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Abstract
Objective: This study aims to conduct a systematic review and meta-analysis of the diagnostic accuracy of deep learning (DL) using speech 
samples in depression.
Materials and Methods: This review included studies reporting diagnostic results of DL algorithms in depression using speech data, published 
from inception to January 31, 2024, on PubMed, Medline, Embase, PsycINFO, Scopus, IEEE, and Web of Science databases. Pooled accuracy, 
sensitivity, and specificity were obtained by random-effect models. The diagnostic Precision Study Quality Assessment Tool (QUADAS-2) was 
used to assess the risk of bias.
Results: A total of 25 studies met the inclusion criteria and 8 of them were used in the meta-analysis. The pooled estimates of accuracy, specif
icity, and sensitivity for depression detection models were 0.87 (95% CI, 0.81-0.93), 0.85 (95% CI, 0.78-0.91), and 0.82 (95% CI, 0.71-0.94), 
respectively. When stratified by model structure, the highest pooled diagnostic accuracy was 0.89 (95% CI, 0.81-0.97) in the handcrafted 
group.
Discussion: To our knowledge, our study is the first meta-analysis on the diagnostic performance of DL for depression detection from speech 
samples. All studies included in the meta-analysis used convolutional neural network (CNN) models, posing problems in deciphering the per
formance of other DL algorithms. The handcrafted model performed better than the end-to-end model in speech depression detection.
Conclusions: The application of DL in speech provided a useful tool for depression detection. CNN models with handcrafted acoustic features 
could help to improve the diagnostic performance.
Protocol registration: The study protocol was registered on PROSPERO (CRD42023423603).
Key words: depression; deep learning; speech; meta-analysis; systematic review. 

Background and objective
Depression disorder is a common mental disorder, involving 
a low mood, loss of interest in everyday life, and other symp
toms, which lead to burden, disability, and even suicide.1

World Health Organization reports that 280 million people 
were diagnosed with depression in 2019, including almost 
10% of children and adolescents.2 Early recognition of 
depression reduces the complication of treatment, shortens 
the course of the disease, and provides positive treatment 
outcomes.3

Currently, clinical symptoms, supplemented with objective 
physiological indicators and questionnaires, are considered to 
diagnose depression. Clinical symptoms must last for 2 weeks 
at least to confirm a diagnosis of depression, leaving patients 
with limited care or treatment during the early stage of the 
disorder.4 Moreover, subjective factors, such as patients’ 
expressions, cultures, and attitudes, may make the diagnosis 

of depression more complex with a greater probability of 
misdiagnosis. Therefore, recent studies suggest using signal 
processing methods, including audio,5 videos,6 and electroen
cephalogram (EEG),7 to increase the diagnostic accuracy of 
depression.

Speech has been proven as an important biomarker for 
depression detection since people with depression turn out to 
speak at a lower rate, give more prolonged pauses, and 
change less pitch than normal people.8,9 Compared with 
other biomarkers, such as videos, EEG, and skin conduc
tance, speech has many advantages. First, it is easy and non- 
invasive to collect using smartphones or computers. Second, 
it contains various information related to depression symp
toms and this information is difficult to hide. Third, it 
reduces privacy exposure for patients.5 A neural network is a 
series of connected weighted nodes that models the biological 
nervous system function of the human brain.10 Neural 
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networks provide effective tools in speech processing since 
they have the ability to automatically learn available features 
from raw speech, reducing the subjectivity in manual feature 
selection.11 The successful applications of DL algorithms in 
speech signal processing and classification present a novel 
opportunity to improve the performance of automatic 
depression detection.12

Recent reviews addressed various psychiatric disorders and 
artificial techniques, and they gave a comprehensive explana
tion of the importance of applying artificial intelligence to sup
port clinical diagnosis.5,11,13,14 However, to the best of our 
knowledge, few reviews focused on the use of deep learning 
(DL) algorithms to detect depression in speech till now. Thus, 
we aim to provide a systematic review and meta-analysis to 
evaluate the diagnostic performance of the DL algorithms in 
detecting and classifying depression using speech samples.

Methods
This review was conducted according to Preferred Reporting 
Items for a Systematic Review and Meta-analysis of Diagnos
tic Test Accuracy Studies statement.15,16 The study protocol 
was registered on PROSPERO (CRD42023423603).

Search strategy
We searched the following datasets: PubMed, Medline, Embase, 
PsycINFO, Scopus, IEEE, and Web of Science databases up to 
January 31, 2024, using the following keywords including, but 
not limited to, combinations of the following: depressi�, depres
sive disorder�, deep learning, machine learning, artificial intelli
gence, neural network, automat�, sound, speech, voice, 
acoustic�, audio, vowel, vocal, pitch, prosody. The complete 
search strategy is presented in the Supplementary Material.

Inclusion and exclusion criteria
This review includes studies evaluating the diagnostic accura
cies of DL algorithms in depression using speech samples. 
After screening, we excluded the studies published with no 
full text.

We also excluded studies: (1) developed multimodal meth
ods to detect depression; (2) without reporting original data 
(eg, review or protocol studies without applying DL algo
rithms); (3) without reporting diagnostic test results [true 
positive (TP), false positive (FP), true negative (TN), false 
negative (FN)]; (4) without using DL algorithms.

Study selection and data extraction
Titles and abstracts of the retrieved literature were screened 
for eligibility. Relevant articles were read in full, and data 
were extracted from the articles that met all inclusion criteria. 
Two authors (L.L. and L.L.) conducted all these steps individ
ually, and a third researcher (Y.W.) was included to solve the 
disagreements and uncertainties in the study selection process 
and data extraction process by discussion.

The following data was extracted from the included studies 
independently: title, authors, year of publication, diagnosis 
standard (scales), features, classification methods, model 
structure, and diagnostic test results (TP, TN, FP, and FN).

Statistical analysis
Sensitivity, specificity, and accuracy were calculated with a 
95% CI based on the TP, TN, FP, and FN values that were 
extracted from the included studies for meta-analysis. The 

accuracy can be calculated as: Accuracy ¼ (TP þ TN) / (TP þ
TN þ FP þ FN). The interpretation of accuracy could be 
affected by the prevalence of depression because, in cases of 
very high or very low prevalence, accuracy might not provide 
a complete picture of a test’s performance. In our included 
studies, the prevalence is neither too high nor too low. There
fore, our pooled estimates of accuracy, especially their inter
pretation, are unlikely to be affected by the varying 
prevalence of the condition. We used the I2 to measure the 
heterogeneity across studies and subgroups, with 25%, 50%, 
and 75% being considered as thresholds to indicate the low, 
moderate, and high heterogeneity, respectively.17 A P-value 
was used to measure the statistic, and P< .05 was considered 
statistically significant. A funnel plot was used to assess pub
lication bias. All the analyses were performed using RStudio 
version 12.0 with the meta package.18

Pooled estimates of depression detection in speech using 
DL algorithms were obtained. Leave-one-out method and 
subgroup analysis were used to evaluate the sensitivity and 
reduce the heterogeneity among the studies. SROC curve 
which represents the performance of a diagnostic test was 
also built to describe the relationship between test sensitivity 
and specificity.19

Assessment of bias
QUADAS-2 recommended by the Cochrane Collaboration 
was used to evaluate the risk of bias in each study by two 
authors (L.L. and L.L.), and the uncertainties were discussed 
with a third researcher (Y.W.). QUADAS-2 evaluates 4 key 
domains including patient selection, index test, reference 
standard, and flow and timing. Each domain is analyzed in 
terms of risk of bias, with particular attention given to con
cerns about applicability in the first three domains. The 
assessment of bias was conducted using the Review Manager 
Software version 5.3.20

Results
Literature search
A total of 2013 records were selected after duplicate removal. 
After screening the title and abstract, 1804 articles were 
excluded, with 209 articles being assessed for full-text review. 
Of these, 56 articles investigated speech signal processing in 
detecting depression but were excluded because they did not 
use DL algorithms. Another 57 articles excluded because not 
only did they apply speech samples but also other formats of 
data, including texts, sentiments, images, videos, and EEG. 
Finally, 71 articles were excluded since they did not report 
TP, TN, FP, and FN values used in the meta-analysis, and the 
remaining 25 articles were included in the systematic review. 
Some of them used the same dataset to explore the perform
ance of different DL models, so we selected the studies with 
the highest accuracy score of each dataset to do the meta- 
analysis, and 8 studies were included (Figure 1). Of all 
included studies, the Distress Analysis Interview Corpus- 
Wizard-of-Oz (DAIC-WOZ) set is the most-used (n¼16) 
dataset, and we used these studies to do the qualitative analy
sis from a technical perspective.21 An upward trend for publi
cations was shown in the past 3 years. 20 papers (80%) were 
published since 2022, and all eligible papers were published 
after 2019. Table 1 summarizes the main characteristics of all 
eligible papers, the ones in bold font were selected for the 
meta-analysis.
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Characteristics of the included studies
Datasets and languages
Several speech depression datasets were used to train models, and 
the speeches were generally recorded during the diagnosis conver
sation between clinicians and participants. DAIC-WOZ, which is 
a part of Distress Analysis Interview Corpus developed in 2016 
Audio–Visual Emotion Challenge (AVEC), is the most commonly 
used dataset in speech depression detection.47 Besides, the Multi- 
modal Open Dataset for Mental-disorder Analysis (MODMA),48

Hungarian Depression Speech Database,42 Sonde Health Free 
Speech (SH2-FS),49 three Mandarin datasets,40,43,44 and one 
Thai dataset recruited by researchers were also used in the 

included studies.39 Some studies used more than 1 dataset to test 
the performance of their proposed model. Among all included 
studies, 17 studies (68%) used English datasets, 5 studies (20%) 
used Mandarin datasets, 2 studies (8%) used Hungarian datasets, 
and only one used Thai dataset.

Diagnostic scales
In speech depression datasets, diagnostic scale scores are set 
as training labels. PHQ-8 scores of each participant were 
recorded in DAIC-WOZ, and the score of 10 was set as the 
threshold to decide whether the participant was diagnosed 
with depression or not.50 Besides, other questionnaires, such 

Figure 1. PRISMA flowchart. Study selection for systematic review and meta-analysis.
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as the Hamilton Rating Scale for Depression (HAMD),51

Beck Depression Inventory-II (BDI-II),52 and PHQ-9,53 were 
also used as the assessments to detect depression.

Method assessment within the DAIC-WOZ dataset
Speech processing
In the development of an automatic speech recognition sys
tem, preprocessing is considered the first phase to train a 
robust and efficient model.54 Fourteen studies (87.5%) men
tioned at least one speech preprocessing procedure with 50% 
of the papers applying various methods to tackle data imbal
ance as shown in Figure 2A. This result is unsurprising, given 
that the DAIC-WOZ dataset consists of 146 depressed sub
jects and only 43 healthy participants, highlighting the crit
ical issue of data imbalance in achieving good performance.

Speech segments of varying lengths are used as inputs to 
the model, enriching the dataset and accommodating DL 
models (Figure S12A). Yin and colleagues segmented the 
speech into 9-second fragments, achieving the highest per
formance across all studies with 0.94 in accuracy and 0.92 in 
sensitivity.31 Moreover, fragments over 10 seconds in length 
exhibited the highest specificity (Table 2). In Figure S12B, we 
can find that all studies employed either a train-test split or a 
train-validation-test split to prevent overfitting to the training 
data and accurately assess the model’s performance.

Feature engineering is one of the most crucial steps of tra
ditional machine learning based speech depression detection 
research and the main purpose of many studies considered in 
this review is to avoid this step by developing DL for auto
matic feature learning.26,27,35,55 Based on the results shown 
in Table 2, it is evident that LLDs and MFCCs-based models 
achieved over 80% accuracy, surpassing other types of fea
tures. Besides, 3 included studies compared the performance 
of speech depression detection with multimodal depression 
detection, and acoustic features.24,25,35 All these 3 studies 
present that using multimodal features enhances the perform
ance of speech depression detection models.

Deep learning methodology
Compared with clinical diagnosis, DL algorithms can learn 
high-level features automatically. In this review, we divided 
the DL models used in the included studies into the following 

groups: convolutional neural network (CNN), CNN-long 
short-term memory (LSTM), CNN-support vector machine 
(SVM), LSTM, and CNN-Transformer. Figure 2B shows 
CNN is the most commonly used DL algorithm, with 
56.25% of the studies using it directly as the depression 
detection model. Additionally, 25% of studies employed 
CNN as a feature extraction or dimension reduction method, 
followed by the use of LSTM (12.5%) or SVM (12.5%) as a 
classifier for depression detection. The CNN-Transformer 
architecture shows the highest performance among all studies 
(Table 2), which indicates that the transformer holds promis
ing potential for depression detection using speech data.31

In Figure 3, we present a visualization of the distribution of 
hyperparameters in DL models. As shown in Figure 3, 50% 
of studies did not report batch size, 50% of studies did not 
report epochs, 50% of studies did not report learning rate, 
56.25% of studies did not report loss functions and 43.75% 
of studies did not report optimizers. These hyperparameters 
may affect the model’s performance to some extent, high
lighting the importance of selecting appropriate hyperpara
meters. The number of neural network layers does not 
necessarily exceed 5 in most studies (62.5%) under consider
ation (Figure 3A), and such kind of studies achieved the high
est accuracy, which is 0.79 (Table 2). Cross-entropy was the 
most commonly used (31.25%) loss function, outperforming 
mean square error in terms of accuracy (0.84), sensitivity 
(0.70), and specificity (0.91) (Figure 3E and Table 2).

Evaluation measures
The types of performance metrics used by the included stud
ies focusing on speech depression detection are shown in  
Figure 4A. Most studies (over 80%) used F1-score, accuracy, 
recall, and precision which were derived from confusion 
matrices to evaluate the performance of the DL models, but 
these metrics were not commonly used by clinicians in evalu
ating diagnostic tests. Instead, sensitivity (recall), specificity 
and ROC AUC, which are also derived from diagnostic test 
results, are clinically relevant and commonly used perform
ance measures for diagnostic tests. Based on Figure 4B, we 
found that the included studies achieved good results in terms 
of accuracy and specificity (over 75%), but slightly lagged in 
sensitivity.

Figure 2. Speech preprocessing and deep learning models. (A) The number of studies that used preprocessing steps, such as removing silence. (B) The 
number of studies that used different types of DL models.
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Comparison between deep learning and machine learning
Four studies compared their proposed methods with machine 
learning methods.23,27,31,36 SVM is the most commonly used 
machine learning algorithm, and 3 studies compared their pro
posed methods with SVM.23,27,36 In all these 4 studies, the pro
posed DL methods performed better than machine learning 
methods.

Summary
The papers reviewed displayed varying degrees of speech 
depression detection. (1) Data preprocessing: segmentation of 
speech varied in length across papers, with notable perform
ance achieved through longer segments (more than 5 s). (2) 
Features: the preference for DL models suggests a shift away 
from traditional feature engineering, with promising results 
observed particularly with LLDs and MFCCs. (3) Models: 
CNN emerges as the predominant choice among DL architec
tures for depression detection, with CNN-Transformer dem
onstrating the highest performance. While hyperparameters 
significantly impact model performance, many studies lack 
specificity in their selection, underscoring the importance of 
fine-tuning for optimal results. (4) Evaluation: Overall, the 
models using the DAIC-WOZ dataset generally achieved 
good accuracy and specificity (over 75%), and the sensitivity 
lagged slightly.

Diagnostic accuracy of deep learning in depression 
detection
Overall, 8 studies with 670 585 preprocessed speech samples 
in the test sets were included in the meta-analysis, and all 

these studies were published in the last 5 years (2021-2024). 
Our study reports the evaluation parameters of accuracy, sen
sitivity, and specificity. The pooled estimate of classification 
accuracy for depression detection models was 0.87 (95% CI, 
0.81-0.93, I2 ¼ 99%). Meta-analysis showed the pooled esti
mate to be specific (0.85, 95% CI, 0.78-0.91, I2 ¼ 99%), but 
with a lower sensitivity (0.82, 95% CI, 0.71-0.94, I2 ¼

100%). The random-effect model was used due to the high 
heterogeneity in the meta-analysis. Figure 5 represents the 
accuracy forest plots of all included studies. The forest plots 
of the pooled sensitivity and specificity can be found in sup
plementary files (Figures S1 and S2). SROC curve for the test 
is also shown in supplementary files (Figure S3).

Sensitivity analysis
Considering the high heterogeneity, subgroup analysis was 
undertaken to excavate the potential factors. I2 dropped sig
nificantly in specificity (from 100% to 0%), accuracy (from 
100% to 78%), and sensitivity (from 100% to 88%) of the 
end-to-end group in the model structure subgroup. In this sit
uation, the accuracy and the specificity of the handcrafted 
group (accuracy: 0.89, 95% CI, 0.81-0.97, I2 ¼ 100%; spe
cificity: 0.87, 95% CI, 0.78-0.96, I2 ¼ 99%) was higher than 
the end-to-end group (accuracy: 0.82, 95% CI, 0.75-0.90, I2 

¼ 78%; specificity: 0.80, 95% CI, 0.75-0.85, I2 ¼ 0%), but 
the sensitivity of the end-to-end group (0.84, 95% CI, 0.73- 
0.95, I2 ¼ 88%) was higher than the handcrafted group 
(0.81, 95% CI, 0.64-0.99, I2 ¼ 100%). The forest plot of the 
pooled accuracy for the model structure subgroup is shown 
in Figure 6, and the other forest plots for the pooled 

Table 2. Performance comparison of characteristics of the studies using the DAIC-WOZ dataset.

Acc. (mean) Sens. (mean) Spec. (mean) References

Speech segmentation
Less than 1 s (n¼3) 0.76 0.62 0.81 33, 34, 25

Less than 5 s (n¼4) 0.74 0.71 0.74 28, 37, 23, 27

Less than 10 s (n¼ 1) 0.94 0.92 0.95 31

No less than 10 s (n¼2) 0.84 0.48 0.97 22, 29

NA (n¼ 6) 0.78 0.76 0.73 36, 26, 35, 24, 32, 42

Features
Spectrograms (n¼ 5) 0.75 0.61 0.77 22, 33, 26, 35, 23

Fusion features (n¼4) 0.74 0.62 0.78 24, 25, 32, 30

LLDs (n¼ 3) 0.85 0.79 0.85 34, 28, 37

MFCCs (n¼ 3) 0.85 0.84 0.80 36, 29, 31

Raw audio (n¼1) 0.70 0.68 0.72 27

Models
CNN (n¼ 9) 0.82 0.70 0.85 22, 29, 33, 26, 34, 35, 24, 32, 30

CNN-LSTM (n¼ 2) 0.79 0.72 0.79 28, 37

CNN-SVM (n¼2) 0.69 0.70 0.69 23, 27

LSTM (n¼2) 0.62 0.57 0.55 36, 25

CNN-transformer (n¼ 1) 0.94 0.92 0.95 31

Neural network layers
No more than 5 (n¼ 10) 0.79 0.75 0.79 36, 29, 33, 26, 28, 37, 25, 23, 32, 

31

No more than 10 (n¼ 3) 0.76 0.68 0.74 34, 35, 24

No more than 30 (n¼ 2) 0.77 0.76 0.78 27, 30

More than 30 (n¼ 1) 0.78 0.14 1.00 22

Loss functions
Cross Entropy (n¼5) 0.84 0.70 0.91 29, 33, 34, 24, 37

Mean Squared Error (n¼2) 0.62 0.51 0.66 25, 27

Optimizers
ADAM (n¼ 7) 0.77 0.67 0.78 33, 34, 35, 24, 25, 31, 30

SGD (n¼2) 0.84 0.48 0.97 22, 29

AdaDelta (n¼ 1) 0.70 0.68 0.72 27

Notes: Acc., Accuracy; Sens., Sensitivity; Spec., Specificity. The best performance for each characteristic of the studies is shown in bold font.
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sensitivity and specificity for the model structure subgroup 
can be found in supplementary files (Figures S4 and S5).

Since speech samples in some included studies were seg
mented from audios, the sample size in one study 
(n¼663 978) was extremely larger than the others. Leave- 
one-out test was conducted to minimize the influence of the 
particular study.34 While omitting each study, the pooled 
estimates of accuracy (0.85-0.89), sensitivity (0.80-0.87), and 
specificity (0.82-0.87) changed a little. The plots for the 
leave-one-out results of the pooled accuracy, sensitivity, and 

specificity can be found in supplementary files (Figures S6- 
S8).

Quality assessment
QUADAS-2 was used to rate the overall methodological 
quality in our study, and the Figures S9 and S10 present the 
plots illustrating the risk of bias and applicability concerns. 
The included studies achieved an average score of 3.3 out of 
4 in the risk of bias section, and 3.1 out of 4 in the applicabil
ity concerns section, thereby affirming the high quality of the 

Figure 3. Hyperparameters choices. (A) Distribution of the number of neural network layers. (B) The number of studies that used different batch sizes. 
(C) Distribution of the number of epochs. (D) The number of studies that used different learning rates. (E) The number of studies that used different loss 
functions. (F) The number of studies that used different optimizers.

Figure 4. Model performance evaluation. (A) the number of studies that used different evaluation methods. (B) The boxplot across studies of accuracy, 
sensitivity, and specificity.

Figure 5. Forest plot for the pooled accuracy.
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studies. The funnel plot (Figure S11) was slightly asymmetric, 
indicating modest publication bias in all the included studies. 
Specifically, the shape of the plot suggests that smaller data 
sizes with low accuracy were less likely to get published.

Discussion
Summary of key findings
To our knowledge, our study is the first review on the diag
nostic performance of DL for depression detection from 
speech samples providing both systematic review (narrative 
summary of 25 studies) and meta-analysis (quantitative 
assessment of a subset of 8 studies). We found that across all 
included studies, the pooled estimate of the accuracy for 
depression detection was 0.87, and the specificity (0.85) was 
higher than the sensitivity (0.82). The handcrafted model 
obtained better evaluation results (accuracy: 0.89) in the sub
group analysis than the end-to-end model (accuracy: 0.82).

Speech features for depression detection
A recent review found that a set of bio-acoustic features, 
including source, spectral, prosodic, and formants, could 
improve the classification performance for depression detec
tion.56 In addition, Zhao et al reported that acoustic charac
teristics were associated with the severity of depressive 
symptoms and might be objective biomarkers of depres
sion.57 The findings are consistent with the present study that 
handcrafted model structure gave better performance than 
end-to-end model structure. This is because the handcrafted 
model structure contains various kinds of selected acoustic 
information, such as source and formants. Besides, our 
results showed acoustic features were promising, reliable, 
and objective biomarkers to support depression diagnosis 
using DL.

Superior performance of deep learning in depression 
detection
A recent systematic review (but not meta-analysis) suggested 
that SVM was the most popular classifier used among all 
machine learning (ML) methods in depression detection.58

Bhadra and his colleagues merged DL techniques into a single 
classifier group to compare with other ML algorithms owing 
to the limited studies accessible, which gave a comprehensive 

description of all ML algorithms but remained extensible for 
further research on DL.58 In the present review, some 
included studies confirmed that DL surpasses previous ML 
methods for automated diagnosis of depression, such as 
SVM, Random Forest, and Gradient Boosting Tree.27,36,40, 
As mentioned in the present review, the prevailing emphasis 
lies on CNN models, and it may be beneficial to explore 
more DL methods in depression detection. Although DL has 
less interpretability than other computational methods, it has 
shown great potential to assist in the diagnosis of depression.

Deep learning model structure strategies
Wu and colleagues summarized in their systematic survey 
that applying DL in depression detection could be built in 
two structures: (1) extract hand-craft acoustic features, and 
then implement classification methods; (2) put raw audio or 
spectrograms into an end-to-end DL architecture to do both 
feature extraction and classification by itself.13 To explore 
the performance of these two structures, we applied the sub
group analysis of the model structure in the meta-analysis. 
The pooled estimates of depression detection performance in 
the handcrafted structure were higher than the end-to-end 
structure, which provided evidence that the good perform
ance of DL might rely on the strategies of model structures. 
Since its lack of interpretability, it is still limited to applying 
the end-to-end deep model to solve real-world clinical 
problems.

Future development of deep learning
Applying DL algorithms on speech samples to support clini
cal diagnosis for depression disorders was novel, but still 
needs further development. First, the performance of the 
automatic speech depression detection models may be influ
enced by different languages, cultures, and environments. 
Gabor Kiss and his colleagues found that training the models 
with Hungarian speech samples while testing them with Ger
man speech samples gave a worse performance than training 
and testing the models with only Hungarian speech sam
ples.59–61 Second, due to the difficulties and privacy issues of 
collecting depression speeches, issues of small sample size and 
data imbalance need to be solved before training a DL model. 
Third, the outperformance of CNN related model may be 
partly explained by the common interest in CNN, since most 

Figure 6. Forest plot of the pooled accuracy for the model structure subgroup.
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studies included in the systematic review focused on optimiz
ing parameters for the CNN-related algorithms. Therefore, 
the performance of other DL algorithms remains to be deci
phered. Fourth, the explainability of DL models is a limita
tion in speech depression detection. It is difficult to 
understand how decisions are made by DL, which is crucial 
for gaining trust and acceptance in clinical settings.

Clinical and research implication
The increasing prevalence of depression is a significant bur
den that could overwhelm mental health services capacity. 
Although automated depression detection allows wide 
screening of a larger population and ameliorate the increasing 
demand placed on health services, these techniques should 
still be used as supplementing methods to detect early signs of 
depression. Despite the positive attitudes of clinicians toward 
diagnosis-supported techniques, rolling out such novel appli
cations on a wider scale remains challenging until knowledge 
of DL is obtained and experience is acquired in using those 
techniques in the diagnosis of depression.62 Therefore, future 
research should better involve physicians to improve the fea
sibility of techniques and require clinical trials to further 
explore the utility of diagnosis-supported tools. Besides, since 
speech is easy to collect using smartphones, future research 
can focus on implementing remote monitors on smartphones 
to obtain valuable information from real-time response and 
relapse, support physicians’ decisions, and generate immedi
ate diagnosis feedback.

Source of heterogeneity
The pooled results in the meta-analysis represented signifi
cant heterogeneity among the studies. There may be many 
reasons, including the various sample sizes based on speech 
segmentation, different speech languages and cultures, and 
different methodologies. In this study, we analyzed subgroup 
and leave-one-out results to explore the sources of heteroge
neity. I2 dropped significantly in specificity when dividing 
studies based on model structure (from 100% to 0%), which 
indicated that model structure might be the major cause of 
heterogeneity. Besides, heterogeneity was slightly lower in 
specificity when omitting the study with the biggest sample 
size,34 providing evidence that the speech segmentation meth
ods and the speech sample sizes also influenced the 
heterogeneity.

Limitations
Our study has several limitations. First, only a limited num
ber of studies were included in the systematic review because 
most studies did not report the original TP, TN, FP, and FN 
scores, and this may lead to underpowered pooled estimates. 
An updated meta-analysis could be performed in the future 
when source studies are sufficient to make the results more 
robust. Second, most studies included used the same dataset, 
so we selected the best performance model from each dataset 
to ensure the validity and reliability of the meta-analysis. The 
limited number of studies in the meta-analysis made it diffi
cult to stratify the studies into different subgroups to explore 
the source of heterogeneity. Third, we did not do the meta- 
analysis based on AUROC scores which were usually used to 
describe the performance of classification models since only 3 
studies reported AUROC scores in all included 
studies.29,41,44

Conclusions
We conducted a comprehensive systematic review and meta- 
analysis reporting the application of DL algorithms in speech 
to detect depression. The review confirms that using DL in 
speech to support the clinical diagnosis of depression is a 
promising method with excellent performance. CNN model 
with handcrafted acoustic features training on an appropri
ately balanced dataset was shown to be the best method in 
depression detection. Further studies could focus on multi- 
lingual and cross-lingual speech depression detection, DL 
algorithms exploration and optimization, and multimodal 
features combination. In addition, researchers should report 
diagnostic evaluation measures, such as sensitivity and specif
icity, to interpret DL results in real-world clinical settings.
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