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Within-hospital Temporal Clustering of
Postoperative Complications and Implications
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ACS-NSQIP Data
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American College of Surgeons, National Surgical Quality Improvement Program (ACS-NSQIP).

Background: ACS-NSQIP relies on periodic and on-demand reports for quality benchmarking. However, if rapid increases in post-
operative complication rates (clusters) are common, other reporting methods might be valuable additions to the program. This article
focuses on estimating the incidence of within-hospital temporal clusters.

Methods: ACS-NSQIP data from 1,547,440 patients, in 425 hospitals, over a 2-year period was examined. Hospital-specific Cox
proportional hazards regression was used to estimate the incidence of mortality, morbidity, and surgical site infection (SSI) over a
30-day postoperative period, with risk adjustment for patient and procedure and with additional adjustments for linear trend, day-
of-week, and season. Clusters were identified using scan statistics, and cluster counts were compared, using unpaired and paired t
tests, for different levels of adjustment and when randomization of cases across time eliminated all temporal influences.

Results: Temporal clusters were rarely observed. When clustering was adjusted only for patient and procedure risk, an annual aver-
age of 0.31, 0.85, and 0.51 clusters were observed per hospital for mortality, morbidity, and SSI, respectively. The number of clusters
dropped after adjustment for linear trend, day-of-week, and season (0.31-0.24; P = 0.012; 0.85-0.80; P = 0.034; and 0.51-0.36; P
< 0.001; using paired t tests) for mortality, morbidity, and SSI, respectively. There was 1 significant difference in the number of clusters
when comparing data with all adjustments and after data were randomized (0.24 and 0.25 for mortality; P = 0.853; 0.80 and 0.82 for
morbidity; P = 0.529; and 0.36 and 0.46 [randomized data had more clusters] for SSI; P = 0.001; using paired t tests) for mortality,
morbidity, and SSI, respectively.

Conclusions: Temporal clusters of postoperative complications were rarely observed in ACS-NSQIP data. The described method-
ology may be useful in assessing clustering in other surgical arenas.

Objective: To determine the extent to which within-hospital temporal clustering of postoperative complications is observed in tﬁ
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INTRODUCTION

Postoperative complications are common and are associated
with (1) patient operative risk, mostly captured by patient his-
tory, comorbidities, age, gender, and laboratory values, (2) the
inherent riskiness of the operative procedure, and (3) a quality
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metric describing the general performance of the hospital (or
provider). With respect to the hospital-performance component,
hospitals have different resources, practices, and procedures
and employ staff with different levels of training and expertise.
These features contribute to a steady-state quality environment
that exerts relatively consistent effects on outcomes, though
subject to gradual quality improvement or deteriorative trends.

However, there is also potential for rapid performance
changes, which might be permanent or transitory, influenced by
factors such as sporadic outbreaks of infection (eg, associated
with the appearance of antibiotic-resistant bacteria or lapses in
infection control practices), abrupt changes in hospital staffing,
clinician performance, or treatment protocols, unrecognized
equipment malfunctions, and so forth. The American College
of Surgeons, National Surgical Quality Improvement Program
(ACS-NSQIP) reporting has not traditionally focused on rapid
or “real-time” detection of complication events, not on detect-
ing temporal clusters of events within hospitals. This stance
results, in part, from a desire for robust risk adjustment and
assessment of a fixed and clinically valuable 30-day postopera-
tive follow-up period.

ACS-NSQIP emphasizes quarterly benchmarking reports
(semiannual reports and interim semiannual reports), always
based on 12 rolling months of data. Because of the time required
to clean and model data, analyzed data extend back 6 to 18
months. To provide more current information, ACS-NSQIP
also has an “on-demand” application where benchmarked data
are available shortly after cases are entered into the registry.
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On-demand assessments are, like semiannual reports, risk-
adjusted and “smoothed” but use data within days of entry into
the registry.! On-demand users can specify an assessment period
of between 1 year and 1 month. However, even this approach
might be slow to detect rapid shifts in complication rates because
events need to be averaged over some minimal time period.

Cumulative sum (CUSUM) and similar methods have been
suggested as one approach for the early detection of changes in
event rates. CUSUM’s advantage lies in continually evaluating
incoming data for a cumulative deviation from preestablished
performance bounds. This allows for more immediate identifi-
cation of a rate shift from expectations. However, CUSUM tech-
niques are not optimally designed to differentiate true (below
some probability threshold) from chance rate changes. Rather,
calibration and validation processes are typically implemented
to tune CUSUM detection thresholds to achieve a desired bal-
ance between true and false detections. This limitation is rec-
ognized when CUSUM findings are suggested to provide a
potential early warning of deteriorating performance rather
than a definitive assessment at some prescribed P value.?

CUSUM’s apparent advantage in detecting within-hospital
“bursts” or “clusters” of postoperative complications would
be valuable to the extent that they exist. However, while there
are clear, often well-publicized, epidemiologic events or hospi-
tal failures causing rapid increases in events, such as a steril-
ization machine failure, the contribution of such event clusters
to the total postoperative complication burden, as specified in
and monitored by programs such as ACS-NSQIP, has not been
well-established. While CUSUM has reported cluster-like events
in surgery, the issue is confused as some CUSUM implemen-
tations are structured to be sensitive to both between-hospital
differences in rates as well as to within-hospital shifts. This
stems from the “expected” rate (which, when compared with
an observed rate, forms a metric for identifying deviation) often
being estimated from a model that uses data from many hospi-
tals rather than being hospital-specific.>* Thus, the magnitude
of the observed-to-expected difference is influenced by both
internal event sequences and the hospital’s overall quality. As
such, a nominal cluster could be the result of an inconsequential
“cluster” being superimposed on aberrant baseline quality.

This study evaluates the temporal clustering of complications
within hospitals, independent of comparative hospital quality.
There are numerous approaches to detecting temporal clusters.
CUSUM is one such technique, but a scan statistic approach
might permit a more robust evaluation of detection probability.
This well-established and general-purpose method was used to
determine the extent to which clusters of postoperative com-
plications occur at rates beyond those expected by chance in
the ACS-NSQIP program data. If clusters occur at near chance
rates, then there is additional confidence in NSQIP’s focus on
periodic assessments. If clusters appear commonly, this will
motivate additional efforts to use CUSUM or other approaches
for the early detection of “out-of-control” processes, for which
those methods might have superior sensitivity.

The methodologies described and the evidence provided in
this study could guide the design of safety analytics in other
surgical areas. Trade-offs between periodic and CUSUM-type
assessments are described, and decisions about which provides
greater net benefit will depend on the underlying temporal
structure and impact of adverse events, which would need to be
assessed by area experts.

METHODS

Surgeries from hospitals that had accrued at least 2400 patients
into ACS-NSQIP in 2018 or 2019 and had at least 1 case in
each month of the 24-month period, were included in the study.
More recent data would be influenced by the COVID-19 epi-
demic, but COVID’s influence on perioperative complications
was recognized in real time. In this study, interest was in the
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detection of hospital-level complication clusters under more
routine conditions of clusters being driven by local, less ubiqui-
tous causative agents.

We evaluated postoperative clusters of 30-day mortality, mor-
bidity (a composite outcome including surgical site infection
[SSI], wound disruption, pneumonia, unplanned intubation,
on ventilator >48 hours, postop dialysis, postop renal insuffi-
ciency, urinary tract infection, stroke/cerebral vascular accident,
cardiac arrest, myocardial infarction, systemic sepsis [sepsis or
septic shock], all as defined in ACS-NSQIP), and SSI specifically,
where an increased rate could be the result of proverbial “out-
of-control” system failures—such as might be related to instru-
ment sterilization or a breakdown in an operating procedure.

For each hospital, for each outcome, for each of 730 days
(365 days/year for 2 years), the number of expected events on
each postoperative day (from 0 to 30 days) was determined
based on the number of patients under study each day and
a hospital-specific Cox proportional hazards regression for
patients’ risk of the event on each day. Five different “empirical”
models were constructed: (1) Only patient and procedure risk
(defined by outcome- and CPT code-specific linear risk—a pro-
prietary ACS-NSQIP variable derived from a multiyear dataset)
were considered (variables were chosen from the standard ACS-
NSQIP predictor set using forward selection); (2) patient and
procedure risk with the effect of hospital-level linear (quality)
trend removed by forcing in a continuous variable with values 1
to 730 depending on the day-of-surgery within the 2-year study
period; (3) patient and procedure risk with the effect of oper-
ation day-of-week removed by forcing in a 7-level categorical
day variable; (4) patient and procedure risk with the effect of
season removed by forcing in a continuous variable defined as
cos ([360 X (operation day of year/365)]°) —this cosine func-
tion yields a maximum season-associated difference between
operation dates around December 31/January 1 (around 0° the
value is close to 1) and June 30/July 1 (around 180° the value is
close to —1); (5) patient and procedure risk with adjustments for
trend, day-of-week, and season all added. Thus, these 5 models
adjust expected events, in various ways for the effects of patient
and procedure, gradual day-by-day trend, day-of-week, and
seasonal trends. Clusters detected after adjustment for all these
factors suggest the presence of some unknown, out-of-control
process.’

Scan statistic methodology was used to detect clusters defined
here as a number of events within a 30-day window significantly
(P < 0.05) exceeding expectations. Obviously, this is just one
possible specification of a temporal range for unusual event
concentrations. However, it seems to be a reasonable window
width for achieving stability and power. Narrower windows
would have neither and wider windows might average out rapid
changes.

The 30-day scan window was moved 1 day at a time across
each hospital’s 2-year observational period. All scan windows
were examined for their log-likelihood ratio (this is a measure
of how likely the observed number of events within a window is,
given the model-derived expected rate). The P value for the win-
dow with the supremum of the likelihood ratio was estimated
by way of Monte Carlo hypothesis testing of that likelihood
ranking against rankings from random datasets. If that cluster
was significant at P < 0.05, cases within that 30-day window
were no longer eligible for consideration, and the window with
the next largest log-likelihood was evaluated as a potential clus-
ter, and so forth, until no window achieved a preset minimum
log-likelihood. This methodology is described in the SaTScan
documentation, but we replicated those or equivalent methods
using our own programming to provide greater analytic flex-
ibility.>” The primary metric studied was the mean number of
hospital clusters within the 2-year period.

While the previously described method ensures that each
cluster is significant at P < 0.05, it does not provide information
as to how many clusters would be expected by chance for any
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particular dataset, time period, modeling method, and scanning
scenario. To provide that point of reference, each hospital’s
dataset was modified as follows: begin with the understand-
ing that each hospital’s patient data were distributed nonuni-
formly across the 730-day observational period. While fields in
the dataset associated with patients’ operation dates remained
fixed in their temporal location, all other data, for each patient,
remained linked together and were randomly reassigned to the
fixed operation date fields, with the one exception that the date
of event, if there was an event, was recomputed to reflect the
appropriate operation date to complication date time inter-
val (Table 1). This randomization will remove all but chance
temporal clusters. Thus, only risk adjustment for patient and
procedure is applied in the proportional hazards model when
analyzing the randomized data. This randomization process
was repeated 100 times (for each hospital, for each outcome),
and the primary metric was the mean number of hospital clus-
ters within the 2-year period, that now arise when only chance
clusters can appear.

Two-year cluster counts were compared using both indepen-
dent and paired sample ¢ tests. It was not clear, a priori, which
of these tests would have the greatest power as the paired 7 test’s
ability to control for variability related to hospital differences
might be offset by a reduced sample size, as some pairs would
be dropped from the analysis if a model for either pair member
failed to converge. Parametric tests were deemed appropriate
as sample sizes were sufficiently large to yield normal distri-
butions of sample means despite data skew. Nevertheless, non-
parametric tests were conducted and confirmed the results (not
reported).

NSQIP hospitals are instructed to sample roughly 1680 cases
per year, though at times they collect more or fewer cases for var-
ious reasons. Under the general assumption that larger samples
increase the likelihood of detecting (at a specified level of statis-
tical significance) effects of smaller magnitude, clusters might be
detected more frequently with a 100% sample. Two additional
analyses were therefore conducted to assess whether reliance on
NSQIP’s sampled dataset could bias results against detecting
clusters. First, correlations (Spearman because of the anticipated
positive skew in hospital sample sizes) between hospital sample
size and number of detected clusters were computed. Second,
our methods were replicated, as a sensitivity analysis, for the
morbidity outcome using a 150-day scan window moving 5
days at a time. While a 150-day window is inconsistent with
the intent of detecting a rapid performance shift, this was done
to reflect the situation where the window sample size is 5 times
larger so that it would structurally represent a hypothetical sit-
uation where ACS-NSQIP accrual was conducted at a 5-fold
increased sampling rate.

www.annalsofsurgery.com

RESULTS

The case selection process yielded 1,547,440 patients from 425
hospitals. Table 2 describes the number of hospitals and the
number of clusters within hospitals, over the 2-year timeframe,
for the 3 outcomes studied. The number of hospitals studied
was often reduced from 425 due to model nonconvergence,
particularly for the mortality outcome. While nonconvergence
of models can sometimes be remedied by modifying procedure
specifications, this was not the case in this study, where noncon-
vergence resulted primarily from very few or no events for some
of these within-hospital models.

The number of clusters observed was very small across all
modeling conditions. Focusing on the empirical findings, when
temporal clustering was adjusted only for patient and procedure
risk, an annual average (see Table 2 for discussion of 2-year ver-
sus annualized estimates of cluster detections) of 0.31, 0.85,
and 0.51 clusters were observed per hospital for mortality, mor-
bidity, and SSI, respectively. While the effects of the individual
adjustments for trend, day-of-week, and season were inconsis-
tent, adjusting the empirical findings for the combined effects
of all 3 consistently reduced the mean number of clusters over
the 2-year period: 0.31 to 0.24; P = 0.012; 0.85 to 0.80; P =
0.034; and 0.51 to 0.36; P < 0.001; using paired ¢ tests. Thus,
some modest number of apparent clusters were driven by the
combined effects of trend, day-of-week, and season.

There was 1 significant difference between the annual num-
ber of clusters in the empirical data with all adjustments and the
number of “chance” clusters observed for the randomized data:
0.24 and 0.25 for mortality, P = 0.853; 0.80 and 0.82 for mor-
bidity; P = 0.529; and 0.36 and 0.46 for SSI; P = 0.001. Notably,
counts for SSI clusters were greater for the randomization con-
dition, suggesting the chance nature of this finding.

There were 10 significant P values in Table 2 involving com-
parisons between counts observed when there were individual
adjustments for trend, day-of-week, or seasonality and other
groups (empirical data with patient and procedure adjustment
only, empirical data with all adjustments, or randomized data).
Consistent directionality in these effects was not observed, and
there is not a clear mechanism for the effects. These findings
might be related to experiment-wise error rate (multiplicity),
given the many tests conducted on correlated data.

It is important to note that hospital cluster counts of 1, 2,
3, ... 6, 0or 7 are similar across empirical and randomized data.
This distributional similarity suggests that focusing on the mean
number of clusters is not masking a high number of clusters
in a small number of poorly performing hospitals within the
empirical data. Nonetheless, some practitioners might argue
that even small numbers of hospitals or providers with apparent
preponderances of clusters would be worth flagging. We would

Randomization of 10 Hypothetical Patients Using the Process Described in the Text

Analyzed Original Data Randomized Data

Patient Case Operation Date All Other Data Operation Date All Other Data
1 Patient A Patient A Patient A Patient G
2 Patient B Patient B Patient B Patient J
3 Patient C Patient C Patient C Patient C
4 Patient D Patient D Patient D Patient A
5 Patient E Patient E Patient E Patient H
6 Patient F Patient F Patient F Patient B
7 Patient G Patient G Patient G Patient |
8 Patient H Patient H Patient H Patient D
9 Patient | Patient | Patient | Patient F

10 Patient J Patient J Patient J Patient E

Operation date remains fixed in the dataset. However, randomization reassigns all other patient features, including procedure, patient demographics and comorbidities, and postoperative events (indexed to
days from the operation date) as a set (eg, Patient G's data is randomly assigned to Patient A's operation date). This random reassignment removes other than chance temporal clustering, including effects
associated with linear trend, seasonality, and day-of-week. The reported results were for 100 separate randomizations of the data.
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not object except that the findings favor chance, meaning the
risk of false-positive signals seems quite high.

Using the all adjustments dataset (Table 2), the hospital sam-
ple size was not associated (Spearman r was used because of
dramatic right skew in hospital sample sizes) with cluster counts
for all 3 outcomes (mortality: N = 305; sample size range =
2403-13031; cluster count range = 0-3; r = 0.031; P = 0.595;
morbidity: N = 423; sample size range = 2403-13031; cluster
count range = 0-6; r = 0.086; P = 0.076; SSI: N = 415; sample
size range = 2397-12999; cluster count range = 0-5; r = 0.067;
P = 0.172). The sensitivity analysis on the morbidity outcome
with a 150-day/5 day-at-time window found an annual aver-
age of 0.05 clusters under the randomized condition, compared
with 0.82 for the 30-day/1 day-at-time window. This reduction
would be driven, in part, by fewer cluster detection opportuni-
ties (due to stepping the window 5 days rather than 1 day at a
time), as well as better control of short-term random clusters.
Even when approximately annualized, the simulated increased
accrual did not yield more clusters. Also of importance in this
approach, annual cluster counts for empirical data with all
adjustments did not exceed the counts observed for randomized
data.

DISCUSSION

ACS-NSQIP-style periodic and “on-demand” reports, scan
statistics, and techniques such as CUSUM can all be used to
assess surgical safety. However, while periodic and on-demand
reports are directed toward providing robust risk-adjusted
benchmarked comparisons between hospitals, scan statistics
and CUSUM are mostly concerned with detecting shifts in event
rates within hospitals. This is the case for CUSUM when the
expected rate is derived from a hospital-specific model. If the
expected rate is estimated from an all-hospital model, CUSUM
detections will be driven by both within-hospital changes in rate
and comparative quality.

Early detection of out-of-control processes yielding event
clusters would clearly be an institutional priority. However,
before considering whether ACS-NSQIP and similar programs
could be slow to detect rapid, within-hospital changes in event
rates, it is important to ascertain whether such events occur.
The scan statistic findings indicate that the number of clusters
of postoperative complications observed in the empirical data
does not appear to be greater than those expected by chance.
In addition, the presence of some nominal clusters seems to be
influenced by a gradual trend, day-of-week, or seasonal effects.
While these might represent important clinical features worthy
of investigation, they do not suggest the presence of an out-of-
control process.

The scan statistic findings were similar whether the analysis
was on all data (unpaired ¢ tests) or restricted to paired data,
though paired ¢ tests exhibited greater power. One limitation of
this study was data loss due to model nonconvergence. This was
an issue for mortality, where as few as 303 models converged
out of 425 models attempted, but not an issue for morbidity,
where at least 422 models converged, and not for SSI, where
at least 413 models converged. However, as nonconvergence
would likely be associated with models for hospitals with low
event rates, this loss of data would likely result in an overesti-
mation of cluster counts with respect to the original set of 425
hospitals.

While the present scan statistic findings suggest that rapid
shifts in event rate (or clusters) are rare, this conclusion con-
flicts with reports based on other detection methods, such as
CUSUM. Higher CUSUM cluster detection rates in other work
might be attributed to 3 factors. First, by adjustment of detec-
tion thresholds, CUSUM can be made more or less sensitive to
changes in rate and, when set to high sensitivity, many detec-
tions might be false positives. Second, some implementations of
CUSUM derive the expected rate from an all-hospital model. As
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a result, detections could be influenced by small, inconsequen-
tial event clusters superimposed on a general quality differen-
tial. Finally, most implementations of CUSUM do not appear
to adjust for trend, day-of-week, or seasonality; thus, clusters
could be driven by these effects rather than by an out-of-control
process, though adjustment for such influences could, for certain
implementations, be contraindicated. Many CUSUM cluster
detections reported in the relevant literature might be associated
with these methodological features taken together.* However,
caution is warranted in drawing this conclusion solely from the
current analysis of this NSQIP dataset.

There was no statistically significant evidence that cluster
counts increased with hospital sample size. However, it cannot
be ruled out that, with ever larger sample sizes and with more
opportunities for events and clusters of events, empirical and
randomization cluster counts might diverge. In addition, the
sensitivity analysis, using the longer 150-day window (yielding
more cases in each window), did not show cluster detections at
greater than chance levels, though this paradigm is an imperfect
analog to 100% sampling within a 30-day window. Thus, the
present findings suggest that sampling did not bias this study
toward not detecting clusters at rates beyond chance, but it is
not an unreasonable possibility that sensitivity to cluster detec-
tions, in excess of chance, will increase with sample size; it is
a common finding that almost any “effect” can be detected
at a statistically significant level with a large enough sample.
However, with this NSQIP dataset, a clinically important, prac-
tical clustering “effect” was not observed.

In the absence of evidence for rapid rate shifts observed
here, consideration moves to CUSUM’s potential advantage in
detecting gradual changes in event rates compared with ACS-
NSQIP periodic reports. Two features might contribute to an
advantage. First, periodic reports rely on contemporaneous
modeling of 1 year of data, which requires time, while CUSUM
relies on preestablished boundaries. Thus, CUSUM avoids the
several months needed for fully calibrated ACS-NSQIP model-
ing. Second, CUSUM monitors accumulating events continu-
ously rather than averaged over the 1-year period studied. As a
result, CUSUM can detect gradual, within-hospital changes ear-
lier than periodic reports. However, a direct comparison would
require consideration of CUSUM detections possibly being false
positives and reliant on the expected rate being derived from an
all-hospital model (ie, the nominal early detections being driven
by steady-state poor quality rather than by rate shifts of import-
ant magnitude).

CUSUM would not have the same advantages over ACS-
NSQIP “on-demand” reporting that it has for traditional quar-
terly reports. On-demand assessments are based on historical
equations and preprocessed data so that they are available
almost immediately after the data collector determines that
the case is complete—in a fashion probably the same as it is
for CUSUM. Thus, both on-demand and CUSUM approaches
would experience a similar, short time lag for the incorporation
of new data. The primary difference remaining would be that
on-demand addresses performance averaged over a minimum
time interval of 1 month, while CUSUM tracks accumulating
events. Ten events in 2 days are different from 10 events hap-
hazardly distributed over 30 days, and CUSUM would have an
advantage in detecting the former cluster—again, with some risk
for false-positive flagging. However, this is the realm of detect-
ing rapid rate changes (clusters) rather than gradual change, and
the scan statistic findings suggest that these events occur at close
to chance rates. It is unclear whether, over a 30-day time inter-
val, a CUSUM or similar approach would have a meaningful
early-detection advantage over ACS-NSQIP on-demand in the
presence of a less dramatic shift in rate.

CUSUM has sometimes been suggested as an analytic
approach that would enhance ACS-NSQIP periodic reporting.*
While CUSUM’s potential sensitivity advantages are argu-
able, they would come with programmatic costs. In a program



Cohen et al e Annals of Surgery Open (2024) 3:e483

such as ACS-NSQIP, there is a risk of information overload.
Participants already have continuously available nonrisk-
adjusted reports, quarterly risk-adjusted benchmarking reports,
and risk-adjusted on-demand benchmarking reports, which
provide immediate results for user-selected models. A new
CUSUM or similar report, with a very different reporting struc-
ture involving cumulative observed-to-expected metrics and,
depending on selected thresholds, a potential for detecting
many clusters (including false positives), might contribute to
signal fatigue. It would need to be clear what detection prob-
lems the added approach would solve and whether ACS-NSQIP
event specifications could be enhanced (independently or in
concert). If periodic and timely on-demand reports are suffi-
cient for detecting relatively steady-state quality then, in the
absence of evidence here for meaningful event clusters, addi-
tional implementation of methods such as CUSUM might not
be warranted.

Of course, there is always reason to ask whether CUSUM or
similar methods should be applied in other circumstances where
their conduct and advantages are justified. The findings in this
work are most relevant to assessments of hospital-wide perfor-
mance, especially where the benefits of robust risk adjustment
and standardized follow-up periods are clear. In the ACS-NSQIP
framework, this would reflect broad models, including multi-
ple case types, but would also apply to large-volume surgical
specialties. However, there could be sub-groups of patients and
procedures where case eligibility criteria would yield a smaller
number of surgeons providing treatment, involving higher-risk
procedures, using widely distributed segments of a facility’s
resources as well as external resources, and using less control-
lable resources, with multiple potential failure points. In these
situations, there might be more opportunity for local system
failures, whose effects could be concealed if averaged across all
data within a hospital. Transplant surgery could be an exam-
ple of a realm where CUSUM monitoring, which simultane-
ously involves the detection of rapid shifts in performance and
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comparison of steady-state quality (via an all-hospital-derived
expected rate) might be most useful and has been successfully
implemented.®

The decision to add CUSUM or similar assessment approaches
to existing ACS-NSQIP periodic and “on-demand” benchmark-
ing reports to enhance rapid detection of rate shifts requires
careful evaluation of data structures, programmatic require-
ments, and implementation costs. The present findings on the
apparent rarity of complication clusters inform that discussion,
highlighting the importance of focusing on the true value-added
information that any analytic approach contributes to the qual-
ity improvement challenge. While the focus here has been on
NSQIP data, these same analytic strategies could guide quality
assessment design in other areas.
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