-17 production by CD4+ T cells and
attenuating Th1/Th17 activation that underlies IBD (Takedatsu
et al., 2008). Clinical development is also underway to capitalize
on the synergy that exists between two significant disease-
driving cytokines, TNF and IL-6. It is hypothesized that combi-
natorial blocking of these cytokines may have anti-inflammatory
effects on two of the effector cell types in RA, fibroblasts, and
CD4+ T cells (Biesemann et al., 2023). In agreement, an anti-TNF
and anti-IL-6 bispecific nanobody demonstrated superior anti-
inflammatory effects versus monospecific comparators in
fibroblast-like synovial cell/T cell cocultures (Biesemann
et al., 2023).

Preclinical studies have demonstrated proinflammatory
synergies between TNF/TNFR signaling cascades that may be
targeted to curb disease progression. In a murine asthma model,
it has been shown that combinatorial antagonism of OX40L and
CD30L inhibits the proliferation of effector memory T cells and
protects test animals from allergic airway inflammation (Gracias
et al., 2021). Monotherapy with the individual blocking Ab had a
negligible effect on inflammation, suggesting synergy between
the two co-stimulatory molecules, and the necessity for dual
blockade therapy. Several studies prior have also revealed the
synergetic roles of OX40 and CD30 signaling in T cell memory
related to infections and autoimmune conditions (Gaspal et al.,
2008; Gaspal et al., 2005; Gaspal et al., 2011;Withers et al., 2009).
Synergy has also been reported between RANKL and TNF in
osteoclast activation, and the dual blockade of these signaling
molecules has been shown to reduce bone erosion and cartilage
damage in a murine transgenic human TNF model (Fuller et al.,
2002; Zwerina et al., 2004). TNF-like weak inducer of apoptosis
(encoded by TNFSF12) has also been reported to synergize with
TNF to upregulate signature genes in psoriasis, where dual

antagonism of these two cytokines results in a lower number of
proliferating keratinocytes (Gupta et al., 2021).

A rational search for combinatorial targets within the TNF/
TNFR superfamilies may be justified for twomore reasons. First,
there is substantial cross-reactivity between the ligands and
receptors of these superfamilies, that may drive synergy. Sec-
ond, as both a consequence and mediator of inflammation, TNF
may be responsible for inducing the expression of several of
the TNF/TNFR co-stimulatory molecules. Concomitant aberrant
signaling from several TNF/TNFR proteins may amplify in-
flammation and drive IMIDs, indicating opportunity from
combination targets within these superfamilies. An example of
clinical trials involving combination biologics is the phase
2 evaluation of dazodalibep, a CD40L inhibitor, in combination
with anti-TNF medications (etanercept or adalimumab) is un-
derway in RA patients with inadequate response to anti-TNF
treatment (NCT05306353). Several bispecific Abs that target
two pathogenic TNF/TNFR proteins are also under consider-
ation. For instance, AMG-966 is a human aglycosylated bispe-
cific Ab against TNF and TL1A that held promise for treatment of
IBD. While preclinical assessments indicated minimal risk of
immunogenicity, phase 1 trials showed that 98% of participants
developed neutralizing ADA owing to the formation of large
immunocomplexes of the drug with TNF and TL1A, and the
consequent loss of exposure (Kroenke et al., 2021). Another
noteworthy bispecific is SAR-442970, an anti-TNF and anti-
OX40L nanobody whose immunomodulation efficacy is being
assessed in a phase 2 trial involving patients with hidradenitis
suppurativa (NCT05849922).

While combination anti-TNF/TNFR therapeutics have the
potential to improve clinical response rates over traditional
therapeutics, such combinations should be approached with
caution due to the potential for additive immunosuppression
that affects both innate and adaptive immunity and increased
vulnerability to opportunistic infections. It is crucial to carefully
monitor patients under such treatments to manage and mitigate
these potentially heightened infection risks effectively.

Other promising TNF/TNFR targets against the focus
inflammatory diseases
Given the immense importance of the TNF/TNFR superfamilies
as pro-inflammatory and co-stimulatory immune checkpoint
molecules, TNF/TNFR proteins other than the ones reviewed in
Promising TNF/TNFR targets in inflammatory diseases section
have also garnered interest as targets for antagonism in focus
IMIDs. In the final subsection, we highlight promising early drug
development focusing on such novel TNF/TNFR signaling axes.

CD30/CD30L. Signaling via CD30 (encoded by TNFRSF8) and
reverse signaling through CD30L (encoded by TNFSF8) are ma-
jor prosurvival and proinflammatory signals in activated T cells
and professional APCs, respectively. CD30 expression is upre-
gulated in several IMIDs, including RA, SLE, AD, and asthma
(Oflazoglu et al., 2009), and CD30 polymorphisms are associated
with eczema (Table 2), suggesting that CD30/CD30L signaling
could be an important determinant of inflammatory processes in
these diseases. MK-8690 (PRA-052) is a human anti-CD30LmAb
that is under development for IBD treatment. A phase 1 trial is
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ongoing to test its safety and pharmacological attributes
(NCT05603182).

4-1BB. Cosignaling via 4-1BB (encoded by TNFRSF9) ex-
pressed on activated T cells promotes their survival, prolifera-
tion, and cytokine production. Whereas 4-1BB agonism is a
therapeutic direction that is currently pursued for cancer
treatment, a recently described chimeric antigen receptor (CAR)
T and NK cell therapy uses an “alloimmune defense receptor”
(ADR) to protect allogenic CAR cells from host rejection and
immune-mediated elimination (Mo et al., 2021). FT522 is an off-
the-shelf, induced pluripotent stem cell-derived CAR-NK cell
immunotherapy that capitalizes on the transient 4-1BB upre-
gulation in activated lymphocytes and uses its 4-1BB–selective
ADR to target alloreactive T and NK cells and maintain func-
tional persistence. The CAR-NK cells eliminate CD19 and CD20
expressing B cells, and this cell therapy is being pursued for the
treatment of B cell lymphoma in a phase 1 safety and tolerability
assessment (NCT05950334). Importantly, preclinical retooling
of 4-1BB–specific ADR-expressing cell therapies to orchestrate
the selective elimination of pathogenic lymphocytes and induce
immunotolerance in autoimmune conditions and GvHD has
been reported (Fate Therapeutics Inc., 2023).

Receptor activator of nuclear factor κ-Β (RANK)/RANK ligand
(RANKL). Signaling originating from membrane-bound RANKL
(encoded by TNFSF11) expressed by osteoblasts is responsible for
myeloid cell differentiation and maturation into osteoclasts via
interactions with RANK (encoded by TNFRSF11A). RANK/RANKL
signaling is a major driver of bone resorption and homeostasis,
making it an ideal target for antagonism to treat osteoporosis.
Denosumab (AMG 162), a human anti-RANKL mAb that is FDA-
approved for the treatment of osteoporosis and certain bone
metastases, is additionally approved for use in Japan to suppress
bone erosion associatedwith RA. In a phase 3 study involving RA
patients receiving conventional synthetic DMARDs, 654 patients
received 60 mg denosumab subcutaneously every 3 or 6 mo,
or placebo (NCT01973569). There was significantly lower pro-
gression of joint destruction with denosumab treatment, and the
mean change in total sharp score at 12mo from baselinewas 0.72
(P = 0.0055) and 0.99 (P = 0.0235) in the patients receiving
denosumab every 3 and 6 mo, respectively, compared with 1.49
in the placebo group (Takeuchi et al., 2019). However, no sig-
nificant differences in the joint space narrowing score were
achieved with denosumab treatment.

BCMA. BAFF and APRIL (encoded by TNFSF13) bind to BCMA
(encoded by TNFRSF17), a paralog of BAFF-R, to drive plasma cell
survival. Their preferential expression on mature B cells, spe-
cifically, long-lived bone marrow plasma cells and plasmablasts
is being capitalized in several plasma cell–depleting CAR-T
therapies that are under development for SLE treatment.
Descartes-08 is a phase 2 evaluation in 30 SLE patients to study
RNA-based autologous BCMA-specific CAR-T therapy for drug
safety and manufacturing feasibility (NCT06038474). Another
example is CD19-BCMA compound CAR-T therapy that elimi-
nates autoantibodies by dual targeting of CD19 on B cells (aimed
at preventing the accumulation of autoreactive plasma cells) and
BCMA on long-lived plasma cells (Zhang et al., 2021b). In phase
1 proof-of-concept evaluations involving 13 LN patients, the

treatment was well tolerated, and all patients achieved signifi-
cant symptom and medication-free remission, tested negative
for autoantibodies, and displayed normal complement levels at 3
mo (Wang et al., 2024; Yuan et al., 2024) (NCT04162353 and
NCT05474885). GC-012F is another autologous CAR-T cell
therapy directed towards BCMA and CD19. Recruitment is on-
going for two phase I studies in refractory SLE patients to
evaluate the safety and determine the dose for phase 2 trials
(NCT05858684 and NCT05846347).

Concluding remarks
Dysregulated TNF/TNFR signaling is a characteristic feature of
several IMIDs, and their antagonism represents a very promis-
ing avenue for disease remission. Despite their limitations,
current anti-TNF and anti-BAFF biologics have been clinical
successes for IMID management since their first approvals over
a decade ago. Nonetheless, significant interest lies in improving
the efficacy and response rates of current TNF antagonists. In
addition, genetic, transcriptomic, and clinical evidence implicate
further TNF/TNFR family members in IMIDs, driving drug de-
velopment efforts that seek to remedy SLE/RA, AD, and IBD by
blocking aberrant signaling involving CD40/CD40L, OX40/
OX40L, and TL1A, respectively. While mAbs and soluble frag-
ments of transmembrane receptors are classic approaches for
target antagonism, several innovative approaches are being
developed that target the TNF/TNFR proteins. For instance,
ADCs improve selectivity of drug action, and small molecules
allow for non-invasive administration and lower immunoge-
nicity. Evidence of synergy involving TNF/TNFR proteins sug-
gests that combination therapies that curb two concomitant
inflammatory signaling molecules may also be beneficial in
IMID management. Indeed, several drug development programs
addressing IMIDs involve bispecific antibodies that simulta-
neously block two proteins that contribute to pathogenic sig-
naling. In addition, the electrical stimulation of the vagus nerve
shows promise in clinical trials as a non-drug anti-inflammatory
treatment that can reduce systemic TNF levels and complement
traditional IBD and RA therapeutics (D’Haens et al., 2023; Jin
et al., 2024; Koopman et al., 2016; Sinniger et al., 2020)
(NCT01569503 and NCT02311660).

Advances in biomarker and genetics research can potentially
accelerate drug discovery and enhance patient response to TNF/
TNFR blockade in IMIDs. Currently, clinical management of
IMIDs involves cycling through different anti-TNF agents to
address inadequate primary response and LOR. However, per-
sonalized medical advice could become feasible in the future
through models based on patient genetics and disease charac-
teristics predicting clinical response to various treatment op-
tions. For instance, biomarkers identified in subpopulations of
IBD patients who were more responsive to anti-TL1A treatments
are envisioned to drive precision medicine and guide physicians
toward patient-specific treatment strategies with higher success
rates (Hassan-Zahraee et al., 2022; Merck & Co. Inc., 2023;
Roivant Sciences Ltd., 2023a). Since several IMIDs share im-
munological features and mechanisms, biomarkers associated
with these diseases can also be used to better stratify patients
and optimize clinical trials. Basket trials, involving patients with
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different IMIDs but common underlying mechanisms and mo-
lecular characteristics, may expedite drug evaluation for mul-
tiple conditions. Umbrella trials, on the other hand, stratify
patients based on biomarkers within the same disease to test
various therapeutics and identify optimal treatment approaches.
While such master protocols are more prevalent in oncology
trials, they can also be adopted to test more hypotheses and
increase trial efficiency in immunology research (Grayling et al.,
2021; Peeva et al., 2024), especially when pursuing combination
targets within the TNF/TNFR superfamilies. Going forward,
leveraging innovative solutions from high-dimensional bio-
marker data has the potential to enhance trial efficiency, im-
prove patient outcomes, and inform disease management
choices.
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Supplemental material

Provided online are Table S1 and Table S2. Table S1 shows TNF/TNFR members and their attributes. Table S2 shows select phase 3
clinical trials of FDA approved TNF-α antagonists and their results.
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