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Abstract

Finite Markov chains with absorbing states are popular tools for analyzing longitudinal data with 

categorical responses. The one step transition probabilities can be defined in terms of fixed and 

random effects but it is difficult to estimate these effects due to many unknown parameters. In this 

article we propose a three-step estimation method. In the first step the fixed effects are estimated 

by using a marginal likelihood function, in the second step the random effects are estimated after 

substituting the estimated fixed effects into a joint likelihood function defined as a h-likelihood, 

and in the third step the covariance matrix for the vector of random effects is estimated using the 

Hessian matrix for this likelihood function. An application involving an analysis of longitudinal 

cognitive data is used to illustrate the method.
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1 | INTRODUCTION

Multistate models are powerful tools for analyzing longitudinal data describing the 

progression of individuals toward a chronic disease with a competing risk of death and 
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possibility of recovery. If the observations are equally spaced in time, then Markov chains 

are often used to analyze these data by determining which risk factors affect one-step 

transitions (see, e.g., Chen, Yen, Shiu, Tung, & Wu, 2004; Muenz & Rubinstein, 1985; Tyas 

et al., 2007). Others suggest that to account for the clustering of responses at the subject 

level, between subject heterogeneity, and the use of a higher order chains, the one-step 

transition probabilities should also depend on unobserved random effects (see, e.g., Albert 

& Follmann, 2003; Salazar, Schmitt, Yu, Mendiondo, & Kryscio, 2007; Song, Kuo, Derby, 

Lipton, & Hall, 2011; Yu, Griffith, Tyas, Snowdon, & Kryscio, 2010). Hence, in these chains 

the one-step transition matrix (the “P matrix”) can be defined in terms of fixed and random 

effects which often can be recognized as a generalized linear mixed model (GLMM). 

The usual approach in GLMM models is to estimate the fixed effects by maximizing the 

likelihood function defined by the marginal model which integrates out the random effects. 

While this avoids the estimation of the random effects, useful additional information (e.g., 

between subject heterogeneity) in the data is lost.

A GLMM sometimes involves three objects: the observed data denoted generically as y, 

unob-servable random effects denoted as v, and unknown fixed parameters denoted as β
(see e.g., Equation 4 in the next section). Basing inference on these three objects involves 

generalizing the familiar likelihood (i.e., the case where there is no v) to an extended 

likelihood several forms of which are discussed in the literature: Lauritzen (1974), Butler 

(1986), Bayarri, DeGroot, and Kadane (1988), Berger and Wolpert (1988), and Bjørnstad 

(1996). Lee and Nelder (1996), Lee and Nelder (2001), and Yun and Lee (2004) build 

upon these generalizations to define a hierarchical or h-likelihood wherein inference about 

β is based on the marginal distribution of y obtained by integrating out the random effects 

from the joint distribution of y and v. Inferences about v is based on defining a conditional 

likelihood for v given y which usually depends on β. One possibility which will be used in 

this manuscript is to substitute the estimate of β from the marginal distribution into the latter 

conditional likelihood for v given y yielding an estimate of v.

One approach to maximizing the marginal distribution of y is to use the Expectation-

Maximization (EM) algorithm (see, e,g., chapter 3 of Bartolucci, Farcomeni, & Pennoni, 

2012). This requires finding analytically the expected value of the marginal distribution of y
in the E step which is then maximized in the M step. This algorithm has slow convergence 

properties and does not use the Hessian matrix associated with the maximum likelihood 

estimate (mle) of β making the calculation of SEs associated with this mle additional work. 

Simulation methods including Monte Carlo EM (Vaida & Meng, 2004) and Gibbs sampling 

(Gelfand & Smith, 1990) are possible but computationally intensive alternatives. Methods 

which avoid these problems are discussed in Salazar et al. (2007); we recommend using the 

Gaussian-quadrature method discussed there.

The rest of this paper is outlined as follows: we introduce the proposed method in Section 2; 

simulation studies are conducted in Section 3; the application of this method to the cognitive 

data appears in Section 4; and a discussion concludes the paper in Section 5.
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2 | THE PROPOSED METHOD

Consider a Markov chain whose state space contains k1 + k2 states where the first k1 states 

are transient and the last k2 > 0 states are absorbing. Let yi = yi1, ⋯, yiTi  denote the vector 

of states in a Markov chain for ith subject and T i denote the total number of transitions 

for subject i where i = 1, ⋯, N. If the first-order Markov property holds, then distribution 

function for ith subject is

f yi = ∏
s = 1

T i
p yi, s ∣ yi, s − 1 .

(1)

Here p yi, s ∣ yi, s − 1  denotes the probability of transition from state s − 1 to state s, sometimes 

written as ps − 1, s. If all the subjects have independent state vector yi, we have the overall joint 

distribution function

f y = ∏
i = 1

N
∏

s = 1

T i
p yi, s ∣ yi, s − 1 ,

(2)

where N is the total number of subjects.

If a multinomial logistic model defines the one-step probability matrix (P  matrix) within 

each row of the Markov chain, then this model is an example of a hierarchical GLMM. 

We generalize this to the case where each transition probability contains both fixed and 

random effects. If vi, an m × 1 vector, denotes the vector of unobservable random effects 

that correlates the responses within the vector yi, then the likelihood can be based on yi, vi

for i = 1, ⋯, N. Denote V = v1, ⋯, vN  and Y = y1, ⋯, yN . We further assume ith subject has 

transitions T i > 1. Then based on Equation (2) the conditional likelihood of Y given V = v
and a vector of unknown parameters is

f y ∣ β, v = ∏
i = 1

N
∏

s = 1

T i
p yi, s ∣ yi, s − 1, β, vi .

(3)

For each row r in the one-step P  matrix, assume the first state is the reference category. This 

defines a logit function

log prc β ∣ xi, vi
pr1 β ∣ xi, vi

= αc + βrc
T xi + vi

Tzi,

(4)
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where xi is a p × 1 vector of risk factors for subject i, zi is an m × 1 design vector for the 

random effects, vi is the unknown random effects, β = α2, ⋯, αk1 + k2, β12, β13, ⋯, βk1, k1 + k2  is a 

vector of unknown parameters, r = 1, ⋯, k1 and c = 2, ⋯, k1 + k2. Based on Equation (4), we 

express the transition probabilities as follows:

prc β ∣ xi, vi =

1
1 + ℎ = 2

k1 + k2 exp αℎ + βrℎ
T xi + vi

Tzi

 if c = 1

exp αc + βrc
T xi + vi

Tzi

1 + ℎ = 2
k1 + k2 exp αℎ + βrℎ

T xi + vi
Tzi

 if c > 1
.

For the proposed model, following Lee, Nelder, and Pawitan (2018)’s work, we can define 

the h-likelihood

ℎ = log L1 β; Y ∣ V + log L2 σ; V = l1 β; Y ∣ V + l2 σ; V ,

(5)

where σ is a parameter vector that controls the distribution of V, fV v  and 

l1 β; Y ∣ V = ∑i = 1
N log f yi ∣ β, vi = ∑i = 1

N ∑s = 1
Ti log p yi, s ∣ yi, s − 1, β, vi  is the conditional log 

likelihood function of Y given V, l2 = ∑i = 1
N log f vi  is log likelihood function defined by 

the marginal distribution of V only. In principle, the h-likelihood can be evaluated for each 

unknown β and V but this maximization involves too many unknowns. Hence, we seek an 

alternative method. This leads to the three-step procedure suggested by Lee et al. (2018)

• Step 1: Estimate the fixed effects β and σ by integrating out the random effect V
from the joint log likelihood function;

• Step 2: Plug the estimated fixed effects from Step 1 to the log likelihood 

function and estimate the random effects V.

• Step 3: Use the Hessian matrix defined by Equation (5) to estimate cov V̂ .

2.1 | Step 1

We first estimate β by finding the value of β that maximizes the marginal distribution of 

Y obtained by integrating out V from the joint distribution of Y, V . That is, the marginal 

likelihood for β can be expressed as follows:

L β, σ ∣ Y, X = ∏
i = 1

N ∫ f yi ∣ β, xi, vi f vi dvi .

(6)

To integrate out V, many methods have been suggested in the literature, including Gauss 

quadrature (Abramowitz, Stegun, & Romer, 1988), Importance sampling (Hammersley & 

Morton, 1954; Rosenbluth & Rosenbluth, 1955) and Taylor’s expansion. See more details 

in Salazar et al. (2007). Based on the simulation studies of Salazar et al. (2007), the Gauss 
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quadrature method (Abramowitz et al., 1988) is adopted. We use this method to approximate 

the log likelihood function as follows:

logL β, σ ∣ X ≈ ∑
n = 1

N
log ∑

m = 1

M
wm ∏

c = 1

T i
pyi, c − 1; yi, c β ∣ xn, vm f vm ,

(7)

where f vm  is the probability density function of the random effects, wm and vm are the 

Gaussian weights and abscissas, respectively.

2.2 | Step 2

Given the fixed effects and parameters that controls the random effects distribution being 

estimated, in the second step, we substitute the value of β into ∂ℎ
∂V  and solve for V  (i.e., solve 

the equation ∂ℎ
∂V = 0 after plugging in the estimate of β from Step 1). Since it is hard to find 

the explicit solution, we use a numerical method (Newton–Raphson Method) to find the V
that maximizes the h-likelihood function.

To compute the derivatives of v, we have ∂ logf y ∣ β, v
∂v = ∑i = 1

N ∑s = 1
Ti ∂ logp yi, s ∣ yi, s − 1, β, vi

∂vi
, 

where

log p yi, s ∣ yi, s − 1, β, vi = log δ1, yi, s + 1 − δ1, yi, s exp αyi, s + βyi, s − 1, yi, s
T xi + vi

Tzi − log 1 + Mi, sexp vi
Tzi ,

and

Mi, s = ∑
ℎ = 2

k1 + k2
exp αℎ + βyi, s − 1, ℎ

T xi .

Thus, the first and second derivatives w.r.t vi follow that

∂ log p yi, s ∣ yi, s − 1, β, vi
∂vi

=
1 − δ1, yi, s exp αyi, s + βyi, s − 1, yi, s

T xi + vi
Tzi zi

δ1, yi, s + 1 − δ1, yi, s exp αyi, s + βyi, s − 1, yi, s
T xi + vi

Tzi
− Mi, sexp vi

Tzi zi

1 + Mi, sexp vi
Tzi

,

(8)

where the first term is either 0 or zi; and

∂2 log p yi, s ∣ yi, s − 1, β, vi

∂vi ∂vi
T =

δ1, yi, s 1 − δ1, yi, s exp αyi, s + βyi, s − 1, yi, s
T xi + vi

Tzi zizi
T

δ1, yi, s + 1 − δ1, yi, s exp αyi, s + βyi, s − 1, yi, s
T xi + vi

Tzi
2 − Mi, s exp vi

Tzi zizi
T

1 + Mi, s exp vi
Tzi

2,

(9)

where the first term equals to zero and thus ∂2logp yi, s ∣ yi, s − 1, β, vi

∂vi ∂vi
T = − Mi, sexp vi

Tzi zizi
T

1 + Mi, sexp vi
Tzi

2 .
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2.3 | Step 3

The covariance matrix for the random effects estimator of V  is A = H22 − H12H11
−1H12

−1, 

where Equation (5) is used to define the Hessian matrix

H =
H11 H12

H21 H22
=

− ∂2ℎ
∂β2 − ∂2ℎ

∂β ∂V

− ∂2ℎ
∂V ∂β − ∂2ℎ

∂V 2

.

To compute the covariance matrix for v, we need the derivatives w.r.t β.

For any j ≥ 2,

∂ log p yi, s ∣ yi, s − 1, β, vi
∂αj

= δj, yi, s −
exp αj + βyi, s − 1j

T xi + vi
Tzi

1 + Mi, sexp vi
Tzi

,

(10)

∂2 log p yi, s ∣ yi, s − 1, β, vi

∂αj
2 = −

exp αj + βyi, s − 1, j
T xi + vi

Tzi 1 + Mi, sexp vi
Tzi − exp αj + βyi, s − 1, j

T xi + vi
Tzi

1 + Mi, sexp vi
Tzi

2 ,

(11)

and for any j ≥ 2, j* ≥ 2, and j ≠ j*

∂2 log p yi, s ∣ yi, s − 1, β, vi
∂αj ∂αj*

=
exp αj + βyi, s − 1j

T xi + vi
Tzi exp αj* + βyi, s − 1j*

T xi + vi
Tzi

1 + Mi, sexp vi
Tzi

2 .

(12)

In addition, for any u = 1, ⋯, k1; w = 2, ⋯, k1 + k2; and j = 1, ⋯, p

∂ log p yi, s ∣ yi, s − 1, β, vi
∂βu, w, j

= δu, yi, s − 1δw, yi, sxi, j −
δu, yi, s − 1xi, j exp αw + βu, w

T xi + vi
Tzi

1 + Mi, sexp vi
Tzi

,

(13)

∂2 log p yi, s ∣ yi, s − 1, β, vi

∂βu, w, j
2 = −

δu, yi, s − 1xi, j
2 exp αw + βu, w

T xi + vi
Tzi 1 + Mi, s exp vi

Tzi − exp αw + βu, w
T xi + vi

Tzi

1 + Mi, sexp vi
Tzi

2 ,

(14)

and for any j, j* = 1, ⋯, p with j ≠ j*,
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∂2 log p yi, s ∣ yi, s − 1, β, vi
∂βu, w, j ∂βu, w, j*

= −
δu, yi, s − 1xi, jxi, j*exp αw + βu, w

T xi + vi
Tzi 1 + Mi, sexp vi

Tzi − exp αw + βu, w
T xi + vi

Tzi

1 + Mi, s exp vi
Tzi

2 .

(15)

For any u = 1, ⋯, k1; w, w* = 2, ⋯, k1 + k2 with w ≠ w*; and j, j* = 1, ⋯, p

∂2 log p yi, s ∣ yi, s − 1, β, vi
∂βu, w, j ∂βu, w*j*

=
δu, yi, s − 1xi, jxi, j* exp αw + βu, w

T xi + vi
Tzi exp αw* + βu, w*

T xi + vi
Tzi

1 + Mi, sexp vi
Tzi

2 .

(16)

For any u, u* = 1, ⋯, k1 with u ≠ u*; w, w* = 2, ⋯, k1 + k2; and j, j* = 1, ⋯, p

∂2 log p yi, s ∣ yi, s − 1, β, vi
∂βu, w, j ∂βu*, w*, j*

= 0 .

(17)

For u = 1, ⋯, k1; w = 2, ⋯, k1 + k2; j = 1, ⋯, p, and c = 2, ⋯, k1 + k2

∂2 log p yi, s ∣ yi, s − 1, β, vi
∂βu, w, j ∂αl

= −
δu, yi, s − 1xi, jexp αw + βu, w

T xi + vi
Tzi δw, c 1 + Mi, sexp vi

Tzi − exp αc + βu, c
T xi + vi

Tzi

1 + Mi, sexp vi
Tzi

2 .

(18)

To define H12, we have

∂2 log p yi, s ∣ yi, s − 1, β, vi
∂vi ∂αj

= −
exp αj + βyi, s − 1

T xi + vi
Tzi zi

1 + Mi, sexp vi
Tzi

2 ,

(19)

and

∂2 log p yi, s ∣ yi, s − 1, β, vi
∂vi ∂βu, w, c

= −
δu, yi, s − 1xi, jexp αw + βu, w

T xi + vi
Tzi zi

1 + Mi, sexp vi
Tzi

2 .

(20)

3 | SIMULATION STUDY

A simulation study was conducted for the model in Equation (4) with k1 = 3 and k2 = 2; 

that is, a Markov chain with three transient states, two absorbing states and one covariate, 

age. Age affected all transitions in the application discussed in the next section. Analyzing 

the data in the next section with only age yielded the following beta coefficients for 

age βj, 2 = 0.0309, βj, 3 = 0.0731, and βj, 4 = βj, 5 = 0.1378 for j = 1, 2, 3 which for each subject 

Wang et al. Page 7

Stat Neerl. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generates a cluster of transient states favoring the state 3. Each cluster is truncated at T
transitions or fewer if a transition to an absorbing state occurs first. Although based on 

real data these increasing values of the beta coefficients provide insight into how well the 

proposed methods in Section 2 provides statistical inference for these coefficients as T , 

the maximum cluster size, and N, the number of subjects increase. The choices for N
were taken to be 200, 400, and 600 while the choices for T  were taken to be 7, 14, and 

21 with the maximum values motivated by the real data which had T = 22 and N = 649. 

Choosing T < 7 and/or N < 200 will cause problems due to the complexity of the chain in 

that smaller choices of these quantities often generate empty or sparse cells for one of more 

of the transitions: state i to state j where i = 1, 2, 3 and j = 1, ⋯, 5. It is well known that 

a logistic model (in this case a multinomial logistic model) has problems estimating beta 

coefficients under sparse/empty cells. To complete the model for each simulation the ages 

of the N subjects were generated from a normal distribution with mean 72 and SD 10. The 

intercepts were determined by the real data and set to be −1.5449, −1.8601, −4.4643, and 

−3.5836 for moving to states 2, 3, 4, and 5 as were the beta coefficients for the prior state 2: 

0.2189, 0.02463, 0.74, and −0.1325 for moving to states 2, 3, 4, and 5 and for the prior state 

3:−0.3210, 1.5544, 1.7985, and 1.0051 for moving to states 2, 3, 4, and 5. Each simulation 

was repeated 500 times.

Metrics to evaluate the fit of the marginal model to the simulated data addressed both 

estimation and hypothesis testing. Estimation was evaluated using mean and SD of 

the estimated beta coefficient, percent bias, and coverage of 95% confidence intervals. 

Hypothesis testing focused on misspecification of the random effect by plotting the power 

to detect each beta coefficient as being statistically significantly different from zero when 

the random effects in Equation (1) were generated from a standard normal distribution, or a 

Cauchy distribution or a unform distribution centered at 0 with a variance of 1. The results 

of the simulations are listed in Table 1 and Figure 1. Percent coverage was within error 

(plus, minus 1.9% of 95%) for almost all tabled entries indicating a lack of sensitivity to 

the misspecified random effects distribution. However, the same statement does not hold 

for percent bias and power. Specifically, if the beta coefficient is small as in transitions 

from state 1 to state 2, the percent bias is affected by misspecification especially if T  is 

7 regardless of N or if N is 200 and the random effects are generated from a uniform 

distribution (Table 1). The power to detect this smaller value of beta is less affected by a 

misspecified uniform distribution than a misspecified Cauchy distribution (Figure 1). The 

power to detect larger values of beta is unaffected by misspecification (results not shown).

4 | APPLICATION TO COGNITIVE DATA

We analyze the cognitive data discussed by Abner et al. (2014) and Wang et al. 

(2021) to illustrate the proposed methodology. The data include 649 participates and 

the measurements are taken annually in the BRAiNs (Biologically Resilient Adults in 

Neurological Studies) cohort at the Alzheimer’s Disease Center of University of Kentucky 

(Schmitt et al., 2012). The goal of this analysis is to identify which groups are at low or 

high risk for the event of interest (e.g., relative risk of dementia). We assume a seven-state 

model where at each annual cognitive assessment a subject is placed into one and only 
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one of the following seven state: intact cognition, A-MCI (amnestic MCI; mild cognitive 

impairment because of the weak performance on an annual memory test), M-MCI (mixed 

MCI; weak performance on a nonmemory cognitive exam; otherwise cognitively intact); 

MCI (mild cognitive impairment that is diagnosed by a clinician and verified by a low 

cognitive exam score and an informant); dropout before death or dementia; death without 

a diagnosis of a clinical dementia; diagnosis of clinical Alzheimer’s disease. Among these 

seven states, the first four are transient and the last three are absorbing, see Figure 2 for 

diagram illustration. That is, k1 = 4 and k2 = 3. Figure 2 shows the one-step transitions 

possible between adjacent subject visits in this BRAiNs cohort study. The double-headed 

arrows indicate back transitions are possible from more impaired to less impaired states.

The one-step transition probabilities among the states for the data is listed in Table 2. For 

each row, the number without parentheses (row 1) is the number of observed transitions 

and the number inside the parentheses (row 2) is the transition probability expressed as a 

percentage.

To model this transition matrix, as Salazar et al. (2007) suggested, we assume the fixed 

effects are proportional for the transitions when the prior states are Intact cognition, A-MCI 

and MCI. For example, the fixed effect β12 and β22 are the same from our definition in 

Equation (4). To count for the information from the prior states, we included two indicator 

variables, see next paragraph for details. However, this assumption does not hold when the 

prior state is MCI because we have fewer transitions. Thus, the unknown parameter vector is 

β = α12, α13, ⋯, α17, α45, α46, α47, β12, β13, ⋯, β17, β45, β46, β47 .

We assume that the transition probabilities are dependent on baseline age (centered at 

age 74), gender, indication for low education (≤ 12 years) and the presence/absence of 

Apolipoprotein-E gene ϵ4 allele(s) (APOE4; a common risk factor for Alzheimer’s disease). 

Except these clinical covariates, we included two indicator variables printact (equals to 1 

when the prior state is Intact and 0 otherwise) and pramnestic (equals to 1 when the prior 

state is A-MCI and 0 otherwise).

In this model we assume that for subject i each transition probability relies on the fixed 

effects and one random effect vi. We further assume that for subject i random effect vi

follows a normal distribution with mean 0 and variance σ2. We then use the step 1 in 

Section 2 to get the estimates for the fixed effects along with the standard errors. The 

resulting estimates of the fixed effects can be found in Tables 3 and 4. Along with the 

estimates for the fixed effects, we also estimated the standard deviation used for the random 

effect distribution σ̂ = 0.685, SE = 0.058 . Since we assumed a scalar random effect with 

normal distribution, the PROC NLMIXED function in SAS system is used to optimize the 

approximated log likelihood function.

Given the estimates for the fixed effects, we are able to estimate the random effect through 

the method discussed in steps 2 and 3 of Section 2. All the computing work for steps 2 and 

3 are conducted in R. We summarize the results based on the random effects in the next 

paragraph.

Wang et al. Page 9

Stat Neerl. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We first notice that the probability of moving away from the reference state (intact cognitive) 

towards an impairment, death or drop out increases as the value for random effect vi

increases. Based on this fact, we compare the top 5% to the bottom 5% and the middle 90% 

of the v values. The thresholds for the division are 0.235 and −0.226. More specifically, a 

subject is within the top 5% if v̂ ≥ 0.235 and is within the bottom 5% if v̂ ≤ − 0.226 and is 

within the middle 90% if v̂ stands between these two numbers. Table 5 shows the difference 

for the covariates and the number of transitions for the three groups. When comparing 

categories, we found that at baseline younger participants had fewer transitions than older 

participants (it further helps to show that the group with top random effect are quick to a 

terminating event). Table 6 shows the prior states distributions across the three groups and 

found that the Top 5% were more likely to start in the M-MCI. This results is consistent 

with the one-step transition matrix where the probability of a transition to dementia or death 

is larger when the prior state is M-MCI compared to intact cognition and A-MCI. Table 7 

shows the distributions of the final states for the three comparison groups. The percentage of 

terminating events have large differences in these three groups (e.g., 90.9% for the bottom 

5% group, 69.0% for the middle 90% group and 78.7% for the top 5% group). In addition, 

we found that the older subjects were more likely to dropout during follow-up.

Besides the results here, we also checked other risk factors that are not included in the 

model. From the check, we found among females use of HRT (hormone replacement therapy 

reported at baseline) is more prevalent in the top category: 13/24 or 54.2% top, 116/371 or 

31.3% middle and 3/20 or 15.5% bottom (p-value = .0195 by Fisher’s Exact test). All other 

risk factors not in the fitted model had no relationship to the categories above; this includes 

indicators for smoking history, baseline diabetes, use of hypertensive medications, use of 

statin medications, history of head injury, and a body mass index above 25.

To determine if the normality assumption for the vi is reasonable, Studentized residuals 

defined as v over the SD of v were also examined. This set of 649 studentized residuals had 

mean value −0.096 with SD 0.569. The set passed a test for normality (e.g., Shapiro Wilk 

statistic is 0.997, p-value = .25). Also, plots of these residuals indicate one possible outlier; 

see the plots in Figures 3 and 4.

The 95% confidence interval for the random effects are also plotted in Figure 5. From 

the plot, we identified the one possible outlier belongs to a subject with standardized 

residual −2.26 and the corresponding 95% confidence interval is (−4.22, −0.30). Upon 

further investigation, this subject is a male, age 68 at baseline, with 16 years of education, 

a non-APOE4 carrier, no diabetes, no head injury but a positive smoking history, BMI = 

29.5, and taking statin and blood pressure medications (hence, cardiovascular risk). This 

subject had one baseline visit (declared nonamnestic MCI for age at that visit) and then 

(immediately) transitioned to dementia.

5 | DISCUSSION

In this paper we propose a h-likelihood method to estimate the fixed and random effects 

in a GLMM defined by a series of multinomial distributions that determine the one step 

transition probabilities in a finite Markov chain with transient states. The observations 
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are a series of states in the chain visited by each experimental unit (persons at risk for 

a cognitive impairment in our example) which forms a cluster of correlated observations 

sharing a common random effect in the model. This is an example of a multistate transitional 

model. The estimation proceeds in steps with the first being the estimation of the fixed 

effects by maximizing the familiar marginal likelihood obtained after integrating out the 

random effects. The second step maximizes the joint likelihood to estimate the random 

effects by substituting the maximum likelihood estimators for the fixed effects into this joint 

likelihood. The third step also yields estimates of the SEs associated with each random 

effect allowing for the computation of studentized residuals. Using these residuals outliers 

are easily identified as are subsets of the experimental units that that are on a fast track or 

slow track for transitions into an absorbing state.

Model fitting is not necessarily straightforward at either step. When the random effect is 

a scalar and is normally distributed standard software may be used to do the integration 

needed to fit the marginal model to data. For example, PROC NLMIXED in the SAS 
system will fit the marginal model using an adaptive Gauss-Hermite quadrature with the 

option to use an importance sampling (Pinheiro & Bates, 1995). Other options include 

Monte-Carlo integration (Skrondal & Rabe-Hesketh, 2004) and a second-order Taylor series. 

Salazar et al. (2007) compared these methods in a simulation study in which the random 

effect was possibly nonnormally distributed. Another option is to use a probability integral 

transformation to normality when the random effect is nonnormally distributed (Nelson 

et al., 2006). As far as we know there is no software to fit the random effects to the 

h-likelihood once the fixed effects have been estimated.

The study of power or estimation in a GLMM usually depends on the choice of N, the 

number of subjects, and T i, the number of observations for the ith subject which is assumed 

to be of constant size. In a finite Markov chain with absorbing states multiple possible 

outcomes at each transition introduces additional complexities that need consideration in 

power/estimation studies especially if N and T i is small. The number of transitions for a 

subject may be less than planned due to early absorption. Also, the occurrence of sparse or 

empty cells in the one step frequency matrix for the chain (Table 2) will create convergence 

problems when estimating the beta coefficients in Equation (6) or may lead to 0 for the 

estimate of the variance of the random effect. In the example presented in Section 4 the 

median value of T i is 9 (IQR: 7–21) and 91.4% of the individuals in the study have T i > 3. 

As discussed in Lee et al. (2018) uniformly small cluster sizes can lead to biased estimates 

in the presence of binary responses which could be partially offset with the presence of 

additional covariates. It is more difficult to make equivalent summary statements in a finite 

Markov chain.

In this manuscript the model assumes one random effect, a random intercept. Multiple 

random effects are possible including the popular random intercept, random slope model. 

This would require integrating a two-dimensional integral in Step 1 which can still be 

facilitated using a multidimensional version of the Gauss quadrature algorithm. See, for 

example, Bartolucci et al. (2012) for a discussion of this case. When the dependent variable 

is assumed to be an indicator of an unobserved trait a latent Markov chain model can be 

assumed as well. The special case when the dependent variable is measured on an ordinal 
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scale (e.g., a Likert scale which leads to a general logit model with an autoregressive process 

of order 1 over time) is discussed in the literature (Bartolucci, Montanari, & Pandolfi, 

2015; Bartolucci, Bacci, & Pennoni, 2014) and has been generalized to the case where 

the respondent to a longitudinal survey consists of a set of indicator variables for the 

underlying latent response. In the latter case an additional step precedes Step 1 in which 

latent transition analysis is used to identify a small number of paths the cohort may follow 

over time (Bartolucci et al., 2015). This additional step is avoided in our application because 

the cognitive states and transitions among them are determined by a consensus conference 

that summarizes the result of a large neuropsychological battery given annually as well 

as supporting instruments measuring quality of life and depressive status, and reports by 

a close informant on the cognitive status of the participant during the previous year. An 

important point is that in all of this literature, the estimation of the random effects depends 

largely on the use of empirical Bayes which then raises additional assumptions related to 

choice of priors including prior distributions for the fixed effects in Step 1. For the random 

effects it also introduces additional notation related to posterior distributions, predictive 

densities, credible intervals, and caterpillar plots (Montanari, Doretti, & Bartolucci, 2018). 

The analytical procedure recommended in this manuscript avoids the additional Bayesian 

notation since all model parameters, fixed and random, are estimated by maximum 

likelihood.

The simulation study in Section 4 evaluated estimation and hypothesis testing for the 

fixed effects (Step 1 of the algorithm) under misspecification of the distribution of the 

random effects; that is, under a non normal distribution for the random effect (see, e.g., 

Litière, Alonso, & Molenberghs, 2007). It did not consider the effect of misspecification in 

Steps 2 and 3 because the sample residuals are noninformative on the normal distribution 

assumption for the random effects in hierarchical models (Alonso, Litière, & Laenen, 2010). 

These references relied on an empirical Bayes method to estimate the random effects and 

that method is well known to be subject to shrinkage toward zero. Paik, Lee, and Ha 

(2015) discuss using a frequentist approach to estimate the random effects when relying 

on maximum likelihood to produce the estimates. They showed that asymptotically these 

estimates are not necessarily normally distributed especially if the usual information matrix 

is used to estimate the standard errors of the random effects. To study random effects in 

GLMMs they suggest fixing the random effects across all simulations and treating these as 

fixed effects when evaluating estimation. This suggestion did not work well in the Markov 

chain model where shrinkage remained a problem.

A reviewer pointed out that the likelihood could be expanded to include the initial state 

which would involve using a multinomial model for determining entry into one of the k1

transient states. This model would account for the covariates and would involve a subject 

specific random intercept that is shared with the random intercept in Equation (3). We 

followed this suggestion for the BRAiNS data example and found that it did not change 

the results much. Specifically, for the 31 beta coefficients that are listed as statistically 

significant in Tables 3 and 4 the percent error had a median value of 0.20% (IQR 5.4%) 

when each beta estimated without accounting for the initial state is compared to the 

same beta coefficients when the likelihood does account for the initial state. None of the 
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nonsignificant betas in those tables changed to significant. This finding is consistent with 

that reported for the fixed effects in another dataset analyzed by Yu et al. (2010). In addition, 

for the 649 subjects in the BRAiNS dataset the difference between the random intercept 

estimated per subject which accounted for the initial state compared to that estimated by 

our method had a median value of 0.00024 (IQR 0.044). The entries in Tables 5–7 changed 

little and none of the conclusions from those tables changed. However, the inclusion of the 

initial state did identify one additional outlier; a 89-year-old male at baseline with 13 years 

of education and an APOE 4 carrier who had a severe head injury and cardiovascular risks 

(on a statin and blood pressure medications); that person had an intact cognition at baseline 

but transitioned to dementia within a year.
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FIGURE 1. 
Power to detect the smallest beta coefficient (0.0309) in the Markov chain when the random 

effect is generated from a standard normal distribution (red), uniform distribution centered 

at 0 with variance 1 (blue), or Cauchy distribution (green) as a function of the number of 

subjects N  and maximum number of transitions for the ith subject T i
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FIGURE 2. 
Flow diagram of one-step transitions between subjects visits. States are: intact (cognitively 

not impaired), A-MCI (test-based amnestic mild cognitive impairment), M-MCI (test-

based nonamnestic mild cognitive impairment), MCI (clinical consensus mild cognitive 

impairment), dementia (clinical consensus dementia), dropout (participant drops out of study 

without incurring a dementia or dying), and death (participant dies without incurring a 

dementia)
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FIGURE 3. 
Normal quantile plot of the studentized residuals
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FIGURE 4. 
Distribution of the studentized residuals
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FIGURE 5. 
Predictive intervals (95% confidence intervals) based on ordering of the studentized 

residuals
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TABLE 2

One-step transition matrix

Current visit

Last visit Intact A-MCI M-MCI MCI Dementia Dropout Death Total

Intact 2634
(69.1)

524
(13.8)

464
(12.2)

40
(1.1)

15
(0.4)

33
(0.9)

101
(2.7)

3811
(100)

A-MCI 497
(57.6)

172
(19.9)

129
(15.0)

23
(2.7)

9
(1.0)

13
(1.5)

20
(2.3)

863
(100)

M-MCI 404
(30.7)

97
(7.4)

601
(45.7)

66
(5.0)

35
(2.7)

30
(2.3)

80
(6.2)

1313
(100)

MCI /
/

/
/

/
/

154
(61.4)

50
(19.9)

16
(6.4)

31
(12.4)

251
(100)

Abbreviations: A-MCI, test-based amnestic mild cognitive impairment; M-MCI, test-based nonamnestic mild cognitive impairment; MCI, clinical 
consensus mild cognitive impairment.
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TABLE 3

Parameter estimates with intact cognition as reference category when prior states are intact, A-MCI, M-MCI

Risk factor A-MCI M-MCI MCI Dementia Dropout Death

Intercept −1.225 *
(0.182)

−2.175 *
(0.184)

−4.717 *
(0.391)

−7.337 *
(0.669)

−3.613 *
(0.309)

−4.701 *
(0.485)

Baseline age 0.029*
(0.007)

0.073*
(0.006)

0.133*
(0.014)

0.164*
(0.020)

0.171*
(0.012)

0.056*
(0.017)

Gender −0.196
(0.103)

0.121
(0.100)

−0.185
(0.199)

0.551
(0.317)

−0.383 *
(0.165)

0.097
(0.257)

Low Education 0.047
(0.164)

0.597*
(0.137)

0.541*
(0.265)

−0.306
(0.478)

0.188
(0.252)

0.424
(0.337)

APOE4 −0.081
(0.112)

0.067
(0.105)

0.603*
(0.204)

1.038*
(0.283)

−0.076
(0.192)

0.171
(0.264)

Printact 0.240*
(0.109)

0.060
(0.120)

0.737*
(0.272)

0.835
(0.431)

−0.341
(0.257)

0.4272
(0.334)

Pramnestic −0.257
(0.136)

1.563*
(0.100)

1.723*
(0.218)

2.071*
(0.322)

0.977*
(0.173)

1.259*
(0.267)

Note: The values above the parentheses are the mle for the fixed effects and the values inside of the parentheses are the corresponding SEs.

Abbreviations: A-MCI, test-based amnestic mild cognitive impairment; M-MCI, test-based nonamnestic mild cognitive impairment; MCI, clinical 
consensus mild cognitive impairment.

Stat Neerl. Author manuscript; available in PMC 2024 September 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 23

TABLE 4

Parameter estimates with MCI as reference category when prior states is MCI

Risk Factor Dementia Dropout Death

Intercept −3.236 *
(0.721)

−3.263 *
(0.833)

−2.547 *
(0.975)

Baseline age 0.060*
(0.029)

0.110*
(0.038)

0.062
(0.049)

Gender 0.708
(0.389)

0.389
(0.459)

−0.281
(0.573)

Low Education −0.454
(0.487)

−0.799
(0.644)

−1.310
(1.020)

APOE4 0.823*
(0.340)

0.474
(0.0.483)

0.300
(0.626)

Note: The values above the parentheses are the mle for the fixed effects and the values inside of the parentheses are the corresponding SEs.
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TABLE 5

Covariates differences based on the random effects

Category N Low education (%) Female (%) APOE4(%) Base age Number of transitions

Bottom 5% 33 6.1 60.6 21.1 85.4 ± 5.5 9.1 ± 4.7

Middle 90% 583 13.6 63.6 30.2 73.5 ± 7.0 9.9 ± 4.4

Top 5% 33 12.1 72.7 42.4 71.4 ± 5.8 5.5 ± 3.9

p-Value / .46 .53 .17 < .0001 < .0001
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TABLE 6

Initial state based on the random effects

Category/prior state Intact cognitive A-MCI M-MCI

Bottom 5% 69.7% 12.1% 18.2%

Middle 90% 65.8% 11.3% 22.9%

Top 5% 24.2% 24.2% 51.5%

p-value < .0001

Abbreviations: A-MCI, test-based amnestic mild cognitive impairment; M-MCI, test-based nonamnestic mild cognitive impairment.
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TABLE 7

Final state distributions based on the random effects

Category/prior state Intact cognitive A-MCI M-MCI MCI Dementia Dropout Death

Bottom 5% 6.1% 0.0% 3.0% 0.0% 9.1% 78.8% 3.0%

Middle 90% 23.5% 1.2% 4.8% 5.5% 16.8% 38.5% 13.7%

Top 5% 0.0% 0.0% 21.2% 0% 24.2% 21.2% 33.3%

p-value <.0001

Abbreviations: A-MCI, test-based amnestic mild cognitive impairment; M-MCI, test-based nonamnestic mild cognitive impairment; MCI, clinical 
consensus mild cognitive impairment.
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