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Summary
Background Depressive symptoms are rising in the general population, but their associated factors are unclear.
Although the link between sleep disturbances and depressive symptoms severity (DSS) is reported, the predictive role
of sleep on DSS and the impact of anxiety and the brain on their relationship remained obscure.

Methods Using three population-based datasets (N = 1813), we trained the machine learning models in the primary
dataset (N = 1101) to assess the predictive role of sleep quality, anxiety problems, and brain structural (and functional)
measurements on DSS, then we tested our models’ performance in two independent datasets (N = 378, N = 334) to
test the generalizability of our findings. Furthermore, we applied our model to a smaller longitudinal subsample
(N = 66). In addition, we performed a mediation analysis to identify the role of anxiety and brain measurements
on the sleep quality and DSS association.

Findings Sleep quality could predict individual DSS (r = 0.43, R2 = 0.18, rMSE = 2.73), and adding anxiety, contrary to
brain measurements, strengthened its prediction performance (r = 0.67, R2 = 0.45, rMSE = 2.25). Importantly, out-of-
cohort validations in other cross-sectional datasets and a longitudinal subsample provided robust similar results.
Furthermore, anxiety scores, contrary to brain measurements, mediated the association between sleep quality and DSS.

Interpretation Poor sleep quality could predict DSS at the individual subject level across three datasets. Anxiety scores
not only increased the predictive model’s performance but also mediated the link between sleep quality and DSS.
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Introduction
In modern societies, about 25% of the general popula-
tion presents depressive symptoms such as sadness,
irritability, anhedonia, low motivation, distracted con-
centration, worthlessness, abnormal appetite, and sleep
disturbance.1 Over the last decades, depressive symp-
toms have increased in the general populations.2
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Critically, depressive symptoms could predict major
depressive disorder (MDD) around 15 years later.3

Hence, screening subjects with depressive symptoms
in the general population is essential for decreasing the
rate, burden, and severity of clinical depression.4 In
addition, a high conversion rate of depressive symptoms
to MDD3 and the noticeable health-related and
aviour (INM-7), Research Centre Jülich, Wilhelm-Johnen-Straße, Jülich,
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Research in context

Evidence before this study
Depressive symptoms and clinical depression are prevalent in
modern societies. Although the associated factors of clinical
depression are well-documented, the predictive power of
those factors in depressive symptoms in the general
population is not well-identified. Several studies suggested
that sleep disturbance and anxiety are linked with depressive
problems in the general population and patients with major
depressive disorder. A few meta-analyses and longitudinal
studies also indicated that sleep disturbance plays a key role in
developing depressive problems and clinical depression.
However, those studies mainly used conventional group
comparison statistical approaches, ignoring the inter-
individual variability across participants. Moreover, their data
were limited to a single database, limiting the generalizability
of their findings in other samples. Thus, large-scale multi-
sample studies using machine learning predictive approaches
are needed to identify the complex pattern between sleep
quality, anxiety problems, and depressive symptoms at the
individual subject level. We also assessed the neurobiological
underpinning of their interplay.

Added value of this study
In this study, we used machine learning, which enables
individual-level predictions and can validate the
generalizability of models on independent data. Thus, this
analytical framework explicitly evaluates the generalization of
trained models to new/unseen data. This study used three

independent datasets, including three cross-sectional samples
and a longitudinal subsample. We also performed careful
complementary analyses to examine the robustness of our
findings considering the impact of a lifetime history of
depression, the effects of sleep-related questions of the
depressive assessment, exploring the most important
parameters of sleep quality in the prediction of depressive
symptoms severity, and testing the reverse direction i.e.,
predicting sleep quality based on depressive symptoms. We
found that poor sleep quality could robustly predict
depressive symptoms across three datasets, but the reverse
direction (prediction of sleep quality based on depressive
symptoms) was less robust. Anxiety scores improved the
performance of the predictive model and mediated the link
between sleep and depressive symptoms, whereas our brain
structural (and functional) properties were not able to predict
depressive symptoms in this study. Our longitudinal
assessment suggests that future depressive symptoms
severity may be predictable based on baseline sleep and
anxiety data.

Implications of all the available evidence
As depressive symptoms have a substantial impact on public
health, identifying their contributing factors, such as poor
sleep and anxiety, is critical to decreasing the burden of
depressive symptoms and/or designing better therapeutical
approaches at the individual subject level, which is essential
toward precision medicine.
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economic burden of depressive problems in the general
population5 makes it imperative to identify the associ-
ated behavioral and brain factors of depressive
phenotype.

The human life experience highlights a significant
mood impairment after night(s) of sleep disturbances,
suggesting a robust link between poor sleep and
depressive symptoms.6 In particular, meta-analyses
indicated that sleep disturbance, and particularly
insomnia, are critical factors for developing clinical
depression.7,8 Treatment of sleep problems reduces
depressive symptoms and MDD,9 suggesting that tar-
geting sleep quality is necessary for the management of
depressive problems. On the other hand, insomnia/
hypersomnia are among the diagnostic criteria of MDD,
suggesting a bidirectional association between sleep and
depression. Nevertheless, many individuals with sleep
problems never develop depressive symptoms, and
some patients with depressive phenotype report normal
sleep patterns, which makes the interrelationships be-
tween sleep disturbance and depressive profile very
complex. The potential reasons could be inter-individual
“biopsychosocial” variability in terms of genetic vulner-
ability, emotional distress, anxiety, hyperarousal state,
emotion regulation abilities, and coping strategies for
stressful life events.6,10 The open questions are 1)
whether depressive symptoms can be predicted based
on sleep quality at the individual subject level, and 2)
which underlying behavioral and brain factors
contribute to their associations.

Anxiety is the most prominent mental condition that
co-occurs with both sleep disturbance and depression.6,11

Moreover, a growing body of neuroimaging evidence
highlighted the role of structural and functional brain
alterations, mainly in the default mode and salience
networks, on the interplay between sleep and depressive
symptoms.12 Using the Human Connectome Project in
young adults (HCP-Young) dataset, Cheng and col-
leagues13 demonstrated that increased functional con-
nectivity between several brain regions mediates the
association between depressive symptom severity (DSS)
and sleep quality. The volume of the Dentate Gyrus/
CA4 Hippocampal subfield could also mediate the as-
sociation between sleep quality and depressive symp-
toms in the young healthy subjects.14 Importantly, the
abnormality of regional GMVs has been introduced as a
significant indicative feature of MDD,15 and even sub-
clinical depressive symptoms.16 Furthermore, a meta-
analysis revealed that reduced GMV is an essential
characteristic of the first episode of MDD.17
www.thelancet.com Vol 108 October, 2024
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Most of the existing behavioral and neuroimaging
studies on the link between sleep and depressive
symptoms are based on group comparisons and/or
correlations using a single sample. Hence, the replica-
bility of observed associations and their generalization
to new samples remains an open issue. Thus, the “real
world” challenge is the prediction of depressive symp-
toms in unseen data or independent samples to achieve
generalization to future cases that cannot be answered
in conventional statistical approaches based on a single
sample (i.e., cohort). Advanced machine learning (ML)
predictive models increase the hope of identifying the
role of neurobehavioral factors in predicting depressive
problems across various general population samples,
which is crucial for precision medicine and ultimately
guiding clinical practice.18 Multivariable ML approaches
can identify complex (predictive) patterns in brain-
behavior associations at the individual level in general
populations, which can be replicable and generalizable
in other independent cohorts.19 Thus, the critical ques-
tions of this study are whether and how could sleep
quality, anxiety problems, and GMV explain DSS, and
how much can ML techniques get this neurobehavioral
explanation close to the standard scales of DSS. Without
modern statistical tools like ML, we cannot answer these
questions and find complicated patterns of depressive
symptoms at individual subject level.

Aiming to address the mentioned gaps in the liter-
ature, we applied the ML approach in the HCP-Young
dataset to predict DSS based on sleep quality, anxiety
problems, and the brain’s gray matter volume (GMV).
In addition, we assessed the role of functional brain
measurements i.e., regional homogeneity (ReHo) or
fractional amplitude of low-frequency fluctuations
(fALFF) in the complementary analyses. Based on the
trained ML models in the HCP-Young dataset, out-of-
cohort validation of our ML algorithm was conducted
on two independent US population-based datasets (i.e.,
the lifespan Human Connectome Project (HCP-Aging)
and enhanced Nathan Kline Institute-Rockland sample
(eNKI)) to understand the generalizability of our models
across different cohorts. Furthermore, we applied our
ML models on a small set of longitudinal subsamples
from the eNKI dataset to predict future DSS based on
baseline sleep and anxiety data. In addition, we assessed
the mediatory role of anxiety and GMV in the associa-
tion between sleep quality and DSS in the HCP-Young
dataset.
Methods
Databases
The HCP-Young is a general population dataset ac-
quired by the Washington University-University of
Minnesota (WU-Minn HCP) consortium (https://www.
humanconnectome.org/).20 Their inclusion criteria
were to select healthy young adult (22–35 years)
www.thelancet.com Vol 108 October, 2024
participants with no current psychiatric disorder, sub-
stance abuse, neurological or cardiovascular disease, or
pharmaceutical or behavioral treatment. From all the
1206 participants of the HCP-Young dataset, there were
1113 subjects with sMRI, 1205 subjects had sleep
quality scores, 1203 subjects had anxiety scores, and
1198 subjects with DSS scores. In this dataset (our
primary sample), we included all participants who had
3 T structural MRI images and phenotypic data that we
were interested in this study, i.e., sleep quality, anxiety,
and depressive symptoms, and we removed participants
who had missing values. Collectively, using this crite-
rion, we included 1101 participants from this dataset. In
a complementary analysis, we also removed participants
with a lifetime history of diagnosed clinical depression.

The HCP-Aging (https://www.humanconnectome.
org/) dataset recruited more than 1200 healthy adults
aged 36 to above 100.21 However, we could include
participants aged 36 to 59 since the DSS questionnaire
had been designed for young and middle-aged adults
below age 60 (18–59), and there were only DSS scores of
participants between 36 and 59 years in this dataset. The
eNKI is also a large-scale community-representative
dataset of the general population with cross-sectional
and longitudinal samples (http://fcon_1000.projects.
nitrc.org/indi/enhanced/).22 From the eNKI dataset, we
included participants (18–59 years) with cross-sectional
records for assessment of the generalizability of our
ML models and subjects with longitudinal records to see
whether the baseline data can forecast future DSS,
which is critical to evaluate the long-term effects of sleep
quality and anxiety problems on DSS. We included all
participants with complete data in the age range of
18–59 from all three datasets.

The ethical approval for each cohort is available on
their online documentation. The ethics board of the
University Hospital of the Heinrich-Heine University
Düsseldorf approved the analysis of these publicly
available datasets (No. 4039). However, a study protocol
was not prepared, and the study was not pre-registered.

Behavioral measures
Sleep quality
Sleep quality assessment was based on the self-reported
Pittsburgh sleep quality index (PSQI) questionnaire,23

which has 19 questions assessing sleep quality over
the past one month. The PSQI comprises seven com-
ponents, namely subjective sleep quality, sleep latency,
sleep duration, habitual sleep efficiency, sleep distur-
bances, use of sleep medicine, and daytime dysfunction.
The total PSQI score is a sum of these components. Of
note, a higher total PSQI score (>5) reflects poor sleep
quality.

Depressive symptom severity
Depressive symptoms were measured based on the
DSM-IV-oriented depressive problems portion of the
3
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Achenbach Adult Self-Report (ASR) for ages 18–59.24

This questionnaire has 123 items in general, and a to-
tal depressive score was obtained from 14 depressive-
related items, ranging from 0 to 28 points. A higher
score reveals more severe depressive symptoms, and the
sex-/age-adjusted t-score above 69 shows clinical
depression. Notably, two sleep-related items of this
questionnaire were removed in our main ML and
mediation analyses. These questions were “I sleep more
than most other people during the day and/or night”
and “I have trouble sleeping”. We calculated the total
score of depressive problems after removing sleep-
related items and used this total score in our analyses.
Further, as a complementary analysis, we examined the
original DSS (we refer to it as DSS’), which involves
these two sleep-related items.

Anxiety problems
Anxiety score was measured using six relevant items of
DSM-IV-oriented ASR for the age range 18–59. None of
these items are related to sleep or depressive problems.
Similar to DSS, the total score of anxiety has been used
in our study, and a higher anxiety score shows more
anxiety problems and the sex-/age-adjusted t-score above
69 is the clinical range for anxiety problems.

Neuroimaging measures
In this study, we used parcel-wise whole-brain GMV to
assess the role of brain structure in the link between
sleep quality and DSS across three datasets. Further, we
assessed resting-state fMRI features (i.e., ReHo and
fALFF of the same parcels) in the HCP-Young dataset as
a confirmatory analysis (see more details in the supple-
mentary material).

Calculation of gray matter parcel volume
T1 structural MRI images were acquired by Siemens
3 T Skyra scanner and preprocessed using the WU-
Minn HCP consortium pipelines.25 We performed
voxel-based morphometry (VBM) using the Computa-
tional Anatomy Toolbox (CAT12),26 implemented in the
Statistical Parametric Mapping (SPM12, https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/). During this
process, we corrected bias-field distortions, and after
noise removal and skull striping, the images were
normalized to standard space MNI-152. Then, we
segmented the brain tissue into gray matter, white
matter, and cerebrospinal fluid. Subsequently, we
modulated the gray matter segments for the non-linear
transformations performed during normalization to
obtain the actual volumes. GMVs of the cortical,
subcortical, and cerebellar areas were assessed using
functionally-informed in-vivo atlases (400 cortical par-
cels from Schaefer atlas,27 36 subcortical parcels from
Brainnetome,28 and 37 cerebellar parcels from Buck-
ner29), resulting in 473 brain parcels, as applied
previously.30
Statistical analyses
Prediction analysis in the HCP-Young dataset
Ensemble decision tree methods were employed to
structure predictive models using MATLAB R2020a
software. Ensemble methods of these models were LS-
boost and bagging, which were applied as a hyper-
parameter to be selected automatically by the algorithm
(see below). First, we performed nested 10-fold cross-
validation considering the family structure of subjects,
in which twins and siblings were not separated in the
training, validation, and test sets to avoid potential data
leakages. We used training sets to construct models,
validation sets to select hyperparameters and feature
numbers, and unseen test sets to finally evaluate the
models’ performance (Fig. 1). Subsequently, regression
models were made to regress out age, sex, and total
GMV from features of training sets, and then, these
models were used for regressing out these covariates
from test sets. Then, features of training sets were
ranked and sorted (from the maximum importance to
the minimum importance) by the relief method to
enable the algorithm to select features based on the
maximum rank.31 After putting aside the validation sets,
models were constructed and trained in each remaining
training set ten times by ten different feature numbers
so that the number of features could also be selected
automatically based on the minimum error of prediction
of the validation sets. In this stage, hyperparameters
were optimized using the Bayesian method,32 with 100
iterations. Then, models with the minimum error of
prediction of validation sets were selected and fitted on
the entire training sets (training + validation) and finally
used to predict unseen test sets. Thus, in the end, we
had ten models (one model for each test set), and our
ML pipeline could select different algorithms LS-Boost/
bagging along with its hyperparameters and different
feature numbers for each fold. These predictive models
had 19 input features consisting of PSQI questions.
Subsequently, we added anxiety (total score) and 473
whole-brain GMV features to measure the role of anxi-
ety and GMV in DSS prediction. Of note, against
models with a combination of features of GMV, we did
not perform a feature section for models with just sleep
quality and/or anxiety features because the number of
features was not too high, and therefore, feature selec-
tion was not necessary. More details of these ML ana-
lyses, hyperparameters, and feature numbers are
provided in the supplementary materials and the codes
are available in the following link (https://github.com/
Mahnaz-Olfati/Depression-Prediction).

Complementary analyses in the HCP-Young dataset
In several follow-up analyses, we controlled for potential
issues to examine the robustness of our findings and to
cover different aspects of the interplay between behav-
ioral and brain variables as follows: 1) we assessed the
predictability of two other ML models (random forest
www.thelancet.com Vol 108 October, 2024
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Fig. 1: ML pipeline for prediction of DSS considering family structure in the primary dataset (HCP-Young). First of all, 10-fold cross-
validation was performed so that siblings were not separated in training/test sets. After putting aside the test set (of the first fold from
now), we performed a 10-fold cross-validation on the training set (of the first fold) considering family structure. In this stage, we split validation
sets and trained models on the remaining training sets. On each fold, we trained models and optimized hyper-parameters ten times with ten
different feature numbers. Hence, we had ten folds and ten models for each fold and the algorithm had to select the model with the best
performance and minimum error across all folds. Subsequently, the selected model was fitted on the entire training set and then evaluated on
the test set. This process repeated for all other nine folds (Note: all units in the figure are arbitrary, DSS: depressive symptoms severity after
excluding two sleep-related items).

Articles
and simple linear regression) in prediction of DSS
(eFig. 1); 2) we assessed correlation between sleep
quality features to test feature redundancy (eFig. 2); 3) to
test the predictive power of functional brain features in
our main predictive ML analyses, we calculated ReHO
and fALFF of 473 parcels from resting-state fMRI
images (eFig. 3); 4) we assessed the predictive power
of anxiety (alone) and the combination of GMV and
anxiety features separately (eFig. 4); 5) in order to test
multicollinearity between variables, we performed cross-
prediction of anxiety and DSS and also tested collin-
earity between all phenotypic parameters using variance
inflation factor (eFig. 5); 6) we assessed the additive role
of ethnicity and income as potential confounding vari-
ables in predicting DSS (eFig. 6); 7) we removed 103
participants with a lifetime history of diagnosed
depression to assess the potential confounding effect of
the history of clinical depression (eFig. 7); 8) we used
seven components of the PSQI, instead of 19 individual
PSQI items to assess prediction power of sleep quality
components (eFig. 8); 9) and reported the feature
importance of ML predictions (eFig. 9); 10) critically, in
order to assess the reverse direction of prediction, we
assessed the predictability of sleep quality based on
depressive symptoms (eFig. 10), 11) we examined the
predictability of sleep quality based on GMV (alone)
www.thelancet.com Vol 108 October, 2024
(eFig. 11); 12) we also used original DSS questionnaire
(DSS’) including two sleep-related items (as mentioned
earlier, we removed those items in our main analyses)
(eFig. 12); and 13) compared the results with and
without sleep-related items of the DSS questionnaire
(eFig. 13); and 14) we tested the impact of anxiety and
GMV in the link between sleep quality and DSS by
mediation analyses (eFig. 14). Details of these comple-
mentary analyses are described in the supplementary
material.

Out-of-cohort validation in two independent
datasets
We used two independent large-scale datasets to test
whether the results of ML models using the HCP-Young
dataset are generalizable to other independent datasets
with a broader age range of participants (i.e., the eNKI
and HCP-Aging). Therefore, we used the regression
model of the primary dataset (HCP–Y) to regress out
age, sex, and total GMV in these datasets as well. After
training ML models on the HCP-Young dataset, we
achieved ten models for each prediction, froze them,
and used them to predict individual DSS in the other
datasets and averaged the results of all ten models for
each participant. Of note, we did not tune our models
nor perform cross-validation for these independent
5
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datasets to keep the original model parameters steady.
Put differently, we used these independent datasets
solely for out-of-cohort prediction. All the phenotypic
data (sleep quality, anxiety, and DSS) were obtained
from the same questionnaires across the three datasets.
We also used a subsample of the eNKI dataset (those
with follow-up data) to predict future DSS based on
baseline sleep quality and anxiety problems. We used
the sleep quality and anxiety of their first records as
features and the DSS of their second records as the
target. Then, we calculated the correlation between the
predicted DSS and the DSS of the second record.
Finally, as the complementary analyses, we separated
participants who had either received or not received
neurofeedback therapy intervention between their first
and second visits and compared their predictive per-
formance to identify the potential impact of a ther-
apeutical intervention on longitudinal predictions
(eFig. 15).

Mediation analysis
The structural equation modeling (SEM) using Amos
24.0 software33 was applied to statistically model the
underlying relationship between total sleep quality and
DSS scores. In this analysis, a latent variable from brain
GMV parcels was calculated and used in the models.
Mediation analysis investigates how much of the
Characteristic HCP-Y

Age, mean (SD), year 28.

Female 59

Total GMV, mean (SD) mm3 677,1

Twin status

Monozygotic 2

Dizygotic 1

Not twin 64

Pittsburg sleep quality index, mean (SD)

Total score 4.

Subjective sleep quality 0.8

Sleep latency 0.

Habitual sleep efficiency 0.

Sleep duration 0.

Sleep disturbance 1.

Use of sleep medications 0.

Daytime dysfunction 0.

Adult self-report DSM-IV depressive problem scale, mean (SD)

Raw score 4.

Sex-adjusted, age-adjusted t-score 53.8

Adult self-report DSM-IV anxiety problem scale, mean (SD)

Raw score 3.

Major depressive episode

No 96

Yes 1

Table 1: The demographic characteristics of 1101 participants from the HCP
covariance between two variables can be explained by
the mediator variable(s). Age, sex, and total GMV were
also controlled in the mediation analyses. More details
of mediation analysis are provided in the supplement.

Role of the funding source
The funders had no role in the design and conduct of
the study; collection, management, analysis, and inter-
pretation of the data; preparation, review, or approval of
the manuscript; and the decision to submit the manu-
script for publication.
Results
Demographics
The primary dataset of this investigation (HCP-Young)
included 1101 participants (22–35 years, mean
age = 28.79 ± 3.69, 54.3% female), 103 of whom (9%)
had a history of DSM-IV-based depression episodes
during their lifetime. The detailed demographic char-
acteristics of participants are provided in Table 1. We
had two other different datasets for out-of-cohort vali-
dation analysis i.e., the HCP-Aging and eNKI. We found
378 participants (36–59 years, mean age = 47.3 ± 7,
57.9% female) from the HCP-Aging dataset and 334
participants that had cross-sectional data (18–59 years,
mean age = 37 ± 13.8, 62% female) from the eNKI
oung No (%) HCP-Aging No (%) eNKI No (%)

79 (3.69) 47.29 (6.96) 37.01 (13.80)

8 (54.3) 219 (57.94) 210 (62.87)

42 (66,932) 612,526 (55,469) 602,128 (68,762)

85 (25.89) – –

70 (15.44) – –

6 (58.67) – –

79 (2.76) 4.62 (2.85) 5.04 (3.06)

9 (0.64) 0.83 (0.69) 1.03 (0.75)

97 (0.82) 0.81 (0.85) 0.95 (0.90)

57 (0.82) 0.33 (0.59) 0.63 (0.92)

45 (0.79) 1.21 (1.44) 0.64 (0.88)

09 (0.48) 1.01 (0.50) 1.11 (0.52)

23 (0.67) 0.36 (0.84) 0.24 (0.67)

59 (0.64) 0.56 (0.63) 0.57 (0.70)

14 (3.44) 3.37 (3.42) 2.85 (2.91)

9 (5.69) – –

87 (2.67) 3.25 (2.31) 3.64 (2.59)

6 (87.74) – –

03 (9.36) – –

-Young dataset, 378 from HCP-Aging, and 334 from eNKI.

www.thelancet.com Vol 108 October, 2024
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dataset. From the eNKI dataset, we found 66 partici-
pants (20–56 years, mean age = 42 ± 9.7, 77.3% female)
who had longitudinal records, and there was a 1–5 years
gap between the two records across those individuals.
Among them, 26 subjects (20–45 years, mean
age = 34 ± 8.2, 73.1% female) received neurofeedback
therapy between their first and second records, and
there was an average of 653 days gap between their re-
cords, while the other 40 participants (36–56 years,
mean age = 47 ± 6.1, 80% female), who had not received
neurofeedback therapy, had an average of 847 days gap
between their first and second visits.

Sleep and anxiety predicted DSS in the HCP-Young
dataset
The details of ML pipeline for training and evaluation of
models in the HCP-Young dataset are presented in
Fig. 1. ML models based on sleep quality could predict
DSS (r = 0.43, rMSE = 2.73, R2 = 0.18) (Fig. 2a). Adding
anxiety score to sleep quality features improved the
prediction drastically (r = 0.67, R2 = 0.45, rMSE = 2.25)
(Fig. 2b). Whereas adding GMV features to the sleep
quality (r = 0.41, R2 = 0.16, rMSE = 2.76) and combi-
nation of sleep quality and anxiety (r = 0.66, R2 = 0.44,
rMSE = 2.26) did not improve their prediction (Fig. 2c
and d). For the models with only sleep quality features
(i.e., Fig. 2a), we used all 19 scores, since they had no
feature redundancy (eFig. 2). Although, the most
correlated features of sleep quality scores were the
negative correlation between the time of actual sleep and
the total sleep quality score (r = −0.58) and the positive
correlation between self-estimated sleep quality and the
total sleep quality score (r = 0.68) (eFig. 2). However,
based on the designed method, the ML algorithm
automatically selected different feature numbers (for
models with GMV features i.e., Fig. 2c & d) in each fold,
the selected ensemble learning method as a hyper-
parameter for all folds of all models was LS-boost. In
addition, the results of random forest and simple linear
regression models (eFig. 1) were similar to Fig. 2b.
However, we gained a more robust result from the
ensemble regression tree.
Fig. 2: Prediction of DSS in the HCP-Young dataset. a) prediction based o
and anxiety problems; c) prediction based on a combination of sleep qua
anxiety problems, and GMV (GMV: gray matter volume, DSS: depressive
relation coefficient between real and predicted DSS, rMSE: root mean sq
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Our complementary analyses demonstrated that the
applied brain morphological and functional features
could not significantly predict DSS in general pop-
ulations (eFig. 3). Removing participants with a history
of depression also showed robust predictive results e.g.,
a combination of sleep quality and anxiety predicted
DSS (r = 0.61, R2 = 0.37, rMSE = 2.18) (eFig. 7).
Moreover, repeating the analyses based on seven com-
ponents of PSQI (instead of 19 questions of the PSQI)
also revealed robust results in predicting DSS (r = 0.64,
R2 = 0.41, rMSE = 2.32, based on a combination of sleep
quality and anxiety) (eFig. 8). The feature importance in
the ML model demonstrated that sleep-related daytime
dysfunction, sleep disturbance, and subjective sleep
quality were more important than other sleep compo-
nents in predicting DSS (eFig. 9). Importantly, the
reverse direction of prediction (prediction of sleep
quality based on DSS) revealed a weaker result (r = 0.33,
R2 = 0.11, rMSE = 2.61) (eFig. 10), indicating the sleep
quality might be a better predictor of DSS than the other
way around. Further, using the original DSS’ scores (not
excluding two sleep-related questions from the depres-
sive questionnaire) provides better prediction results, as
expected (e.g., based on a combination of sleep quality
and anxiety r = 0.71, R2 = 0.50, rMSE = 2.42) (eFig. 12).
The mediation analyses demonstrated that those two
sleep-related items could explain about 62% of the
covariance between sleep quality and DSS’ (eFig. 13).
Moreover, we observed that 52.6% of the covariance
between sleep quality and DSS can be explained by
anxiety, while GMV could not significantly mediate their
association (eFig. 14). For more details, see the supple-
mentary file.

Sleep and anxiety predicted DSS in the independent
datasets
Interestingly, we could predict DSS in both HCP-Aging
and eNKI cohorts using models that were trained by the
HCP-Young dataset (Fig. 3a & b). In the HCP-Aging
dataset, sleep quality features could predict DSS
robustly (r = 0.57, R2 = 0.27, rMSE = 2.64). Further,
adding anxiety score to sleep quality features improved
n sleep quality; b) prediction based on a combination of sleep quality
lity and GMV d) prediction based on a combination of sleep quality,
symptoms severity after excluding two sleep-related items, r: cor-

uared error, R2: determination coefficient).
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Fig. 3: Out-of-cohort validation of ML results in two independent datasets. a) prediction of DSS in HCP-Aging dataset based on sleep
quality, a combination of sleep quality and anxiety problems, a combination of sleep quality and GMV, a combination of sleep quality and
anxiety, and GMV; b) prediction of DSS in eNKI dataset based on sleep quality, a combination of sleep quality and anxiety, a combination of
sleep quality and GMV, a combination of sleep quality and anxiety, and GMV (GMV: gray matter volume, DSS: depressive symptoms severity
after excluding two sleep-related items, r: correlation coefficient between real and predicted DSS, rMSE: root mean squared error, R2: deter-
mination coefficient).

Articles

8

the prediction in this dataset (r = 0.72, R2 = 0.50,
rMSE = 2.19). Adding GMV features to the sleep quality
(r = 0.56, R2 = 0.27, rMSE = 2.65) and a combination of
sleep quality and anxiety score (r = 0.72, R2 = 0.49,
rMSE = 2.21) provided similar results to the primary
dataset.

Similarly, in the eNKI dataset, sleep quality predicted
DSS (r = 0.50, R2 = 0.16, rMSE = 2.70), and a combi-
nation of sleep quality and anxiety scores also predicted
DSS (r = 0.66, R2 = 0.38, rMSE = 2.34). Adding GMV
features to the sleep quality (r = 0.51, R2 = 0.18,
rMSE = 2.68), and a combination of sleep quality, anx-
iety, and GMV (r = 0.68, R2 = 0.40, rMSE = 2.29)
revealed the same result as the HCP-Young dataset.

Finally, applying ML models on the longitudinal sub-
sample of the eNKI dataset resulted in the prediction of
future depressive symptoms (Fig. 4) based on baseline
sleep quality (r = 0.61, R2 = 0.33, rMSE = 3.01) and com-
bination of sleep quality and anxiety (r = 0.66, R2 = 0.44,
rMSE = 2.73). The predictability of DSS in subjects who
had not received neurofeedback therapy between their first
and second visits was strong (eFig. 15A). Interestingly, ML
models could not predict future DSS when participants
had received neurofeedback therapy between their first
and second visits (eFig. 15B), highlighting the role of
intervention on the link between sleep and DSS.

Discussion
Our findings demonstrated that sleep quality could
predict DSS in three independent datasets, and adding
anxiety to the sleep quality enhanced such prediction
(Fig. 2). The structural and functional brain measure-
ments could not significantly predict DSS or mediate
the link between sleep quality and DSS in this study.
The ML models provided similar results in two other
independent datasets using cross-sectional samples
(Fig. 3), suggesting the generalizability of our ML
models. Additionally, ML models robustly predicted
future individual DSS based on baseline sleep quality
and anxiety in a longitudinal subsample (Fig. 4). Our
complementary analyses considered the impact of a
lifetime history of depression, confounding effects of
two sleep-related questions on the depressive assess-
ment, the potential multicollinearity between variables,
and predictive performance of the reverse direction
suggested the robustness of our main findings. In
addition, anxiety could mediate the association between
sleep quality and DSS (eFig. 14).

Multivariate ML models can extend conventional
statistical approaches and overcome the limitations of
existing univariate studies, which resulted in small ef-
fect sizes and weak replicability.34 To evaluate the
generalizability of our results, which are less evident in
previous neuropsychiatric studies, we tested the out-of-
sample validation in the main cohort and out-of-cohort
generalization in two independent cohorts. The recom-
mended gold standard in generalizing ML models is to
train a model based on one dataset and then project that
trained model on independent populations to gain
similar results. Of note, replication means training
www.thelancet.com Vol 108 October, 2024
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Fig. 4: Prediction of future DSS based on baseline sleep quality and anxiety. There were 66 participants in the longitudinal sub-sample of
the eNKI dataset (DSS: depressive symptoms severity after excluding two sleep-related items, r: correlation coefficient between real and
predicted DSS, rMSE: root mean squared error, R2: determination coefficient).
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models again in new independent datasets and
achieving similar results.19 A recent study provided a
replicable ML model, but their model failed to be
generalizable in a new independent dataset.19 However,
our ML models showed successful gold-standard
generalization in two external datasets across both
cross-sectional and longitudinal levels.

Our findings are consistent with a body of literature
showing that sleep disturbance and depressive problems
are associated with each other7,8,35 In large-scale popu-
lation cohorts, it has also been shown that sleep quality
is associated with depressive symptoms.13,36 A recent
comprehensive study assessing the role of various life-
style factors on depression demonstrated that healthy
sleep duration was not only the most crucial lifestyle
factor in reducing the risk of depressive symptoms in
the general population but also decreasing the risk of
first depressive episode and treatment-resistant depres-
sion.37 Longitudinal studies showed that people with
sleep initiation problems might experience depression
over the next 3–6 years of their life.38,39 Interestingly,
toddlers’ sleep problems at the age of 18 months pre-
dicted depressive symptoms at the age of 8 years old.40

Several large-scale longitudinal studies41–43 demon-
strated that short sleep duration and sleep disturbance
should be considered risk factors for developing future
depressive symptoms. Although these studies have not
used ML models to predict individual DSS within the
same sample or other samples, they suggest that poor
sleep could be a critical predictor for DSS. A ML study44

demonstrated that sleep disorder is one of the most
important features to predict depression, particularly in
individuals with hypertension. They predicted a binary
definition (existence/nonexistence) of depression
among adults with hypertension, while our study pre-
dicted a continuous (0–28) range of severity of
www.thelancet.com Vol 108 October, 2024
depressive symptoms in three databases. Another large-
scale ML-based study found that sleep duration is one of
the top five predictors of DSS among home-based older
adults.45 Lyall and colleagues also applied ML in UK
Biobank (n = 64,353) and observed that difficulty getting
up, insomnia symptoms, snoring, actigraphy-measured
daytime inactivity, and lower morning activity predict
depression-related outcomes.46 We found that the pre-
diction of DSS based on sleep quality was stronger than
the reverse direction. Recently, it has been found that
although sleep disturbances have a complex bidirec-
tional relationship with various mental disorders, the
most robust observed pathway was the effect of poor
sleep in the occurrence of psychiatric conditions.47 Our
findings support this hypothesis, although we cannot
claim any causality between sleep and DSS in the gen-
eral population samples, as many other factors might
influence their association and the design of our study
precludes the assessment of the causal pathways in the
general population. Thus, the longitudinal role of poor
sleep (using both subjective and objective sleep assess-
ments) in developing clinical MDD has to be examined
in the future.

In the present study, anxiety problems improved the
prediction of DSS based on sleep quality features
(Fig. 2). As described in eFig. 4, although anxiety alone
could predict DSS with r = 0.62 (the correlation coeffi-
cient between real DSS and predicted DSS based on
anxiety), the correlation coefficient between anxiety itself
and DSS scores was already robust (r = 0.63) (eFig. 13),
which could suggest that the ML model based on anxiety
features (alone) was not superior. However, while the
baseline correlation between sleep quality and DSS was
r = 0.29 (eFig. 13), ML models could predict DSS based
on sleep quality with r = 0.43 (Fig. 2) which can show
the better performance of the ML model based on sleep
9
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quality. Thus, it seems that sleep quality is the main
predictor of DSS, and anxiety strengths it’s prediction.
Anxiety scores partially mediated (indirect effect = 69%
of the total effect) the link between sleep quality and
DSS. The strong interplay between sleep disturbances,
anxiety, and depression has been well-documented
earlier,11 and our study supports such findings. For
example, short and long sleep duration are predictors of
depression and anxiety in a large cohort.48 The additive
role of anxiety to sleep in DSS prediction is further
supported by the notion that sleep loss increases pre-
emptive responding in the amygdala and anterior insula
during affective anticipation.49

Previous studies have shown that sleep loss is linked
to abnormal activity in the medial prefrontal cortex,
amygdala, insula, and anterior cingulate cortex, which
were associated with higher levels of next-day anxiety.50

One study using the HCP-Young sample indicated
that functional connectivity between the lateral orbito-
frontal cortex, dorsolateral prefrontal cortex, anterior
and posterior cingulate cortices, insula, para-
hippocampal gyrus, hippocampus, amygdala, temporal
cortex, and precuneus mediated the effect of sleep
quality on DSS.13 Structural brain alterations in the
postcentral gyrus and superior temporal gyrus mediate
the link between sleep disturbance and depressive
symptoms in a small group of shift-working nurses.51

Other studies observed that the GMV of the right
insula mediates the relationship between sleep quality
and anxiety/depressive symptoms among young stu-
dents.52 However, these studies have mainly assessed
the simple correlation between sleep quality and
depressive symptoms and the brain structural
and functional features and have not focused on inter-
individual prediction. In the present study, GMV did
not significantly predict DSS in any dataset, could not
improve prediction performance when combined with
sleep and anxiety features, and could not significantly
mediate the link between sleep and DSS. One explana-
tion could be the link between sleep disturbance and
depressive symptoms anchored in the functional level
rather than GMV.12 However, our complementary ana-
lyses showed that local features of the brain function
(i.e., ReHo and fALFF) also could not predict DSS.
Although a previous study found that functional con-
nectivity across the brain is a better predictor for
behavioral measures than structural and diffusion fea-
tures, they did not assess the predictability of depressive
problems.53 In our study, the brain measurements were
associated with sleep quality (eFig. 13) but could not
predict or mediate DSS and were not correlated with
DSS, which according to the amount of sleep quality
(mean = 4.79, SD = 2.76 the average of total scores is
close to the threshold of poor sleep quality “5”) and DSS
(mean t-score = 53.89, SD t-score = 5.69 the average of
t-scores is far less than the clinical threshold “69”) in the
HCP-Young dataset (Table 1), in average the level of
DSS scores in this dataset might not be so prominent to
be appearing in our brain structural and functional
measurements. Another key point of this study is that
we excluded two sleep-related items from the DSS
questionnaire. As it is shown in eFig. 13, when we
included sleep-related items, the association between
sleep quality and DSS score increased. We found some
brain areas correlated with DSS scores (similar to pre-
vious studies), which could mainly be due to those
sleep-related items of depressive problems question-
naire. This might explain the reason why some earlier
studies that have used depressive measurements,
including sleep-related items, have found brain areas
correlated with depressive symptoms. While GMV,
ReHo, and fALFF are well-established measures of brain
structural and functional properties,54 in this study, we
did not find evidence that these features could predict
DSS or sleep quality or improve their association. The
brain-related results of our study were similar to those
of existing large-scale neuroimaging meta-analysis
studies, which did not find a robust regional abnor-
mality in clinical insomnia disorder, MDD, and late-life
depression.55–57 Although our study focus was to assess
depressive symptoms in healthy people rather than
MDD, our results were similar to the ML classification
models, which could not separate healthy individuals
from subjects with insomnia based on brain volumes58

or to differentiate healthy individuals from patients
with depression based on brain structural and func-
tional values,54 indicating that the neurobiological un-
derpinning mechanism of sleep disorders and
depression is very complex and needs further elabora-
tion. For instance, it has been shown that genomics,
epigenetic mechanisms, and neurotransmitters have a
determinant role in the development of depression,59

and there are also many other factors affecting depres-
sion, which calls for more research using modern
computational methods in the future.

The findings of this study have to be seen in light of
some limitations. The first is the sample size. We had
access to a limited number of general population data-
bases with the same neurobehavioral measures in this
field, which global attitudes towards open data and
international data sharing consortiums such as
ENIGMA-Sleep and ENIGMA-MDD can deal with this
problem.60,61 The second limitation concerns the data
availability in the datasets. There might be a consider-
able number of confounders that affect depressive
symptoms or their link with sleep quality, which are not
assessed in our study due to the lack of the data. In
addition, in the case of neuroimaging results, there
might be methodological limitations from the data
acquisition to data analyses, which could largely affect
the results of this paper. The brain measures of this
study (GMV, ReHo, and fALFF) might be a coarse-
grained assessment of brain structural and functional
properties. Hence, the challenge of undecidability also
www.thelancet.com Vol 108 October, 2024
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remains here, which concerns whether the lack of pre-
dictability of DSS based on our brain measures is due to
an actual poor relationship or because our brain mea-
sures are not comprehensive enough. Further, large-
scale longitudinal datasets are needed to evaluate the
long-term predictability of DSS and comprehensively
assess the impact of interventions in this field.

In conclusion, we found that sleep quality could
predict DSS across cross-sectional and longitudinal
samples. Anxiety problems, rather than brain features,
improved the performance of the predictive model and
mediated the link between sleep and DSS. Although the
sample size of our longitudinal analyses was small, our
ML models have consistently shown the generalizability
of their outcomes in different independent databases.
Future large-scale cross-sectional and longitudinal
datasets are needed to assess the role of sleep and anx-
iety on the development of depressive symptoms and
clinical MDD in the general population. We hope that
our findings incentivize clinicians to consider the
importance of screening and treating subjects with sleep
disturbance and anxiety problems to reduce the burden
of depressive symptoms in the general population.
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