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Abstract

Worldwide, millions of people are co-exposed to arsenic and cadmium. Environmental exposure 

to both metals is linked with a higher risk of atherosclerosis. While studies have characterized 

the pro-atherosclerotic effects of arsenic and cadmium as single agents, little is known about the 

potential effects of metal mixtures, particularly at low doses. Here, we used a combination of in 
vitro and in vivo models to assess the effects of low-dose metals individually and as mixtures 

on early events and plaque development associated with atherosclerosis. In vitro, we investigated 

early pro-atherogenic changes in macrophages and endothelial cells with metal treatments. The 

combined cytotoxic effects of both metals at low concentrations were dose interactive, specifically, 

synergistic in macrophages, but antagonistic in endothelial cells. Despite this differential behavior 
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across cell types, the mixtures did not initiate early pro-atherogenic events: neither reactive oxygen 

species generation in macrophages nor adhesion molecule expression on endothelial cells. In vivo, 

we utilized the well-characterized hyperlipidemic apolipoprotein E knock-out (ApoE−/−) mouse 

model. Previously, we have shown that low concentrations of arsenic (down to 10 ppb) enhance 

atherosclerosis in ApoE−/−mice. This model has also been used with cadmium to demonstrate 

pro-atherogenic effects, although at concentrations above human-relevant exposures. In both sexes, 

there are some small increases in atherosclerotic lesion size, but very few changes in plaque 

constituents in the ApoE−/−mouse model. Together, these results suggests that low-dose metal 

mixtures are not significantly more pro-atherogenic than either metal alone.
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1. Introduction

Environmental exposure to metals, such as arsenic (As) and cadmium (Cd), have been 

associated with higher risk of cardiovascular diseases, including atherosclerosis (Lamas 

et al., 2023). Atherosclerosis is a vascular disease characterized by the buildup of 

fibro-fatty plaque in the inner lining of an artery. Atherosclerotic plaque development 

begins with the perturbation of endothelial function (Gimbrone Jr. et al., 2000) by 

excess oxidized lipid followed by monocyte/macrophage recruitment, infiltration and 

differentiation. These myeloid cells then engulf the oxidized lipid, forming foam cells, 

and initiate an inflammatory cascade (Moore and Tabas, 2011). This leads to the first 

stage in plaque development, the formation of a fatty streak (Douglas and Channon, 

2014). The continued recruitment of leukocytes further promotes lipoprotein retention, 

extracellular matrix alteration and sustained chronic inflammation. As the atherosclerotic 

lesion progresses, vascular smooth muscle cells (VSMCs) migrate, proliferate to secrete 

extracellular matrix and form a protective fibrous cap (Harman and Jørgensen, 2019). In 

advanced stages, the apoptosis and defective efferocytosis of macrophages (Tabas, 2010) and 

VSMCs (Harman and Jørgensen, 2019) contribute to plaque necrosis. Plaques with large 

necrotic cores and thin fibrous caps are prone to rupture and cause myocardial infarction 

(Virmani et al., 2006).

Millions of people are exposed to arsenic and cadmium worldwide. Although combined 

metal exposure is derived from multiple sources, one of the primary sources of arsenic 

exposure is contaminated drinking water (Chung et al., 2014). The World Health 

Organization (WHO) has set the maximum contaminant level of arsenic in drinking water 

at 10 ppb (World Health, 2019). Nevertheless, higher arsenic levels have been reported in 

Brazil (Mirlean et al., 2014), Bangladesh (Chakraborti et al., 2010), India (Shukla et al., 

2010), Cambodia (Sthiannopkao et al., 2008), Chile (Nriagu et al., 2007), Spain (Gómez 

et al., 2006), Thailand (Santha et al., 2022) and United States (Naujokas et al., 2013). 

Cadmium is a metal with a long biological half-life in the human body ranging from 

15 to 30 years (Rafati Rahimzadeh et al., 2017). The main sources of Cd exposure for 

non-smoking and non-occupationally exposed individuals, are diet, air and groundwater 
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(Kubier et al., 2019; Tinkov et al., 2018). The WHO set the maximum contaminant level 

of Cd in drinking water at 3 ppb (World Health, 2004). In general, low levels (0.2 to 2 

ppb) of Cd have been reported in groundwater, for instance, in the western part of United 

States (Ayotte et al., 2011) and Northern Germany (Rodemann et al., 1983). However, there 

are some regions where levels greater than the WHO-set limit of Cd have been reported. 

For example, some waste sites in the United States have greater levels, as a result of both 

natural and anthropogenic processes (Kubier et al., 2019). Furthermore, arsenic and Cd are 

often found together in mines, agricultural systems, and industrial wastewater discharges 

(Gunadasa et al., 2023; Arancibia-Miranda et al., 2020). More importantly, both metals are 

reported to co-contaminate drinking water supply systems (Gao et al., 2019; Sierra-Sánchez 

et al., 2022; Oseghe et al., 2021; Zhou et al., 2023). This, combined with exposure from 

other sources, means that exposure to low levels of metal mixture is profound.

Metals can affect multiple points along the pathogenesis of atherosclerosis (Grau-Perez 

et al., 2022). Both arsenic and Cd are pro-atherogenic. Mechanistic evidence suggests 

that arsenic induces endothelial dysfunction, increases reactive oxygen species, impairs 

nitric oxide balance, and amongst other pro-atherogenic properties, all of which enhance 

atherogenesis (States et al., 2009). On a similar note, Cd targets the vascular endothelium, 

induces endothelial dysfunction via modulation of adhesion molecules (Prozialeck et al., 

2006) and reduces nitric oxide bioavailability (Kolluru et al., 2006). Moreover, both arsenic 

and Cd enhance atherosclerosis in the well-characterized, hyperlipidemic apolipoprotein E 

knock-out (ApoE−/−) mouse model as single agents. We have previously shown that low 

concentrations of arsenic (down to 10 ppb) induce atherosclerosis in ApoE−/−mice (Makhani 

et al., 2018). In addition, Cd has pro-atherogenic effects in ApoE−/−mice, although at 

concentrations above human-relevant exposures (Oliveira et al., 2019). Thus, both arsenic 

and Cd can enhance the development of atherosclerosis.

While studies have characterized the effects of arsenic and Cd as single agents, many of 

these studies, particularly for Cd, have utilized concentrations well above environmentally-

relevant doses. Moreover, these studies have not characterized the effects of mixtures of 

metals, more closely mimicking the complex environments we are all exposed to. Here, we 

used a combination of in vitro and in vivo approaches to study the effects of low-dose 

arsenic/Cd as single agents and as mixtures on early events and plaque development 

associated with atherosclerosis. In vitro, we investigated early pro-atherogenic changes in 

macrophages and endothelial cells with metal treatments. In vivo, we utilized low-dose, 

environmentally-relevant concentrations of arsenic, Cd and the co-exposure in the ApoE−/

−mice and considered sex as a biological variable.

2. Materials and methods

2.1. Cell viability assay

RAW 264.7 (ATCC-TIB-71) murine macrophages and C166 (ATCC CRL-2581) murine 

endothelial cells were routinely cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

media at 37 °C in 5% CO2. The range of concentrations chosen for each metal are as 

follows: 10 nM – 5μM arsenic and 10 nM – 10 μM Cd, ranges encompassing both low 

environmental and higher in vitro concentrations. Arsenic, cadmium and mixture working 
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solutions were prepared from sodium arsenite and cadmium chloride stock solutions, 

respectively, and solubilized with deionized water. The cells were seeded in a 96-well plate 

and cultured with the metal treatments for 24 h. The cytotoxicity in each cell type were 

determined using the CellTiter-Glo Luminescent Cell Viability Assay. CellTiter-Glo staining 

measures the number of viable cells in culture based on quantitation of the ATP present, 

an indicator of metabolically active cells. Synergy was assessed by excess over bliss (EOB) 

analysis (Borisy et al., 2003).

2.2. High-content imaging

RAW 264.7 cells were seeded in PhenoPlate 96-well microplates (Perkin Elmer) coated 

with 10 μg/ml poly-D-lysine (ThermoFisher) at a seeding density of 4000 cells/well. The 

cells were exposed to arsenic and cadmium treatments for 24 h. Menadione was used 

as a positive control. Following the metal exposures, the RAW 264.7 cells were treated 

with cell permeable fluorescent dyes for live-cell imaging. These dyes include CellROX 

Deep Red reagent (ThermoFisher) for reactive oxygen species detection, CellMask Green 

(ThermoFisher) for plasma membrane stain and Hoechst (ThermoFisher) for nuclear stain. 

Cells were stained at 37 °C in 5% CO2 for 30 min. The Operetta High-Content Imaging 

System (Perkin Elmer) was used for live-cell imaging (9 fields/well, 4 planes/well, 40× 

magnification). The images were then analyzed using the Columbus Image Data Storage and 

Analysis System (Perkin Elmer).

2.3. Flow cytometry

C166 (ATCC CRL-2581) murine endothelial cells were seeded in a 12-well plate at a 

seeding density of 100 000 cells/well and treated with arsenic and/or cadmium for 4 

h or 24 h. Lipopolysaccharide (LPS) was used as the positive control. Post treatment, 

cells were harvested with trypsin and washed with 1× phosphate buffered saline. Cells 

were then stained with anti-mouse CD106 (VCAM-1) (ThermoFisher) and Near-IR Live/

Dead (ThermoFisher). The BD FACSCanto II Flow Cytometer (Lady Davis Institute Flow 

Cytometry Core) was used to measure the mean fluorescence intensity of VCAM-1 positive 

cells. FlowJo v10 was used for analysis.

2.4. Incucyte live-cell analysis system

RAW 264.7 cells were seeded in PhenoPlate 96-well microplates (Perkin Elmer) at a seeding 

density of 3000 cells/well. The cells were exposed to arsenic and cadmium treatments for 

24 h on day 2. GW3965, a synthetic LXR agonist, was used as a control. Following the 

metal exposures, cells were incubated with 2.5 μg/ml red-orange Dil dye-labeled oxLDL 

(Dil-oxLDL) (ThermoFisher) for 4 h. The cells were imaged in the S3 Incucyte Imaging 

System (Sartorius) and the mean Dil-OxLDL intensity was recorded every 30 min in real 

time.

2.5. Enzyme-linked immunosorbent assay (ELISA)

RAW 264.7 macrophages were seeded in a 6 well plate at a seeding density of 200 000 cells/

well. The cells were treated with arsenic and cadmium treatments for 24 h on day 2. LPS 

was used as a positive control. Following the metal exposure, the supernatant was collected 
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and snap frozen. TNF-α, IL-1β and IL-6 were quantified in the conditioned media using 

R&D DuoSet ELISAs for TNF-α (DY410–05), IL-1β (DY401–05), and IL-6 (DY406–05). 

Optical density (OD) values were calculated by subtracting the OD 540 nm from the OD 

450 nm.

2.6. In vivo arsenic and cadmium exposure

All mouse studies were approved by the McGill Animal Care and Use Committee. ApoE−/

−mice (B6.129P2—apoEtm1Unc/J from Jackson Laboratory) were bred in the Lady Davis 

Institute Animal Facility. Starting at 5 weeks of age, male and female ApoE−/−mice were 

given low arsenic/cadmium chow (AIN-76; Envigo, Lachine, Quebec). Mice were exposed 

to tap water sodium arsenite (5 or 50 ppb arsenic), cadmium chloride (1.5 or 5 ppb 

cadmium), or the combinations for 13 weeks. Arsenic/cadmium drinking water was changed 

three times per week. Body weight was monitored. At endpoint, mice were euthanized with 

isoflurane, and the aortas and hearts were dissected.

2.7. Atherosclerotic lesion characterization

The size and characterization of the atherosclerotic lesions in the aorta and aortic sinus 

were assessed as previously described (Lemaire et al., 2011; Makhani et al., 2018). In short, 

the fixed aorta was rinsed with ultrapure water, then cut longitudinally and stained en face 
with oil red O (Electronic Microscopy Sciences) for triglycerides, lipids and cholesterol. 

Images were obtained using INFINITYCAPTURE software and camera (Lumenera). The 

percentage of lesion area of the aortic arch, defined as the region from the first intercostal 

arteries to the ascending arch, were evaluated using ImageJ software [National Institutes 

of Health (NIH)]. The atherosclerotic lesions were also evaluated within the aortic sinus. 

A total of 8 animals were used for both analyses for each treatment and sex. The hearts 

were rinsed, fixed, embedded, and processed as previously described (Lemaire et al., 2011; 

Makhani et al., 2018). Approximately 7 μm cryosections were sliced from the aortic base 

throughout the aortic sinus, and consecutive sections were collected on 10 different slides. 

On average, 4–9 slices were collected on each slide, and each slice was about 70 μm apart. 

Individual slides were stained with oil red O to determine the plaque areas and their lipid 

content. The aortic sinuses were also stained and analyzed for collagen content (type I and 

type III) using picrosirius red (Polysciences).

2.8. In situ immunofluorescence

Smooth muscle cell (SMC) and macrophage content were assessed within the plaque area 

as previously described (Lemaire et al., 2011; Makhani et al., 2018). In short, aortic 

sinus sections were rinsed and blocked with 3% bovine serum albumin (Sigma-Aldrich), 

incubated with primary antibody [1:100 for monoclonal anti-α-smooth muscle cell actin 

[clone 1A4], 1:50 for MOMA-2 (macrophages) antibody (Abcam)], rinsed, and incubated 

with fluorescently labeled secondary antibodies (1:500; Invitrogen). The immunofluorescent 

marker from at least 4–9 sections per animal were quantified using ImageJ software (NIH) 

and expressed as a percentage of total lesion area.
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2.9. Plasma analyses

Blood (0.6 mL) was collected by cardiac puncture and plasma was obtained using collection 

tubes (ethylenediaminetetraacetic acid BD Vacutainer SST). Cholesterol, high-(HDL) and 

low-density (LDL) lipoproteins, triglycerides, and glucose were assessed by the pathology 

services at The Centre of Phenogenomics in Toronto, Ontario.

2.10. Statistical analyses

Statistical analyses were performed using GraphPad software (La Jolla, California) using 

a one-way ANOVA and a two-way ANOVA with a Tukey’s multiple comparisons test. A 

two-sided p <0. 05 was considered statistically significant. Statistical test is indicated in 

figure legends where applicable.

3. Results

3.1. In vitro assessment of early proatherogenic changes following low dose As/Cd 
mixtures

Previous data indicate that both arsenic and Cd have pro-atherogenic properties, however, 

it is unclear whether these extend to low concentrations and/or to the mixture of the 

two metals. We used in vitro approaches to study the effects of exposure to mixtures 

of arsenic and Cd and focused on early events in atherogenesis: reactive oxygen species 

(ROS) generation in macrophages (Xu et al., 2019), the expression of adhesion molecules 

on endothelial cells (Xu et al., 2019; Gimbrone Jr. and García-Cardeña, 2016; Insull Jr., 

2009), oxidized lipoprotein uptake in macrophages and release of cytokines (Crowther, 

2005; Gaggini et al., 2023). First, we determined the cell viability following metal exposure, 

for single metal exposures or for combined metal exposures, in either RAW 264.7 murine 

macrophages or C166 endothelial cells after 24 h. We tested a broad range of concentrations 

for both metals from 0.01 to 5 μM arsenic and 0.01–10 μM Cd. In RAW macrophages, Cd 

exposure singularly resulted in a dose-dependent decrease in viability, while, interestingly, 

arsenic exposure singularly increased viability until 1 μM (Fig. 1A & Table S1). The 

combination of metals resulted in a dose-dependent increase in cytotoxicity reaching a 

maximum of ~60% viability. In the C166 endothelial cells, each metal alone resulted 

in a dose-dependent decrease in viability with arsenic being more cytotoxic (Fig. 1B & 

Table S1). The As/Cd combinations decreased cell viability, although not more than ~15%, 

indicating that the endothelial cells are more resistant to the cytotoxic effects of arsenic and 

Cd, individually and together. The excess over bliss (EOB) independence model (Bansal 

et al., 2014) was used to determine synergy/antagonism between arsenic and Cd in both 

the RAW 264.7 cells (Fig. 1C & Table S2) and the C166 cells (Fig. 1D & Table S2). A 

compound pair with positive EOB values depicts synergistic behavior, while negative EOB 

values depict antagonistic behavior, and an EOB value of 0 corresponds to an additive effect. 

Interestingly, here, mixtures of low-dose arsenic and Cd behave differently in macrophages 

than in endothelial cells. The effect of both metals combined at low concentrations appears 

to be dose interactive, specifically, synergistic in the RAW cells (Fig. 1C) but antagonistic in 

the C166 cells (Fig. 1D). However, in both cell lines, no statistically significant differences 

were found in cell viability and in EOB using a one-way ANOVA with a Tukey’s post-hoc 
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test after low-dose metal treatments for 24 h. To reduce the confounding cytotoxicity in 

downstream analyses, we focused on concentration mixtures that yielded >75% viability.

As a first approach to study pro-atherogenic mechanisms, we measured the levels of ROS 

in macrophages after treatment with metal mixtures. We cultured RAW 264.7 murine 

macrophages with the experimentally determined non-cytotoxic concentrations of arsenic 

and Cd for 24 h and assessed superoxide production by high content imaging. Menadione 

was used as a positive control, where the ROS level significantly increased in the RAW 

264.7 cells after 24 h exposure with menadione but not 1 h (Fig. 2A). With higher 

concentrations of arsenic, Cd and in combinations, there is an increase in ROS, although 

not statistically significant (p = .069–0.6501). Next, we measured VCAM-1 expression in 

C166 cells after low-dose metal treatments at 4 h and 24 h using flow cytometry. LPS 

was used as a positive control, which increased VCAM-1 expression after 4 h. However, at 

neither time point was VCAM-1 expression changed after arsenic and Cd exposure (Fig. 2B 

& S1). Then, we measured Dil-oxLDL uptake in RAW 264.7 cells after 24 h exposure to 

arsenic, Cd and in combinations over time (Fig. 2C). There was no change in the rate of 

lipid uptake (per hour) with arsenic treatment. However, Cd exposure (0.5 μM and 1 μM 

Cd) significantly decreased the rate of lipid updake alone and in some of the combinations 

compared to controls or arsenic. More interestingly, in some of the combinations, the 

addition of arsenic to 0.5 μM or 1 μM Cd did not alter the decreased rate of lipid uptake 

compared to Cd alone (Fig. 2C & Table S3). As an indication for vascular inflammation, 

we also measured cytokines promoting atherogenesis, TNF-α, IL-1β and IL-6 (Tousoulis 

et al., 2016) in conditioned media after metal exposure to RAW 264.7 cells. There was no 

change in cytokine expression with arsenic, Cd, or the combinations, although the positive 

control (LPS) consistently induced cytokine production (Fig. 2D). While these data suggest 

that low-dose mixtures of arsenic/Cd did not initiate pro-atherogenic events, atherosclerosis 

is a complex, multi-factorial process and as such, we extended our analysis to an in vivo 
model.

3.2. In vivo assessment of plaque size in ApoE−/−mice exposed to low concentrations of 
as/cd mixtures

We have previously shown that in the ApoE−/−mouse model low to moderate levels of 

arsenic, 10–200 ppb (Makhani et al., 2018), increases the size of the atherosclerotic lesion 

in a dose-dependent manner. In addition, pro-atherogenic effects have been reported in 

the same model treated with 100 ppm Cd (Oliveira et al., 2019). Here, we utilized this 

well-characterized in vivo model of atherosclerosis to study low-dose, environmentally 

relevant exposures of arsenic and Cd as individual metals and as mixtures. We exposed both 

male and female ApoE−/−mice to tap water, arsenic (5 or 50 ppb), Cd (1.5 or 5 ppb), or 

the combinations for 13 weeks. This is a time point at which we have previously observed 

arsenic-enhanced plaque size (Makhani et al., 2018). At endpoint, we determined the size of 

atherosclerotic lesions in the aortic arch by en face oil red O staining on the luminal side of 

the aorta.

In both sexes, there were some increases in the lesion size in the aortic arch (Fig. 3A). In 

males, 5 ppb Cd increased the lesion size significantly in the aortic arch (Fig. 3A, p < 0.05), 
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while arsenic alone resulted in no statistically significant changes. On the other hand, in 

females, 50 ppb arsenic significantly increased the lesion size in the aortic arch (Fig. 3A, p 

< 0.05), which we have previously reported in males (Makhani et al., 2018). Of note, the 

metal combinations did not increase arch plaque size significantly in either males or females. 

Notably, in males, arsenic, Cd and/or the combinations of both metals did not significantly 

increase the size of the atherosclerotic plaque in the aortic sinus. On the contrary, in females, 

50 ppb arsenic and some of the combinations significantly increased the lesion size in the 

aortic sinus (Fig. 3B, p < 0.05; p < .01; p < .0001).

3.3. Assessment of plaque components following exposure to low concentrations of 
arsenic/cd mixtures

Previously, we reported that an exposure 10–200 ppb arsenic in ApoE−/−mice alters plaque 

composition towards a less stable phenotype with increased lipid content, decreased smooth 

muscle cells and decreased collagen content (Makhani et al., 2018). To assess the changes 

in plaque composition after low-dose metal exposure, we stained for these components, all 

of which play a role in plaque progression and regression. Here, we used oil red O staining 

to determine the change in lipid content in the plaque. In males, no significant changes 

were seen in lipid content. Interestingly, in females exposed to 5 ppb Cd, there was a 

decrease in lipid content, however, with the addition of 5 or 50 ppb arsenic, lipid levels were 

restored to control values (Fig. 4A, p < 0.05). Macrophages phagocytose lipids and become 

foam cells, which we assessed by MOMA-2 staining. In accordance with what we have 

observed historically (Makhani et al., 2018; Lemaire et al., 2011), no significant changes 

in macrophage numbers were observed across the exposure groups in both sexes (Fig. 4B), 

suggesting increased intracellular lipid retention in macrophages.

In atherogenesis, smooth muscle cells migrate, proliferate in lesions, and form a protective 

fibrous cap during plaque progression. In addition, smooth muscle cells synthesize 

extracellular matrix components, such as collagen, to increase plaque stability. We 

determined the percent smooth muscle cells in aortic sinus sections by α-actin staining and 

quantitated the collagen content by picrosirius red staining. Here, in both males and females, 

very few changes were seen in smooth muscle cell and collagen content (Fig. 5). In addition, 

we quantified the size of the necrotic core in the plaque by hematoxylin and eosin staining to 

assess plaque vulnerability induced by each metal and mixtures. In accordance with all the 

other findings, the size of the necrotic core did not significantly change (Fig. 6). Similarly, 

no significant changes were seen in the circulating lipid levels (total cholesterol, low-density 

lipoprotein, high-density lipoprotein, triglycerides) or glucose in males or females (Table 

S4). Thus, our in vivo studies demonstrate that the combinations of low-dose arsenic and 

Cd are not significantly worse than either metal alone with very few changes in plaque 

constituents.

4. Discussion

Together, our in vitro and in vivo studies suggest that low-dose metal mixtures of arsenic 

and Cd are not significantly more pro-atherogenic than either metal singularly. We found 

there is differential sensitivity to mixtures of arsenic and Cd in RAW 264.7 and C166 cells 

Subramaniam et al. Page 8

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in vitro. Interestingly, mixtures of low-dose arsenic and Cd have synergistic interactions 

in macrophages, but antagonistic interactions in endothelial cells. Despite these differential 

interactions between arsenic and Cd, at such doses, these metals did not increase ROS in 

macrophages or adhesion molecule expression on endothelial cells as single agents or as 

mixtures in vitro. Previously done studies in RAW 264.7 cells with lower doses of Cd 

(10, 50 and 200 nM) have reported a dose-dependent and time dependent (24, 48 and 72 

h) increase in lipid absorbance (Kumar et al., 2019). Here, at 0.05 μM (50 nM) Cd, we 

see an increase in lipid uptake at 24 h, although not statistically significant. In addition, 

exposure to higher concentrations of Cd decreased the rate of lipid uptake in RAW cells. 

More interestingly, higher concentrations of Cd suppressed arsenic-mediated lipid uptake in 

RAW 264.7 macrophages. In vivo, we see very few changes in plaque size and constituents 

in the ApoE−/−mouse model in both sexes. While in both sexes there are some increases in 

lesion size in both aortic arch (Fig. 3A) and aortic sinus (Fig. 3B), these changes do not 

exceed those caused by higher concentrations of arsenic or with high fat diet as previously 

observed (Lemaire et al., 2011; Makhani et al., 2018).

Previous in vitro studies have reported cell type-specific and dose-specific sensitivity 

to metal mixtures. In human keratinocytes, exposure to mixtures of arsenic, cadmium, 

chromium, and lead at low concentrations stimulated growth (Bae et al., 2001). However, 

with increasing metal concentrations, the combined toxicity changed from additive to 

synergistic cytotoxicity, followed by antagonistic interactions at the highest mixture 

concentration (Bae et al., 2001). Supporting the antagonistic effects at the highest dose, 

cellular defence mechanisms were also enhanced with increased levels of glutathione and 

metallothionein (Bae et al., 2001). Similar differential interactions with increasing metal 

concentrations were reported after exposure to arsenic, cadmium, mercury and lead in 

MCF 7 breast cancer cells (Klutse et al., 2009). These findings suggest that the nature of 

the interaction between metals and the combined toxicity may be concentration and cell 

dependent. In another study (Karri et al., 2018), the toxicity of lead, cadmium, arsenic, 

and methylmercury as single agents and as binary mixtures were assessed in HT-22 

neuronal cells. In agreement to our findings in the endothelial cells, the cytotoxicity of 

the combination of arsenic and cadmium at low doses showed antagonistic effects in the 

neuronal cells (Karri et al., 2018). Thus, in addition to dose, cell type may also play a role in 

metal interactions in combined toxicity.

This study uses only murine cell lines, which could limit the breadth of applicability 

of the data. RAW 264.7 is a commonly used myeloid cell line shown to have stable 

macrophage-like phenotypic and functional characteristics until passage 30 (Taciak et al., 

2018). All experiments with RAW 264.7 were carefully carried out with a passage number 

<30. Moreover, C166 cells are reported to exhibit normal endothelial characteristics. More 

importantly, they constitutively express murine VCAM-1 (Wang et al., 1996), therefore we 

chose to assess this adhesion molecule here amongst other pro-atherogenic cell surface 

markers. In addition to VCAM-1, VE-cadherin, a major determinant of endothelial cell 

contact integrity, (Vestweber, 2008) and caveolin-1 (Puddu et al., 2023) are other markers 

of endothelial cells involved in plaque progression. C166 cells do not express VE-cadherin 

or caveolin-1, therefore this was not studied here. However, previously done studies by 

Prozialeck and coworkers have reported that exposure to 100 nM (0.1 μM) Cd for 15 h 
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caused a marked reduction in VE-cadherin at the cell-cell contacts in human umbilical 

vein endothelial cells (Prozialeck, 2000). With regards to arsenic exposure, at 24 h, a 

dose-dependent reductions in VE-cadherin was observed in human aortic endothelial cells 

(HAECs) at 1, 5 and 10 μM (Pereira et al., 2007). While this is interesting, we wanted to 

compare our in vitro studies with our mouse model hence we chose to work with murine cell 

line. Future studies including low-dose arsenic and cadmium exposure in a human cell line 

will be of interest.

Few studies have characterized the toxicological effects of arsenic and Cd as mixtures in 
vivo. Moreover, to our knowledge, this is the first study to investigate the pro-atherosclerotic 

outcomes in a mouse model after low-dose metal mixtures. In male rats, simultaneous 

intraperitoneal co-exposure to 10 mg/kg sodium arsenite and 2.6 mg/kg cadmium chloride 

altered the histopathology and the glutathione levels in various tissues produced by either 

metal alone. Interestingly, prior studies suggest that at a histopathological level, the acute 

toxicity of the combination is less toxic than cadmium alone in testes, whereas not 

readily apparent in liver and kidney (Díaz-Barriga et al., 1990). Thus, there is evidence of 

differential sensitivity to metals which differs across tissues. In relevance to cardiotoxicity, 

a follow-up study done in rats at the same doses showed that the combination of metals is 

more toxic in the heart tissue than either single metal (Yáñez et al., 1991). On a similar note, 

chronic exposure to the combination of 22.5 ppm arsenic in drinking water and 100 ppm Cd 

in diet exacerbated renal toxicity more than either metal alone in metallothionein-I/II null 

mice (Liu et al., 2000). These studies suggest that, in contrast to our findings, the mixture of 

arsenic and Cd is more toxic than the single metals. However, these studies were performed 

using higher doses and assessed different endpoints. Here, we were particularly interested 

in exposures at levels relevant to humans as defined based on approximate levels found 

in drinking water in the US population (Ravalli et al., 2022; Nigra et al., 2020). We also 

considered sex as a biological variable to extrapolate data to human populations. In both 

sexes at low doses, the combinations of arsenic and Cd are not worse than either metal 

singularly in the ApoE−/−mouse model. Together, our data show that low-dose exposure to 

mixtures of arsenic and Cd do not significantly increase atherosclerosis in a hyperlipidemic 

mouse model.

While the vascular system is a target of both arsenic and cadmium toxicity (Prozialeck et al., 

2008), the lack of interaction in vivo may be explained by the differences in the biological 

fate and differences in pro-atherogenic mechanisms of both metals. Mammalian species 

have developed a mechanism to metabolize inorganic arsenic, where mice rapidly methylate 

and excrete arsenic. Cadmium bioaccumulates in mice (Tai et al., 2022) similar to humans. 

Thus, this may be a question of the concentrations utilized in our experimental design 

being too low. Perhaps at these low concentrations of Cd, chronic (>13 weeks) to near 

lifetime exposure may be needed to see significant Cd-induced proatherogenic effects alone 

or in combination with arsenic in a hyperlipidemic mouse model. Moreover, arsenic induces 

oxidative stress via production of ROS (Hu et al., 2020) whereas Cd competes with zinc, 

and binds to sulfhydryl groups which counteracts the antioxidant properties of glutathione, 

metallothionein and zinc superoxide dismutase (Bridges and Zalups, 2005; Lamas et al., 

2023). The lack of cooperation by the metals is surprising, based on their non-overlapping 

mechanisms of ROS generation.
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Our goal was to study human relevant concentrations of metal exposure in mice, however 

there are potential limitations to our in vivo study. First, we used a hyperlipidemic mouse 

model, although the mice were not fed a high-fat diet. Atherosclerotic lesions from animals 

fed the Western diet are more lipid-rich than regular diet (Getz and Reardon, 2006). 

Therefore, perhaps there may be pro-atherogenic effects after low-dose co-exposure to metal 

mixtures in the context of a Western diet. More importantly, mice metabolize inorganic 

arsenic much faster than humans. Mice are very efficient with arsenic methylation and have 

faster rates of urinary clearances of methylated metabolites (Vahter, 1999; Koller et al., 

2020). Thus, equivalent exposures to human and mice may likely result in very different 

doses in both species. Considering the interspecies differences, it is possible that exposure 

to low-dose combinations of arsenic and Cd may produce more drastic effects on human 

tissue. Therefore, complementary human epidemiologic studies are needed to study mixtures 

of arsenic and Cd and risk of atherosclerotic-related outcomes at environmentally relevant 

concentrations of metal exposure.
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Fig. 1. 
Differential sensitivity to low-dose metal mixtures in RAW 264.7 macrophages and C166 

endothelial cells. The combined effect of both metals is synergistic in RAW 264.7 cells 

whereas antagonistic in C166 cells. The mean percent cell viability (n = 3) in RAW 264.7 

cells (A) and C166 cells (B) after arsenic and cadmium treatments for 24 h. Cell viability 

was measured as a change in CellTiter-Glo luminescent signal, blue regions correspond to 

increased cell viability whereas red regions correspond to decreased cell viability. Mean 

excess over bliss analysis (n = 3) in RAW 264.7 cells (C) and C166 cells (D), red 
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regions illustrate synergy amongst arsenic and cadmium whereas green regions illustrate 

antagonism. No statistical differences were observed in cell viability and in excess over bliss 

in both cell lines. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 2. 
In vitro approaches to study atherosclerosis following exposure to low-dose arsenic and 

cadmium. (A) Intracellular ROS levels were measured and quantified as a change in 

CellROX Deep Red fluorescence signal by high content screening. Increased ROS levels 

are seen at higher concentrations of arsenic, cadmium and in combinations, although not 

statistically significant. Menadione was used as a positive control. Statistical significance 

is represented as follows: ****p < .0001. (B) Flow cytometry analysis of the expression 

of VCAM-1 on C166 cells under low dose-arsenic and cadmium treatment over 4 h (n = 
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2). No changes were observed in VCAM-1 expression after low-dose metal treatments. (C) 

Dil-oxLDL uptake was measured in RAW cells after 24-h metal exposure (n = 3). At higher 

concentrations of cadmium, the rate of Dil-oxLDL uptake (per hour) was significantly 

reduced (represented in bold) singularly and in combinations compared to cells only. A 

two-way ANOVA with a Tukey’s multiple comparison test was done. Statistical significance 

is represented as follows: *p < .05, **p < .01, ***p < .001 and ****p < .0001. (D) No 

change in TNF-α, IL-1β and IL-6 expression after exposure to arsenic and cadmium in 

RAW 264.7 cells. LPS was used as a positive control. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Sex-specific differences in the size of atherosclerotic lesion in the aortic arch (A) and 

aortic sinus (B) after low-dose arsenic, cadmium, and co-exposure in ApoE−/−mice. All 

the plaques were smaller than those observed with higher concentrations of arsenic and/or 

high-fat diet. Plaque was quantified after oil red O staining and imaged using ImageJ. Each 

point represents a single mouse. Statistical significance is represented as follows: *p < .05; 

**p < .01; ****p < .0001. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Few changes were observed in lipids and macrophages in plaques. No change in 

macrophage number in both sexes. Lipid content (A) and macrophage number (B) in the 

atherosclerotic plaque in the aortic sinus after low-dose arsenic, cadmium, and co-exposure 

in ApoE−/−mice. Plaque was quantified in the aortic sinus by oil red O (A) and MOMA-2 

(B) staining using ImageJ. Each point represents a single mouse. Statistical significance is 

represented as follows: *p <. 05. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 5. 
No changes were observed in smooth muscle cells and collagen. Smooth muscle cells (A) 

and collagen (B) content in the atherosclerotic plaque in aortic sinus after low-dose arsenic, 

cadmium and co-exposure in ApoE−/−mice. Plaque was quantified by α-smooth muscle 

actin (A) and picrosirius red (B) staining and imaged using ImageJ. Each point represents a 

single mouse. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.)
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Fig. 6. 
The size of the necrotic core in the atherosclerotic plaque did not change significantly in 

both male and female ApoE−/−mice after low-dose arsenic, cadmium, and co-exposures. 

Necrotic core was assessed from hematoxylin and eosin-stained aortic sinus sections and 

imaged using ImageJ. Each point represents a single mouse.
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