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C A N C E R

Prediction of immunotherapy response using 
mutations to cancer protein assemblies
JungHo Kong1, Xiaoyu Zhao1, Akshat Singhal2, Sungjoon Park1, Robin Bachelder1, Jeanne Shen3, 
Haiyu Zhang3, Jimin Moon4, Changho Ahn4, Chan- Young Ock4, Hannah Carter1*, Trey Ideker1,2,5*

While immune checkpoint inhibitors have revolutionized cancer therapy, many patients exhibit poor outcomes. 
Here, we show immunotherapy responses in bladder and non–small cell lung cancers are effectively predicted by 
factoring tumor mutation burden (TMB) into burdens on specific protein assemblies. This approach identifies 
13 protein assemblies for which the assembly- level mutation burden (AMB) predicts treatment outcomes, which 
can be combined to powerfully separate responders from nonresponders in multiple cohorts (e.g., 76% versus 
37% bladder cancer 1- year survival). These results are corroborated by (i) engineered disruptions in the predictive 
assemblies, which modulate immunotherapy response in mice, and (ii) histochemistry showing that predicted 
responders have elevated inflammation. The 13 assemblies have diverse roles in DNA damage checkpoints, oxida-
tive stress, or Janus kinase/signal transducers and activators of transcription signaling and include unexpected 
genes (e.g., PIK3CG and FOXP1) for which mutation affects treatment response. This study provides a roadmap for 
using tumor cell biology to factor mutational effects on immune response.

INTRODUCTION
Immune checkpoint inhibitors (ICI) have come to the forefront as a 
promising therapy for patients with cancer (1), as they have been 
associated with longer- lasting clinical benefits, prolonged survival, 
and fewer side effects than standard chemotherapies. However, only 
a fraction of patients (e.g., 15 to 30% in solid tumors) attain these 
milestones, and ICI treatment is sometimes accompanied by toxici-
ty, autoimmune reactions, or life- threatening adverse events such as 
pneumonitis (2–4). Accordingly, active research programs are un-
derway to identify biomarkers predictive of ICI response (5–10), 
with the goals of elucidating resistance mechanisms and developing 
therapies that target resistance pathways (11, 12).

Tumor mutation burden (TMB), typically quantified as the num-
ber of nonsynonymous somatic mutations per megabase in the tu-
mor genome, was an early biomarker associated with ICI response 
(13). Across tumor types, a general relationship was reported be-
tween high TMB and objective response rates to immunotherapy, 
with melanoma and colorectal cancers with microsatellite instability 
having some of the best outcomes (14). This and other reports (15) 
led to accelerated approval by the US Food and Drug Administra-
tion to treat high TMB tumors with pembrolizumab, an ICI therapy 
that blocks the programmed cell death protein 1 (PD- 1) receptor on 
the surface of T cells (1).

Since that time, the use of TMB as a biomarker has become in-
creasingly controversial. One study found that TMB levels failed 
to show predictive accuracy in glioma, prostate, and breast cancers 
(16), while another reported that, contrary to expectations, low TMB 
is paradoxically associated with longer survival in ICI- treated glio-
blastoma (17). These and other (17, 18) incongruous results suggest 

the need to better understand the complex relationships among ICI, 
TMB, and tumor response.

One factor that may limit the utility of TMB is that it provides a 
relatively coarse measure of the potential of genetic disruptions to 
trigger an immune response. High TMB is thought to serve as a 
proxy for a higher burden of neoantigens, though several studies 
have suggested that the quality of neoantigens is more important 
than quantity (19–21). In this respect, tumors carrying somatic mu-
tations in certain oncogenic pathways, or mutations interfering 
with effective antigen presentation, have been associated with par-
ticularly poor response rates (22, 23). Examples include mutations 
affecting CTNNB1, APC, AXIN1, and TCF1 in the β- catenin signal-
ing pathway (24), or mutations within the mammalian target of ra-
pamycin (mTOR) or epidermal growth factor receptor pathways 
(25–28), all of which have been associated with resistance to ICI 
treatment. Moreover, three separate studies (18, 29, 30) have report-
ed that patients with non–small cell lung cancer (NSCLC) with mu-
tations in major histocompatibility class I (MHC- I) genes have 
impaired antigen presentation leading to poor ICI responses, even 
in the context of high TMB. ICI response has also been linked to 
genetic alterations in Janus kinase (JAK) proteins (31), which are 
known for their roles in regulating immune cytokines, as well as in 
other signaling pathways related to leukocyte and T cell prolifera-
tion (32).

Such studies suggest that the influence of TMB on response to 
immunotherapy depends on at least two distinct forces. The first 
force relates to global immunogenicity, wherein tumors with a high 
number of somatic mutations tend to produce abundant neoanti-
gens. The second force relates to the local effects of mutations on 
specific cancer functions. Certain mutations, such as inactivating 
mutations to the MHC- I pathway, can promote tumor viability and 
thus counteract the global effect of immunogenicity.

Here, we report that factoring mutational burden by these two 
separate aspects can enable improved prediction of ICI response 
(Fig. 1A). Our approach is to assess the specific mutational burdens 
on many multi- genic subcellular components, informed by a map of 
known and candidate tumor protein assemblies documented to be 
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under selective pressure in adult cancers (33). By assessing the TMB 
in combination with this profile of assembly- level mutation burdens 
(AMBs), we identify a constellation of informative ICI response bio-
markers that can be corroborated by independent genetic perturba-
tions in mice, evidence of immune infiltration in histology samples, 
and validation in patients (Fig. 1B).

RESULTS
Formulation of immunotherapy data
We focused on ICI response prediction in NSCLC and bladder can-
cers (BLCA), as both tumor types have been approved for ICI treat-
ment, and response data have been released as a single integrated 
cohort (NSCLC, n = 344; BLCA, n = 211) (Samstein cohort) (34). 
In this dataset, tumors were subjected to mutational profiling for 
468 cancer- related genes comprising the MSK- IMPACT gene panel 
(Memorial Sloan Kettering Integrated Mutation Profiling of Action-
able Cancer Targets), with immunotherapy outcomes measured as 
overall patient survival. We found no statistical differences in mutation 
rates between patients with NSCLC and BLCA (P = 0.19; fig. S1A). 
Mutational analysis indicated that known genetic biomarkers of ICI 
response (22) were mutated infrequently in this cohort (e.g., 3% of 
tumors with JAK3 mutation; Fig. 2A), with the exceptions of TP53 
(57.1%) and KRAS (23.6%). For validation, we obtained separate 
collections of ICI- treated NSCLC tumors from Hellmann et al. (35) 
(n = 68) and BLCA tumors from the IMvigor210 trial (11) (n = 78). 
In the independent validation cohorts, all tumors had been subjected 
to genome- wide mutational profiling, with immunotherapy out-
comes reported as well as progression- free survival (PFS; Hellmann 
cohort) or overall survival (OS; IMvigor210).

Computation of local mutation burdens on 
protein assemblies
We developed a methodology to predict ICI response using local 
mutational burdens observed in specific molecular complexes in 
tumor cells. For this purpose, we downloaded the collection of 
394 cancer protein assemblies provided by the “Nested Systems in 
Tumors” (NeST) cell map (33). These assemblies had been generated 
by comprehensive measurement of physical protein- protein interac-
tions centered on 61 proteins that are frequently altered in solid 
tumor types, followed by integration of these data with numerous 
previous proteomics studies to create a large cancer protein interac-
tion network. Structural analysis of this network revealed a hierarchy 
of protein assemblies in which small, specific complexes of cancer 
proteins nest within larger communities corresponding to broad 
processes and organelles. We observed that 85 of these assemblies 
were commonly mutated, defined as assemblies for which >20% of 
tumors in the Samstein cohort had mutations in one or more pro-
teins (Fig. 2B). Each Samstein tumor was thus assigned an AMB for 
each of the 394 assemblies, with AMB defined simply as the total 
count of assembly proteins with somatic coding mutations (see Ma-
terials and Methods; Fig. 2C). The profile of AMB values for all as-
semblies was used to train a predictive random forest model of patient 
response after ICI treatment, yielding a predicted “AMB risk” score, 
with higher risk indicating lower tendency to respond to ICI and 
predicted as nonresponders (see Materials and Methods).

Assembly- level mutation burden predicts 
immunotherapy response
We first evaluated the performance of the AMB risk score in pre-
dicting the OS by conducting leave- one- out cross- validation in the 

Non–small cell
lung cancer
(n = 344)

Bladder cancer
(n = 211)

Assemblies predictive of ICI response

mTOR signaling
pathway

Ubiquitin regulation

Immunomodulatory
signaling

DNA repair

Chromatin remodeling

TMB

Predict drug response in ICI cohorts

Overall or progression-
free survival 

Two independent
validation cohorts

Months

Su
rv

iva
l

Identify assembly-level biomarkers

Patient

AMB-high AMB-low

In vivo mice
CRISPR screen

Compare with immunogenic features

Expression-based
immunogenic features

mRNA

Whole-slide image-based 
immune phenotypes

A

B

Fig. 1. Identifying mutated protein assemblies as biomarkers of ICI response. (A) immunotherapy- treated patients are analyzed by computing somatic mutation 
burdens across a hierarchy of known and putative physical assemblies of proteins. counts (n) refer to the number of patients in the Samstein discovery cohort (see text). 
this analysis reveals a constellation of protein assemblies for which the assembly- level mutation burden (AMB) is predictive of treatment outcomes. (B) the predictive 
power of the AMB profile is assessed using survival data in two independent validation cohorts. in addition, the AMB- derived risk score is compared to immunogenic 
phenotypes from tumor histopathology imaging and mRnA expression levels of tumor biopsies (middle), then further validated by cRiSPR screens in mice (right).
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Samstein cohort and selecting the top 20% with the lowest predicted 
AMB risk as responders and others as nonresponders (see Materi-
als and Methods). This analysis revealed a significant difference in 
survival between predicted responders and nonresponders (P = 
3.39 × 10−5; Fig. 3A), associated with a hazard ratio of 0.51 (95% con-
fidence interval: 0.37 to 0.71). Qualitatively, similar results were ob-
served using an alternative performance metric and cross- validation 
method [concordance index (CI) with Monte Carlo cross- validation; 
Fig. 3B]. We then compared the AMB risk score to current biomark-
er models that use TMB alone (Cox proportional hazard model) or 
individual gene- level mutation burdens (GMB; random forest). The 
AMB risk showed improved performance over TMB (P = 2.04 × 10−7; 
Fig. 3B). To provide a negative control for these findings, we repeat-
ed this analysis by randomly permuting the assignment of mutated 
genes to protein assemblies. This random permutation led to a sub-
stantial deterioration in predictive performance, indicating that the 
specific factorization of genes into commonly mutated assemblies 
was important for accurate prediction (Fig. 3C).

Validation in independent cohorts
To assess the generalizability of AMB risk predictions, we used the 
previously trained model to predict the response status of patients 
in the independent NSCLC Hellmann cohort (35) described above, 
without any additional optimization or parameter tuning (see Mate-
rials and Methods). From principal components analysis, we found 
that AMB profiles were well correlated between the Samstein and 
Hellmann or IMvigor210 cohorts, without evidence of batch effects 

(fig. S1, B and C). We examined if AMB risk could be used to predict 
this quantitative PFS outcome in the Hellmann cohort. We found 
that predicted responders exhibited substantially longer PFS than 
predicted nonresponders (high AMB risk, P = 3.74 × 10−4; Fig. 3D); 
this predictive performance was on par or better than TMB (Fig. 3E) 
or GMB (Fig. 3F). We also investigated predictive performance in a 
second independent cancer cohort (patients with IMvigor210 BLCA, 
described above). Here too, we found that predicted IMvigor210 re-
sponders showed longer OS compared to predicted nonresponders 
(P = 2.48 × 10−2; Fig. 3G), outperforming TMB (Fig. 3H) or GMB 
(Fig. 3I). Collectively, these results suggested that integrating the 
mutational burden within specific protein assemblies offers a prom-
ising strategy for understanding the response to ICIs.

Unraveling protein assemblies predictive of 
treatment response
We next moved from predictive performance to molecular interpre-
tation, seeking to identify and study the specific protein assemblies 
in which genetic alterations were most important for model predic-
tions. For this purpose, among the 394 assemblies, we identified 
13 core assemblies that were assigned high importance during model 
training (see Materials and Methods; z- score ≥ 1.6; fig. S2A). These 
important assemblies spanned a wide range of sizes, with functions 
related to checkpoint- regulated DNA repair, regulation of expres-
sion via SWI/SNF chromatin remodeling, ubiquitin regulation, 
the mTOR pathway, and an extended JAK/signal transducers and 
activators of transcription (STAT) signaling complex (Fig. 4A and 
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fig. S2, A and B). Alterations in six of these assemblies, including 
checkpoint- regulated DNA repair (NeST:50) and the extended JAK/
STAT complex (NeST:8), were associated with sensitivity to ICI 
treatment (see Materials and Methods; Fig. 4A). The remaining sev-
en important assemblies, including ubiquitin regulation of oxidative 
stress (NeST:230), were associated with resistance (Fig. 4A). Some 
of the assemblies were encoded by genes with previously identi-
fied roles in immunotherapy response (fig. S2C) (22). In particu-
lar, checkpoint- regulated DNA repair had the highest enrichment 

for known genomic determinants of ICI response (hypergeometric 
test, P < 10−2). This assembly encompassed components of mis-
match repair (MSH2 and MSH6) and cell- cycle control (CDK4 and 
CDK6), which have been previously linked to the regulation of pro-
grammed death ligand 1 (PD- L1) (22, 36). The remaining assem-
blies had moderate to low enrichment for previously documented 
markers of ICI response (fig. S2C).

Next, we tested if the importance of assemblies to ICI response, 
as determined above, could be corroborated by gene knockout (KO) 
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experiments (Fig. 4, B and C). For this purpose, we analyzed data 
from a recent genome- wide CRISPR screen (37), in which gene KOs 
had been ranked by their absolute effects on lung tumor growth in 
ICI- treated versus control groups of mice (i.e., considering effects in 
either direction, with highly ranked genes either increasing or decreas-
ing tumor growth; Fig. 4B). We observed that 8 of the 13 important 
assemblies were enriched for high- effect gene KOs (false discovery 
rate of 0.25; see Materials and Methods; Fig. 4C), showing a signifi-
cant enrichment (Fisher’s exact test P = 0.0072; data S4). Important 
assemblies with high KO effect included mTOR/AKT/S6 kinase 
signaling (NeST:314), a cluster associated with nuclear receptors 
(NeST:60) and the extended JAK/STAT complex (NeST:8) (Fig. 4C). 
Notable examples in the NeST:60 nuclear receptor cluster include 
genes with known roles in tumor immunosurveillance, such as 
Nuclear Receptor Co- Repressor 1 (Ncor1) (38) and CREB- binding 
protein (Crebbp) (12), as well as genes with unexpected roles in cancer 
immune response such as Ankyrin Repeat Domain- Like 1 (Ankrdl1), 
Retinoic Acid Receptor Alpha (Rara), and Peroxisome Proliferator- 
Activated Receptor Gamma (Pparg), all of which showed strong KO 
effects on tumor growth (Fig. 4D).

Protein assemblies predict immune infiltration
One of the hallmarks of a successful ICI response is tumor immuno-
genicity, the degree to which a tumor is primed to provoke a reac-
tion from the patient’s immune system (39). We thus investigated 
whether patients with low AMB risk showed characteristic immune 
phenotypes, such as the presence of tumor- infiltrating lymphocytes 
(TILs). For this purpose, we analyzed 804 patients with NSCLC for 
which both tumor genomic alteration profiles and hematoxylin and 
eosin–stained histology images had been generated by The Cancer 
Genome Atlas project (TCGA- LUAD and TCGA- LUSC) (40, 41). 
Histology images were processed using a previously developed deep 
learning system that leverages ResNet- 34 (39). By this approach, in-
dividual cells are first identified in the image by type (cancer, stroma, 
or lymphocyte), then broader regions of the image are classified as 
“inflamed” (high density of intraepithelial TILs), “excluded” (lym-
phocytes detected only within tumor stromal regions), or “desert” 
(lymphocytes not detected) (Fig. 5A and Supplementary Text).

Notably, we observed that patients for which the AMB model 
had predicted an effective ICI response (AMB low- risk) displayed 
significantly larger regions of inflammation in the histology im-
ages than did AMB high- risk individuals (Mann- Whitney U test 
P < 0.01; Fig. 5B). Consistent with this finding, AMB responders 
also displayed significantly lower regions of immune exclusion (Fig. 5, 
C and D). In contrast, TMB-  and GMB- based classifications were 
less correlated with immune inflammation (Fig. 5C) and exclusion 
(Fig. 5D).

To corroborate these results, we performed a complementary 
analysis of tumor mRNA expression, also available for this TCGA 
cohort. We adapted a previously described approach to analyze the 
expression signature of each tumor sample to estimate its relative 
proportions of T cell lymphocytes and macrophages (see Materials 
and Methods). Similar to our observations with tumor histolo-
gy, the immune phenotypes identified from tumor expression anal-
ysis showed significant association with AMB risk predictions 
(Mann- Whitney U test P < 0.01; fig. S3, A to E). In contrast, high 
TMB or GMB showed less correlation with immunosuppressive sig-
natures, including those of regulatory T cell– and tumor- associated 
macrophages (fig. S3, D and E).

We identified 11 protein assemblies for which mutation burden 
was particularly associated with histology or expression- based im-
mune phenotypes (see Materials and Methods; fig. S3F). Among 
these, the mutation burden of NeST:230 was strongly associated with 
higher lymphocyte exclusion and reduced lymphocyte infiltration 
(Fig. 5E and fig. S3, G and H). The high association in this case was 
not the result of mutations to a single gene; rather, it represented the 
convergence of mutations on a constellation of genes with functions 
in oxidative stress, including KEAP1, NFE2L2, and CUL3 (Fig. 5E 
and fig. S4).

JAK/STAT genes are more predictive in aggregate 
than individually
One of the most important assemblies for ICI response prediction 
was NeST:8, a complex of 50 proteins with known or candidate roles 
in JAK/STAT signaling during immunosurveillance (“Extended JAK/
STAT assembly”). This assembly was mutated in approximately 38% 
of ICI- treated patients (Fig. 6A). The AMB score of this assembly 
was found to accurately stratify patient survival in both the Sam-
stein (Fig. 6B) and the Hellman cohorts (Fig. 6C). Furthermore, al-
terations to this assembly were linked to higher TILs in the TCGA 
cohort (Fig. 5E and fig. S3, F and G). In contrast to the AMB, indi-
vidual factors within this NeST:8 assembly were less frequent (e.g., 
JAK3, FLT3, or NTRK3; Fig. 6, A and D), leading to less predictive 
performance when considered individually (Fig. 6E and figs. S4 and 
S5). For example, previously reported immunotherapy biomarkers 
in this complex (22, 31, 42), such as B2M, JAK2, and STAT5A, were 
mutated very rarely in either Samstein (Fig. 6A) or Hellmann cohorts 
(<2%) (Fig. 6D). These results support the use of protein assemblies 
as robust biomarkers of ICI response, as they can have both a high 
frequency of observation and a significant effect size.

DISCUSSION
In total, our study identified 13 assemblies in which genetic altera-
tions are informative of an effective ICI response. Notably, these 
assemblies incorporate a wide range of single- gene biomarkers pre-
viously reported to inform ICI (22) (although not all, see study limita-
tions below). For instance, alterations to DNA repair assemblies 
(NeST:50 and NeST:3) were strongly associated with increased ICI 
sensitivity (Fig. 4), consistent with previous reports that loss- of- 
function mutations in DNA mismatch repair genes sensitize patients to 
ICI treatment due to an increased TMB (22, 43). A second example is 
the mTOR pathway, which was implicated in several important assem-
blies (NeST:137, NeST:145, and NeST:314; Fig. 4) and has been previ-
ously associated with the regulation of immune cells, which can affect 
the efficacy of ICI treatment (44, 45). We also observed that ubiquitin 
regulation of oxidative stress (NeST:230) is associated with higher lym-
phocyte exclusion and ICI resistance (Fig. 5E). Supporting these ob-
servations, previous studies have reported that loss of KEAP1, one of 
the frequently mutated components of the ubiquitin regulation of oxi-
dative stress assembly (NeST:230), provides growth advantages in lung 
cancer (46) as well as diminished immunotherapy response (47).

The predictive protein assemblies also implicate factors not previ-
ously associated with immunotherapy response. For example, alter-
ations in nuclear receptor assembly (NeST:60) were linked with 
modulating ICI response in human patients (Fig. 4A) and in mice 
(Fig. 4, B to D). Moreover, alterations to PIK3CG, encoding one of 
the most frequently mutated members of the extended JAK/STAT 
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complex (Fig. 6F), are associated with both higher sensitivity to treat-
ment (Fig. 6A) and higher lymphocyte infiltration (Fig. 5E). Roles for 
PIK3CG in immune cell function have been previously reported (48, 
49), and it has been reported that this gene is overexpressed and mu-
tated in cancer (50–54). However, the effects of PIK3CG mutations 
on tumor cell biology have been little studied (55). It is possible that 
point mutations in PIK3CG alter its enzymatic activity (56) and/or 
enhance G protein–coupled receptor signaling (55). In addition, we 

found that alterations to FOXP1, another component of the NeST:8 
complex, are associated with sensitivity to ICI treatment (Fig. 6A). 
In line with these findings, high levels of FOXP1 have been reported to 
suppress immune signatures (e.g., MHC- II expression) (57), negatively 
regulate follicular helper T cells (58), and associate with lower TILs (59).

We acknowledge some limitations of this study. First, because the 
Samstein cohort conducted targeted sequencing of 468 genes, mutation 
profiles of some immunotherapy- related genes (e.g., interferon- ɣ, 
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LAG3, TIGIT, or LILRB2) were not considered. Second, while we 
have focused on somatic mutation burden, integrating other mo-
lecular layers, such as copy number alterations, may improve model 
performance or interpretability. A previous report found that tumor 
aneuploidy is associated with diminished immunotherapy response 
in patients with melanoma (60), raising the question of whether the 
associated genetic copy number changes converge on specific pro-
tein assemblies in the same manner as point mutations. Last, while 
we have leveraged a cancer cell map that was generated across can-
cer types and tissues (33), equivalent maps for noncancer cellular 
contexts (e.g., immune cells) or specific cancer cell types (61–64) 
may provide additional information on responses to ICI treatment.

In summary, we have described a predictive model of ICI re-
sponse that integrates patterns of tumor mutations with prior biologi-
cal knowledge of physical protein assemblies. In contrast to studies 
that use TMB as a proxy for neoantigens (21, 65) or focus on indi-
vidual gene biomarkers of ICI response (26, 28), a tumor’s AMB risk 
score captures both of these concepts within a hierarchy of large- to- 
small genetic systems. The result is an expanded collection of im-
munotherapy biomarkers, as well as a general framework that may 
extend to other treatment responses.

MATERIALS AND METHODS
Preparation of mutation features
A panel of 468 genes (MSK- IMPACT) was used to assess the muta-
tional impact on response to immunotherapy. We marked each gene 
as mutated (“1”) if it had (i) missense/nonsense mutations, (ii) frame-
shift insertions/deletions, (iii) splice site regions, or (iv) in- frame 
insertions/deletions in a patient tumor; otherwise, the gene was 
marked as unmutated (“0”). To calculate an AMB, we used the gene- 
to- assembly associations from the NeST hierarchy (33). The muta-
tional burden of an assembly was calculated by counting the sum of 
the number of mutated genes observed in the genes of the assembly. 
For TMB, we used the reported TMB values for the Samstein (34), 
Hellmann (35), and IMvigor210 cohorts (11). For IMvigor210 pa-
tients, we only considered patients with BLCA and removed samples 
biopsied before chemotherapy treatment. For TCGA patients, we 
calculated the TMB using the Maftools R package (66).

Model training procedures
OS data in the Samstein cohort were used to train Cox regression 
(for TMB model) (67) and random survival forest models (for AMB 
and GMB models) (68) using lifelines (69) and scikit- survival Py-
thon packages, respectively (70). For random survival forest mod-
els, we conducted fivefold cross- validation in the training dataset 
to identify optimal tree depth (3, 5, 10, or max). We used 500 trees 
for training, and the log- rank test was used to make splits (70). 
To predict OS in response to ICI therapy, we used risk scores 
defined as the average cumulative hazard function (CHF) estimates 
(Nelson- Aalen estimator) of the terminal node of each decision tree 
(68). This average CHF estimate at time t, given input features x, 
was defined as

where B is the number of trees (here B = 500) and db,t and Yb,t are the 
number of deaths at time t and number of individuals at risk before 

time t, respectively, with both these quantities relevant to deci-
sion tree b.

Model validation procedures
To measure the performance of the AMB model in the Samstein 
cohort (Fig. 3A), we conducted leave- one- out cross- validation. For 
this purpose, we designated the top 20% of patients with the lowest 
predicted risks as “predicted responders” (34); the remaining 80% 
of patients were designated as “predicted nonresponders.” We 
also used the Samstein cohort to conduct Monte Carlo cross- 
validation (Fig. 3B), whereby we partitioned 90 and 10% of the data 
into training and test datasets, respectively, for each of the 100 inde-
pendent iterations. Performance in Monte Carlo cross- validation 
was measured using the CI. The CI measures, over all admissible 
patient pairs, the frequency with which the model predicts patient 
j to outlive i when j outlives i in observed data (69). The CI was 
defined as

where NC, ND, and NT correspond to the number of concordant 
pairs, discordant pairs, and tied pairs, respectively. CI scores 
were computed by using the lifelines package where censored 
information was included when computing CI scores. To mea-
sure performance in the validation cohorts (the Hellmann and 
IMvigor210 cohorts), we determined the optimal tree depth for 
AMB-  and GMB- based models from the Samstein cohort by se-
lecting the most frequently selected tree depth from the Monte 
Carlo cross- validation (data S1). The tree depths selected were 
3 and max tree depths for AMB-  and GMB- based models, respec-
tively. To stratify patients into predicted responders and nonre-
sponders in the validation ICI cohorts, we identified a cutoff 
score from the Samstein cohort. Cutoff scores were determined 
by the lowest 20% risk score in the Samstein cohort, correspond-
ing to 19.60, 15.55, or 0.90 risk scores for AMB, GMB, or TMB 
models, respectively.

Identification of important assemblies
To score the importance of each assembly, we computed the de-
crease in model performance when the AMB value of this assembly 
was randomly shuffled over the patients in the cohort, with this per-
formance decrease computed for each of the 100 independent itera-
tions. A difference between the original model performance and the 
average performance of the random models was determined as a 
feature importance score. Feature importance scores were converted 
to z- scores (fig. S2A). To nominate important assemblies, we consid-
ered assemblies with feature importance scores having z > 1.64, cor-
responding to the 95% confidence level in a one- tailed test (fig. S2A). 
The hazard ratio using AMB levels of an assembly was used to de-
termine the direction of sensitivity or resistance (Fig. 4A).

Validation of the extended JAK/STAT complex (NeST:8)
Patients were stratified into low- risk and high- risk classes by 
thresholding the AMB of the “Extended JAK/STAT complex” 
(NeST:8). We selected an optimal threshold (AMB ≥ 2 for low risk, 
else high risk) that showed the best predictive performance in 
the Samstein cohort, as determined by a log- rank test. The same 
threshold was applied to stratify patients in the Hellmann cohort 
(Fig. 6C).

H(t ∣x) =
1

B

B
∑

b=1

∑

t

db,t

Yb,t

C =
NC + 0.5 × NT

NC + ND + NT
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